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ABSTRACT
Prior work [14, 15] has studied the computational complexity of

computing optimal strategies to commit to in Stackelberg or lead-

ership games, where a leader commits to a strategy which is then

observed by one or more followers. We extend this setting to one in

which the leader can additionally commit to outcome-conditional

utility transfers. In this setting, we characterize the computational

complexity of finding optimal commitments for normal-form and

Bayesian games. We find a mix of polynomial time algorithms and

NP-hardness results. Then, we allow the leader to additionally com-

mit to a signaling scheme based on her action, inducing a correlated

equilibrium. In this variant, optimal commitments can be computed

efficiently for arbitrarily many players.
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1 INTRODUCTION
Since the early days of the field, game theorists have studied mod-

els of commitments and sequential play. Perhaps the first was von

Stackelberg [44], who introduced his now-eponymous model to

argue that a firm with the ability to commit to an action (a quantity

of production) benefits from doing so in the duopoly competition

model of Cournot [17]. Commitment to pure and mixed strategies

were invoked by von Neumann and Morgenstern [43] to motivate

the min-max and max-min values of zero-sum games. von Sten-

gel and Zamir [45] study the payoff implications of commitment

to mixed strategies, comparing the resulting payoffs to those in

the Nash and correlated equilibria in the simultaneous versions

of the game. The first to study the computational complexity of

computing optimal commitments were Conitzer and Sandholm

[15], who characterized the complexity of computing optimal pure
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and mixed strategies to commit to in normal-form and Bayesian

games. Conitzer and Korzhyk [14] introduced the notion of com-

mitment to correlated strategies and showed that finding optimal

such commitments is tractable even with arbitrarily many players.

More recently, a number of authors in game theory and multi-

agent learning have studied the use of voluntary utility transfers

and commitments to pay money [2, 12, 20, 26, 31, 35, 37, 47–49]. We

are specifically interested in outcome-conditional payments, such as

committing to pay a particular agent if they take a particular action.

We see two primary motivations to study such commitments to

payments. The first is descriptive: Commitments to pay others are a

common feature of human economies. For example, companies pay

employees for performing tasks. The second is normative: It may

be good if commitments to payments were available to and used by

agents, as commitments to payments often allow for cooperative

equilibria. For example, in the Prisoner’s Dilemma, one player may

pay the other to cooperate [12, 48].

In this paper, we combine these two lines of work and study

games in which players can commit to both strategies and outcome-

conditional utility transfers. To our knowledge, only Gupta and

Schewe [26] have considered such a setting before. (See Section 1.2

for a discussion of their contributions.)

In the most basic case, we take a given normal-form game (the

“base game”) and imagine that Player 1 (the “leader”) makes a com-

mitment as follows: As in Stackelberg games, she commits to taking

a specific action or mixture over actions in the base game. In addi-

tion, she can commit to transfer utility to other players based on

the outcome of the game. Specifically, she commits to a payment

function 𝑃 : 𝐴 → R𝑛−1≥0 , which we index 𝑖 = 2 . . . 𝑛, where 𝑃𝑖 (𝑎) is
the amount of utility the leader will transfer to Player 𝑖 if outcome

𝑎 obtains.

For example, consider the game in Table 1. Since Bottom is a

strictly dominant strategy for Player 1, the only Nash equilibrium

is (Bottom, Middle), resulting in payoffs of (0, 2). However, in our

setting, the leader can commit to play the mixture (1/3, 2/3) over
(Top, Bottom) and to the payment function 𝑃 where 𝑃 (𝐵, 𝐿) = 1

and 𝑃 (𝑎) = 0 for all 𝑎 ≠ (𝐵, 𝐿), essentially promising to transfer 1

utility to the follower if (Bottom, Left) is played.

Then, the follower’s expected utility for playing Right is 2/3, as
is his utility for playing Left since the their payoffs after payments

Table 1: A game in which commitment to strategies and pay-
ments is beneficial to the leader.

Left Middle Right

Top −1, 0 −1, −2 −1, 0
Bottom 2, 0 0, 2 0, 1
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are the same. His utility for playing Middle is 2 · 2/3 − 2 · 1/3 = 2/3.
Hence, the follower is indifferent between each of his actions and

tie-breaks in favor of the leader, playing Left for a leader payoff of

−1 · 1/3 + (2 − 1) · 2/3 = 1/3. (Of course, the leader could also pay

slightly more to strictly incentivize Left.)

It turns out that both commitment to actions and payments are

necessary for the leader to achieve positive utility in this game.

Intuitively, the leader cannot incentivize Left over Right without

payments and cannot incentivize Left over Middle without commit-

ment to (mixtures over) actions. For a more detailed analysis, see

Proposition A.1 in the version at arXiv:2402.06626.

Settings involving commitment to both strategies and payments

are ubiquitous in human interactions. For example, governments

often pass laws (commitments) that determine both systems of sub-

sidies (payments) as well as government policies that influence the

structure of economic interactions (actions). These actions include

what the government buys and sells, what services and entitlements

it provides to citizens, what infrastructure it maintains, and how it

regulates sectors.

Another example is companies’ interactions with their employ-

ees. Here, companies set both general policies like rules, priorities,

company hierarchy, etc. (commitment to strategies) and compen-

sation policies like pay scales and bonus structure (commitment

to payments), to which employees then respond. We might fur-

ther imagine that leaders of subdivisions respond to the company’s

commitments by in turn setting general and compensation policies

within their subdivisions, thus resulting in a multi-step game where

players make commitments in sequence.

Both pure and mixed commitment are quite natural and common.

In some cases, the followers observe the specific base game action

the leader takes before making their decisions. In such cases, even if

the leader does randomize, the followers would observe the specific

draw from the distribution before making their choices, and so such

randomization would not be helpful. In other cases, the followers

can observe the leader’s long-run distribution over actions before

choosing their own actions, but cannot observe the leader’s realized

action in their specific instance.

1.1 Contributions
In this paper, we ask: How can we compute optimal commitments

in such settings? The answer depends on various features of the

setting, such as the number of players, whether only the first or

also later players can commit, which players (if any) have Bayesian

types and whether correlation devices are available. We give an

overview of our results here.

In Section 3, we study a setting without private information

and without correlation devices. (See Table 2 for a summary of the

following results.)

• We show that in two-player games, optimal pure commit-

ments can be found efficiently with dynamic programming

(Theorem 3.1) and optimal mixed commitments can be found

efficiently with linear programming (LP) (Theorem 3.2)

• We show that if there are more than two players and only

the first commits, the optimal commitment is NP-complete

to find (Theorem 3.3).

• We show that in the case of three players in which the play-

ers commit in sequence, the pure commitment case can be

solved efficiently with LP (Theorem 3.4) while the mixed

commitment case is NP-hard (Theorem 3.5).

In Section 4, we study a setting without private information but

where correlation devices are available. Specifically, the leader can

construct an arbitrary signaling scheme (as in [29]) that depends

on her realized action. We show that in this setting, optimal mixed

(Theorem 4.1) and pure (Theorem 4.2) commitments can both be

computed efficiently with linear programming. (See Table 3 for a

summary of these results.)

In Section 5, we extend the previous settings to Bayesian games,

i.e., games where players have private information about their own

preferences. (See Table 4 for a summary of the following results.)

• We show that in two-player games where only the follower

has Bayesian types, the optimal commitment is NP-hard to

compute under standard complexity-theoretic assumptions,

regardless of the availability of correlation devices (Corol-

lary 5.1.1).

• We show that in two-player games where only the leader

has Bayesian types and correlation devices are not avail-

able, computing the optimal pure commitment is NP-hard
(Theorem 5.2), while the optimal mixed commitment can be

computed efficiently with LP (Theorem 5.3).

• We show that in 𝑛-player games where only the leader has

Bayesian types and correlation devices are available, optimal

mixed commitments can be computed in polynomial time

with LP (Theorem 5.4).

Throughout the paper we give only sketches of our proofs. The

full proofs can be found in the version at arXiv:2402.06626.

1.2 Related Work
The work of Gupta and Schewe [26] is most closely related to

ours – they essentially consider the two-player, mixed-commitment

version of our setting. Their focus is on comparing the cases where

the follower tiebreaks for and against the leader and characterizing

the properties of optimal commitments in more detail. They also

provide an alternative proof of our Theorem 3.2.

As discussed in the introduction, von Stengel and Zamir [46]

study a two-player settingwithmixed commitment over actions, but

without commitment to payments. They characterize the range of

possible payoffs for the players under optimal commitment and com-

pare them to the payoffs from other ways of playing the game, such

as playing a Nash or correlated equilibrium of the simultaneous-

move game, or playing a commitment game with leadership roles

reversed. Conitzer and Sandholm [15] were the first to study the

computational complexity of computing optimal strategies in Stack-

elberg games. They consider both pure and mixed commitment in

both Bayesian and normal-form games. Follow up work [14] intro-

duced the idea of committing to correlated strategies. Our present

paper essentially extends the latter work to Bayesian games and

extends both papers to allow the leader to commit to payments.

Other works consider computing optimal commitments in exten-

sive form [33] and Markov games [34]. Further variations on the

setting include mixed commitments to which multiple followers
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must respond with pure strategies [13], and games with multiple

leaders who commit simultaneously [8].

Another line of related work is that on 𝑘-implementation [20,

37], in which an outside “interested party” influences a normal-

form game by committing to outcome-conditional payments, as

in our setting. This is similar to our single commitment setting

(Section 3.2), but the rationality assumptions of 𝑘-implementation

allow the followers to play any undominated strategy, while we

make the stronger assumption that the followers play according

to a Nash or correlated equilibrium. Anderson et al. [2] apply the

𝑘-implementation framework to games the interested party plays

in herself. They essentially characterize commitments to payments

that optimize the leader’s pure security level in the induced game.

In reinforcement learning, settings like policy teaching [e.g. 50] and

reward poisoning [e.g. 51] also study an outside party’s ability to

influence the agent’s behavior via limited control over their reward

function.

Payments have also been considered in the context of multi-

agent reinforcement learning (MARL). Christoffersen et al. [12] also

consider outcome-conditional payments. However, their setting has

one player propose payment contracts for everyone, leaving the

remaining players merely with the decision of whether to accept

or reject the proposed set of payments. In contrast, in our setting,

the leader unilaterally commits to payments but only for herself.

Sodomka et al. [40] consider binding commitments to joint action

profiles and side payments in two-player games, while other lines

of work have considered (commitments to) sharing a fraction of

one’s reward without conditioning on the outcome [31, 48, 49] and

even entirely unconditional gifting of reward, i.e., the transfer of

some constant amount of money [35, 47].

The principal–agent problem literature in economics, also called

contract theory, [e.g., 6, 16, 18, 23, 25, 32, 36, 42] also considers

settings in which one player (the principal) can pay another player

(the agent) to incentivize that player to take an action which in-

duces a distribution over “outcomes”, which the principal cares

about. However, in this literature there is generally no notion of

the principal taking actions herself, and hence no analog of com-

mitment to actions. A key challenge is that the agent’s action is

generally unobservable except through its stochastic influence on

the outcome, a difficulty our setting avoids. The principal-agent

literature also generally assumes substantially more structure than

the general normal-form games we consider. There is typically a

single agent who maximizes their payment minus the cost of their

action (though they are not always risk neutral). The rare settings

with multiple agents typically have simple game structures, such as

[6, 25, 39] in the principal-expert sub-literature and [4, 22], where

the agents make binary decisions about whether to act and the out-

come is either the AND or OR of these. Computational questions

like those we consider are not typically the focus in principal-agent

settings, though see [5, 21], as well as [1, 9, 27] for more recent work

focused on settings with Bayesian types (which we also consider).

Another economic setting, mechanism design, relies implicitly

on the commitment ability of the designer and frequently assumes

transferable utility, but assumes the designer has more expansive

abilities to control the rules of interaction than we consider here.

One alternative to payments is outcome-conditional commit-

ments to burn utility [38, 41]. For example, Moulin [38] charac-

terizes two-player normal-form games in which the payoffs in

completely mixed equilibria can be improved by commitments to

burn utility. The benefits of burning utility here come from chang-

ing one’s own incentives and hence the game’s Nash equilibrium,

something which doesn’t apply to our setting because the leader

commits to her actions.

2 PRELIMINARIES
2.1 Normal-Form Games
An 𝑛-player normal-form game 𝐺 is a pair (𝐴,𝑢), where 𝐴 = 𝐴1 ×
𝐴2 × · · · ×𝐴𝑛 is a non-empty, finite set of pure action profiles (or

outcomes) and 𝑢 : 𝐴 → R𝑛 is a utility function mapping each

outcome to a vector containing utilities for each player. Player 𝑖

has action space 𝐴𝑖 and utility function 𝑢𝑖 . For 2-player games, we

will sometimes denote the action space 𝐴 × 𝐵.
Let Δ(𝑋 ) denote the set of probability distributions over a finite

set 𝑋 . In a normal-form game, a strategy for Player 𝑖 is some 𝜎𝑖 ∈
Δ(𝐴𝑖 ) and a strategy profile𝜎 is a vector of strategies for each player.

A strategy is pure if it plays one action with certainty. We’ll use −𝑖
to refer to the set of players besides Player 𝑖 , so for example 𝜎−𝑖 ∈
Δ(𝐴−𝑖 ) and𝜎 = (𝜎𝑖 , 𝜎−𝑖 ). For convenience, we’ll define utilities over
strategy profiles 𝑢 in the obvious way: 𝑢𝑖 (𝜎) =

∑
𝑎∈𝐴 𝜎 (𝑎)𝑢𝑖 (𝑎), as

we make the standard assumption that all players are risk-neutral

expected utility maximizers.

An action 𝑎𝑖 is a best response to 𝜎−𝑖 if𝑢𝑖 (𝑎𝑖 , 𝜎−𝑖 ) ≥ 𝑢𝑖 (𝑎′𝑖 , 𝜎−𝑖 )
for all 𝑎′

𝑖
∈ 𝐴𝑖 . A strategy 𝜎𝑖 is a best response to 𝜎−𝑖 if all supported

actions are best responses. A Nash equilibrium (NE) of a game

𝐺 is a strategy profile 𝜎 in which each 𝜎𝑖 is a best response to 𝜎−𝑖 .
We use NE(𝐺) to denote the set of Nash equilibria of a game 𝐺 . A

correlated equilibrium (CE) [3] of a game𝐺 is a distribution over

outcomes 𝐷 ∈ Δ(𝐴) in which for each player 𝑖 and each 𝑎𝑖 with

𝐷 (𝑎𝑖 ) > 0, 𝑎𝑖 is a best response to 𝐷 (· | 𝑎𝑖 ) ∈ Δ(𝐴−𝑖 ).

2.2 Commitment Games with Payments
We study games in which a distinguished player (the “leader”) has

the ability to modify a normal-form game by making a two-part

commitment before it is played. First, she commits to taking a

specific action or mixture over actions in the base game. Second,

she can modify the payoff matrix by promising to transfer utility to

another player whenever a certain outcome obtains. The leader’s

commitment is perfectly observed by all players.

Formally, a commitment is a pair (𝜎1, 𝑃), where 𝜎1 is a strategy in
the base game 𝐺 = (𝐴,𝑢) and 𝑃 : 𝐴 → R𝑛−1≥0 is a payment function

indexed {2, . . . , 𝑛} that intuitively means the leader commits to

transfer 𝑃𝑖 (𝑎) utility to Player 𝑖 whenever outcome 𝑎 obtains. A

commitment induces a new normal-form game𝐺 [𝜎1, 𝑃] with 𝑛 − 1

players {2, . . . , 𝑛}, strategy space𝐴−1 = 𝐴2×𝐴3×· · ·×𝐴𝑛 , and utility
functions 𝑣𝑃

𝑖
(𝑎−1) =

∑
𝑎1∈𝐴1

𝜎1 (𝑎1) [𝑢𝑖 (𝑎)+𝑃𝑖 (𝑎)]. We’ll often drop

the superscript 𝑃 from 𝑣𝑖 when it’s clear from context, and we’ll

refer to players 𝑖 ≥ 2 as the followers.While not a player in𝐺 [𝜎1, 𝑃],
the leader still has utility function 𝑣𝑃

1
= 𝑢1 (𝑎) −

∑
𝑖≥2 𝑃𝑖 (𝑎) over the

outcomes. As with utility functions, we’ll extend the domain of 𝑃

to include distributions over outcomes, i.e. 𝑃 (𝜎) = ∑
𝑎∈𝐴 𝜎 (𝑎)𝑃 (𝑎).
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We’ll sometimes require 𝜎1 to be a pure action in 𝐺 , which we

refer to as the pure commitment case, and we’ll sometimes allow

𝜎1 to be a mixture over actions in𝐺 , which we refer to as themixed
commitment case.

When 𝑛 = 2, 𝐺 [𝜎1, 𝑃] is a single-player game so the follower

simply takes an action maximizing his expected utility. We assume

he tiebreaks in favor of the leader, so the outcome of any game

is clear. With more than two players, however, it’s not clear what

happens after the leader commits. We study two variants.

In the single commitment setting, the followers play 𝐺 [𝜎1, 𝑃]
simultaneously as a typical normal-form game. This game may

have multiple equilibria, so we’ll assume the followers play the best

Nash equilibrium for the leader. Hence, the leader’s utility for a

commitment (𝜎1, 𝑃1) is well defined as

max

𝜎−1∈𝑁𝐸 (𝐺 [𝜎1,𝑃 ])
𝑢1 (𝜎1, 𝜎−1) −

∑︁
𝑗

𝑃1, 𝑗 (𝜎1, 𝜎−1) .

In the sequential commitment case, Player 2 becomes the

leader of the (sequential) commitment gamewith base game𝐺 [𝜎1, 𝑃],
which he plays optimally.

1
We assume that each player 𝑖 has a lexi-

cographic tiebreaking rule: They first maximize their own utility,

then that of player 𝑖 − 1, then 𝑖 − 2, etc.
2
(We won’t need to specify

tiebreaking beyond this.) Since the leader’s utility for a commit-

ment is well-defined in two-player games, in the 𝑛 ≥ 3 sequential

commitment case it’s well-defined recursively. The leader’s optimal

commitments are the (𝜎1, 𝑃1) maximizing the leader’s expected util-

ity over the outcome of the sequential commitment game𝐺 [𝜎1, 𝑃1].

3 NASH EQUILIBRIA
We begin by considering the case where the leader does not have

access to a correlation device and there are no private types. We

start with the simplest setting, with only two players. Note that

with mixed commitment, the leader can always achieve at least

the utility of the best-for-her Nash equilibrium of the base game,

simply by committing to her strategy in that Nash equilibrium and

zero payments. In contrast, the leader’s utility under her optimal

pure commitment may or may not exceed her utility in a Nash equi-

librium of the base game. For proofs of these claims, see Appendix

A in the version of this paper at arXiv:2402.06626.

3.1 Two Players
We first consider the two-player case where the leader commits

to payments and pure actions. In this setting, the optimal commit-

ments can be computed efficiently using dynamic programming.

Theorem 3.1. In a two-player game, the leader’s optimal commit-

ment to a payment function and a pure action can be computed in

polynomial time.

Proof Sketch. To incentivize the follower to play 𝑎2 after com-

mitting to play 𝑎1 herself, the leader would need to pay him exactly

max𝑎′
2

𝑢2 (𝑎1, 𝑎′
2
) −𝑢2 (𝑎1, 𝑎2). Therefore, we can easily compute the

1
In other words, we consider the subgame perfect Nash equilibria of our sequential

commitment setting, as is typical in Stackelberg games without payments [e.g., 15, 45].

2
We make this assumption to guarantee the existence of optimal commitments. For

instance, if Player 2 broke ties against Player 1, Player 1 would be incentivized to

give Player 2 a small additional payment Y so that Player 2 would strictly prefer the

action benefiting Player 1, but no fixed Y could be optimal. In mechanism design, it is

typically assumed that the agents break ties in favor of the leader for the same reason.

leader’s maximum utility for implementing any outcome (𝑎1, 𝑎2)
and then maximize over them. □

Optimal mixed commitments in two-player games can also be

computed in polynomial time. This result has already been shown

[26, Corollary 11], but we include it here for completeness.

Theorem 3.2. In a two-player game, the leader’s optimal com-

mitment to a payment function and a mixture over actions can be

computed in polynomial time.

Proof Sketch. For each follower action 𝑎2, we construct an

LP to compute the leader’s optimal commitment that incentivizes

𝑎2. There are variables corresponding to the follower’s expected

payment when 𝑎2 is played and to the leader’s probabilities of

playing each action. Constraints ensure𝑎2 gives the follower at least

as much utility as any other action. We can then simply maximize

over the |𝐴2 | LPs to find the leader’s optimal commitment. This is

an extension of Conitzer and Sandholm [15]’s approach from the

version of the setting without payments. □

3.2 More than Two Players, Single Commitment
We now consider games with 𝑛 ≥ 3 players, beginning with the

single commitment case. Recall that in this setting, the leader makes

a commitment (𝜎1, 𝑃1) and the followers are assumed to play the

best Nash equilibrium for the leader of the induced game𝐺 [𝜎1, 𝑃1].
We give a strong negative complexity result: Even if the leader

has only a single action, computing the optimal commitment for

her to make is NP-hard, even in a 3-player game. This immediately

shows that both the pure and mixed commitment variants are NP-

hard. Our proof is via reduction from the following problem:

Definition (Balanced Complete Bipartite Subgraph). Given

bipartite graph𝐺 = (𝑉 , 𝐸) partitioned into partite sets𝑉1 and𝑉2 (s.t.
𝐸 consists only of edges between 𝑉1 and 𝑉2) and a natural number

𝑘 , decide whether there exist subsets 𝑉 ′
1
⊆ 𝑉1 and 𝑉 ′

2
⊆ 𝑉2 s.t. 𝑉 ′

1

and 𝑉 ′
2
each have (at least) 𝑘 elements and there is an edge from

each vertex in 𝑉 ′
1
to each vertex in 𝑉 ′

2
.

Balanced Complete Bipartite Subgraph is NP-complete [28,

page 446]. It is sometimes called the Balanced Bicliqe Problem.

Theorem 3.3. Consider an 𝑛-player game in which the leader

commits to payments and a (mixture over) actions and then the

remaining players play the best Nash equilibrium for the leader of

the induced normal-form game. Computing the leader’s optimal

commitment is NP-hard, even for 𝑛 = 3 players and for games in

which the leader has only a single action.

Proof Sketch. We give a reduction from Balanced Complete

Bipartite Subgraph. The leader has only a single action, and

roughly speaking, we design the game such that she cannot ben-

efit from committing to payments. Players 2 and 3 have strategy

spaces corresponding to the vertices of the graph, and a strategy

profile is an equilibrium giving the leader high utility if and only

if it corresponds to balanced complete bipartite subgraph of size

𝑘 . Intuitively, this is because the followers benefit from playing

adjacent vertices in their respective partite sets but cannot play any

single vertex with probability more than 1/𝑘 without making them-

selves exploitable by the other follower. Our reduction is inspired
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by the reduction of Gilboa and Zemel [24] from Cliqe to Best

Nash (deciding whether there exists a Nash equilibrium giving a

certain player at least 𝑘 utility), but is simpler and reduces between

different problems. □

3.3 More than Two Players, Sequential
Commitment

We now consider the case where the players commit sequentially.

That is, first Player 1 commits to (𝜎1, 𝑃1), then Player 2 commits to

(𝜎2, 𝑃2), and so on. As noted before, we assume that each player 𝑖

tiebreaks in favor of 𝑖 − 1, then 𝑖 − 2, etc. First, we give an efficient

algorithm for the 𝑛 = 3 player pure commitment case, leaving the

𝑛 > 3 player case as an open problem.

Theorem 3.4. In a three-player game in which the players commit

sequentially to payment functions and pure actions, the leader’s

optimal commitment can be computed in polynomial time.

Proof Sketch. We construct an LP that computes, for any given

outcome 𝑎, an optimal leader commitment that implements 𝑎. To

do so, we first show that, intuitively, it’s optimal for the leader to

pay Player 3 some extremely large amount to minimize Player 2’s

utility if Player 2 doesn’t play 𝑎2. That is, for each action 𝑎′
2
≠ 𝑎2,

the leader commits to make a large payment to Player 3 when

(𝑎1, 𝑎′
2
, 𝑎∗

3
) is played, where 𝑎∗

3
= min𝑎′

3

𝑢2 (𝑎1, 𝑎′
2
, 𝑎′

3
). Since the LP

has incentive constraints that ensure 𝑎 will be played, these large

off-equilibrium payments will never actually need to be made. The

LP has 3 variables corresponding to the on-equilibrium payments

(including from Player 2 to 3) and incentive constraints ensuring

that Player 2 prefers to implement 𝑎 rather than either deviate

himself or implement a deviation by Player 3. As usual, we then

maximize over the |𝐴| possible outcomes. □

When players commit sequentially to mixtures over actions,
computing the optimal commitment is NP-hard (as in the case

without payments [15]), even with only three players. We show

this via reduction from the following problem.

Problem 3.1 (Balanced Vertex Cover). Given a graph 𝐺 =

(𝑉 , 𝐸), decide whether there exists a subset of vertices 𝑆 ⊆ 𝑉 of

size at most |𝑉 |/2 such that, for all edges 𝑒 = (𝑣1, 𝑣2) ∈ 𝐸, at least
one of 𝑣1 and 𝑣2 is in 𝑆 .

Given a subset of vertices 𝑆 , we say an 𝑒 = (𝑣1, 𝑣2) is “covered”
if at least one of 𝑣1 and 𝑣2 is in 𝑆 , and otherwise we say it is “un-

covered”. If 𝑆 covers all edges in 𝐺 , it is called a cover of 𝐺 , or a
𝐾-cover if it has cardinality 𝐾 .

Balanced Vertex Cover is the special case of Vertex Cover

in which the size of the requested cover is |𝑉 |/2. Vertex Cover

was one of Karp’s original 21 NP-complete problems [30]. Conitzer

and Sandholm [15] define Balanced Vertex Cover and show

it remains NP-complete. Intuitively, an arbitrary Vertex Cover

instance can be reduced to a balanced instance by either adding

isolated vertices while 𝐾 > |𝑉 |/2 or by adding isolated triangles

and increasing 𝐾 by 2 per triangle while 𝐾 < |𝑉 |/2.
Theorem 3.5. In an 𝑛-player game in which the players commit

sequentially to payment functions and mixtures over actions, com-

puting the leader’s optimal commitment is NP-hard, even for 𝑛 = 3

players.

Table 2: Overview of Results from Section 3

Pure Commitment Mixed Commitment

𝑛 = 2

Θ( |𝐴|) time via DP

(Theorem 3.1)

1 LP-solve per follower

action (Theorem 3.2)

𝑛 = 3,

single

NP-hard, even with only one leader action

(Theorem 3.3)

𝑛 = 3,

sequential

1 LP-solve per action

profile (Theorem 3.4)

NP-hard (Theorem 3.5)

Proof Sketch. We reduce from Problem 3.1, Balanced Vertex

Cover. We construct a game in which the first two players each

have an action for each vertex and play “cooperatively” because

they share the same utility function. They can achieve high utility

if and only if the first mixes uniformly over vertices corresponding

to a balanced vertex cover and the second mixes uniformly over its

complement. The third player has actions that “exploit” the first

two if they don’t play a balanced vertex cover, meaning the first

player covers every edge and together they play every vertex with

high enough probability. If no such exploit would succeed, the third

player will instead play a different action giving the first two players

high utility. This approach adapts the reduction of Conitzer and

Sandholm [15, Theorem 4] to the version of the setting without

payments, modifying their construction slightly so that the ability

to commit to payments cannot benefit the first two players. □

4 CORRELATED EQUILIBRIA
We will now consider allowing the leader to commit to a signaling

scheme (as in [29]) along with her payments and actions, inducing

a correlated equilibrium. Specifically, the leader picks a probability

distribution 𝐷 ∈ Δ(𝐴) and a payment function 𝑃 𝑗 : 𝐴 𝑗 → R≥0
for each other player 𝑗 . Intuitively, 𝑃 𝑗 (𝑎 𝑗 ) is the amount paid to

Player 𝑗 for following a recommendation to take action 𝑎 𝑗 . After

committing to 𝐷 , the leader privately draws an action profile 𝑎 ∼ 𝐷 ,
sends each player 𝑗 ≥ 2 the private recommendation 𝑎 𝑗 , and plays

𝑎1 herself. Finally, the followers simultaneously choose their actions

in the base game, making no commitments of their own. Note that

the leader’s commitment (𝐷, 𝑃) includes a commitment to actions

since she commits to play according to the draw from 𝐷 .

We give a revelation principle style result (Lemma C.1 in the

version at arXiv:2402.06626) showing that any leader commitment is

equivalent (in terms of the distribution over outcomes and payoffs)

to an incentive compatible commitment in which all followers are

incentivized to follow their recommended actions. Hence, we will

assume without loss of generality that the leader’s commitment is

incentive compatible. We also show that allowing the leader to send

arbitrary messages makes no difference compared to allowing only

action recommendations and that allowing payments to depend on

the full outcome and recommendation profile is no more powerful

than simply paying players for following their recommended action.

(Again, see Lemma C.1 for details.)

Formally, a commitment (𝐷, 𝑃) is incentive compatible if, for
any player 𝑗 and any action 𝑎 𝑗 with 𝐷 (𝑎 𝑗 ) > 0, player 𝑗 is always

(weakly) incentivized to follow a recommendation to play 𝑎 𝑗 , as-

suming all other players follow their recommendations. That is, for
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all players 𝑗 , actions 𝑎 𝑗 with 𝐷 (𝑎 𝑗 ) > 0, and all 𝑎′
𝑗
≠ 𝑎 𝑗 ,∑︁

𝑎−𝑗

𝐷 (𝑎−𝑗 |𝑎 𝑗 )𝑢 𝑗 (𝑎 𝑗 , 𝑎−𝑗 ) + 𝑃 𝑗 (𝑎 𝑗 ) ≥
∑︁
𝑎−𝑗

𝐷 (𝑎−𝑗 |𝑎 𝑗 )𝑢 𝑗 (𝑎′𝑗 , 𝑎−𝑗 ) .

We call these the incentive constraints for player 𝑗 . Hence, the prob-

lem of computing the leader’s optimal commitment is equivalent to

that of finding a utility maximizing distribution 𝐷 over outcomes

and payment function 𝑃 , subject to the incentive constraints. (Note

that there is no incentive constraint for the leader since she com-

mits to her action, though she is sometimes constrained to play a

pure action.)

It turns out that an optimal commitment to a signaling scheme

can be found in polynomial time regardless of whether the leader

can commit to mixtures or only to pure actions, as the following

the results show.

Theorem 4.1. In an 𝑛-player game, the leader’s optimal commit-

ment to a payment function, mixture over actions, and signaling

scheme can be computed in polynomial time.

Proof Sketch. We construct a linear program which computes

the leader’s optimal incentive-compatible commitment. Such com-

mitments are optimal by Lemma C.1. Our LP is similar to the feasi-

bility LP for a correlated equilibrium except that it incorporates pay-

ments. In addition, the leader’s incentive constraints are dropped

because she commits to follow her action recommendation and the

objective is the leader’s expected utility (after payments).

The LP has variables 𝑝𝑎 for each action profile 𝑎 representing

the that action profile is recommended and variables 𝑡𝑖 (𝑎𝑖 ) repre-
senting the payment from the leader to each follower 𝑖 when an

recommendation to play action 𝑎𝑖 is followed. Constraints ensure

that, for each follower and each possible action recommendation,

the follower’s expected utility for following the recommendation

(including payments) is at least their expected utility for any other

action. This expectation is taken over the player’s uncertainty over

the other players’ action recommendations given their own. (The

constraints are designed such that those corresponding to actions

that are never recommended are trivially satisfied.)

Our approach is similar to and inspired by that of Conitzer and

Korzhyk [14] for computing optimal correlated distributions to

commit to without payments. □

Theorem 4.2. In an 𝑛-player game, the leader’s optimal commit-

ment to a payment function, pure action, and signaling scheme can

be computed in polynomial time.

Proof Sketch. For any leader action 𝑎1, we can add a constraint

to the LP from Theorem 4.1 to require the leader to play the pure

strategy 𝑎1, which allows us to compute the leader’s optimal com-

mitment and corresponding utility when committing to 𝑎1. Solving

such an LP for all actions 𝑎1 and maximizing over their values gives

the leader’s optimal commitment overall. □

5 BAYESIAN GAMES
We now consider settings with Bayesian, rather than normal-form,

base games. In normal-form games, the agents’ utility functions

are common knowledge. Bayesian games, in contrast, model agents

Table 3: Overview of Results from Section 4

Pure Commitment Mixed Commitment

Any 𝑛
1 LP-solve

(Theorem 4.1)

1 LP-solve per leader action

(Theorem 4.2)

with private information about their own preferences. In Bayesian

games, each player 𝑖 has a set of types Θ𝑖 and for each type \𝑖 , a

utility function 𝑢
\𝑖
𝑖

: 𝐴 → R. In games in which only one player

has multiple types, we often drop the subscript 𝑖 from \ and Θ.
The distribution 𝜋𝑖 ∈ Δ(Θ𝑖 ) over each player’s type is com-

mon knowledge before the game begins (ex ante). Then, ex interim,

each player 𝑖 learns their own realized type \𝑖 and chooses an

action. Hence, a strategy for Player 𝑖 in a Bayesian game is a map-

ping 𝜎𝑖 : Θ𝑖 → Δ(𝐴𝑖 ) which specifies a mixture over actions for

each potential type. An action 𝑎𝑖 is a best response for type \𝑖 if

E\−𝑖 |\𝑖 [𝑢𝑖 (𝑎𝑖 , 𝜎−𝑖 (\−𝑖 ))] ≥ E\−𝑖 |\𝑖 [𝑢𝑖 (𝑎′𝑖 , 𝜎−𝑖 (\−𝑖 ))] for all 𝑎
′
𝑖
∈ 𝐴𝑖 ,

and a strategy 𝜎𝑖 is a best response to 𝜎−𝑖 if all actions supported
in each 𝜎𝑖 (\𝑖 ) are best responses for \𝑖 . A strategy profile 𝜎 is a

Bayes-Nash equilibrium (BNE) if each 𝜎𝑖 is a best response to

𝜎−𝑖 .
It turns out that leader and follower types introduce different

considerations and have different impacts on the complexity of

computing optimal commitments, so we’ll consider the two cases

separately. (When we refer to a setting with leader types, we mean

the special case of Bayesian games in which the follower has only

one type, and vice versa.) In addition, we have all the same varia-

tions in the Bayesian setting as we did without private information:

pure vs mixed commitment, sequential vs single commitment, and

whether or not the leader is able to commit to a signaling scheme.

It’s important to note that the commitments are to potentially

different (mixtures over) actions for each type. In particular, in

the pure commitment case, each type must play a pure action,

but different types can play different actions. If the leader’s actions

couldn’t depend on her type, this setting would be equivalent to one

without leader types in which the leader’s utility was equal to her

expected utility over types. We also make the natural assumptions

that the leader’s payment cannot depend on the follower’s type and

that the followers don’t gain any information about the leader’s

realized type before taking their action (except insofar as their

action recommendations are correlated with the leader’s type).

5.1 Follower Types
First, consider the case with 𝑛 = 2 agents where the leader has

only one type but has Bayesian uncertainty over the follower’s

type. Without payments, computing the optimal pure action for the

leader to commit to is quite simple: for each possible leader action,

one can compute each follower type’s best response and hence the

leader’s expected utility [15, Theorem 6].

However, the problem becomes difficult if the leader can addi-

tionally commit to payments. We show a surprising connection

to auction theory, reducing to our present setting from problem of

finding a revenue-maximizing item pricing for𝑚 items and a single

unit-demand buyer.

A unit-demand buyer is one who essentially “wants” at most

one item, i.e. considers the items perfect substitutes. Formally, a
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unit-demand buyer has a value 𝑣𝑖 for each item 𝑖 and their utility

for receiving a set of items 𝑆 is the maximum over their values for

items in the setmax𝑖∈𝑆 𝑣𝑖 . An item pricing (or posted pricing) offers

each item to the buyer at a take-it-or-leave-it price and allows the

buyer to purchase whatever items they want, as at a typical retail

store. Formally, this is a vector 𝑟 of non-negative prices, one for

each item. Therefore, given an item pricing, a unit-demand buyer

will purchase a single item maximizing his value minus the price

or, if all prices are greater than the items’ values to the buyer, will

purchase nothing.

Problem 5.1 (Unit Demand Item Pricing). Consider a finite-

support distribution𝐷 of value vectors 𝑣 ∈ R𝑚≥0. For an item pricing

vector 𝑟 ∈ R𝑚≥0, let 𝑖
∗ (𝑣) ∈ argmax𝑖 [𝑣𝑖 − 𝑟𝑖 ] be the most favorable

item for a buyer with values 𝑣 to buy, tiebreaking in favor of the item

with highest value 𝑣𝑖 . Let 𝐴(𝑟 ) = {𝑣 ∈ supp(𝐷) |𝑣𝑖∗ (𝑣) − 𝑟𝑖∗ (𝑣) ≥ 0}
be the set of values 𝑣 for which the buyer buys an item. Decide

whether there exists 𝑟 such that the seller’s revenue Rev(𝑟 ) =∑
𝑣∈𝐴(𝑟 ) [𝐷 (𝑣) · 𝑟𝑖∗ (𝑣) ] is at least 𝐾 .

Briest [7] gives a hardness result for a special case of Unit De-

mand Pricing they define, which we’ll call Unit Demand Pricing

for Uniform Budgets. The special case requires each value vector

𝑣 to have some “budget” 𝛽𝑣 such that all entries 𝑣𝑖 ∈ {0, 𝛽𝑣}. They
refer to it as the unit-demand min-buying (or envy-free) pricing

problem with uniform budgets, economist’s version. Specifically,

they show Unit Demand Pricing for Uniform Budgets is NP-
hard to approximate subpolynomially in the number of items unless

NP is in bounded-error probabilistic sub-exponential time:

Theorem ([7], Theorem 5). Unit Demand Pricing for Uniform

Budgets is hard to approximate within 𝑂 ( |𝐺 |Y ) for some Y > 0 if

NP ⊈ ∩𝛿>0BPTIME(2𝑂 (𝑛𝛿 ) ).

The general problem of Unit Demand Item Pricing is widely be-

lieved to unconditionally be NP-hard [10], perhaps in part because

the version where the buyer’s values for items are independent

rather that correlated is NP-hard [11].

We now give a reduction from general Unit Demand Item Pric-

ing to our present setting of computing optimal pure action and

payment commitments in 2-player Bayesian games. We’ll therefore

inherit the hardness result from the uniform budgets special case.

Theorem 5.1. Unit Demand Item Pricing is polynomial-time re-

ducible to the problem of computing the leader’s optimal payments

and (mixtures over) actions in a two-player Bayesian game with

follower types only. Further, it is reducible to instances in which

the leader has only a single action.

Proof Sketch. We reduce an arbitrary instance 𝑈 of Unit De-

mand Item Pricing to a 2-player Bayesian game 𝐺 with a single

leader type and single leader action. In 𝐺 , the follower has actions

𝑏𝑖 corresponding to each item in 𝑈 and types \𝑣 corresponding

to each value vector 𝑣 in 𝑈 . Each type \𝑣 occurs in 𝐺 with the

same probability as 𝑣 in 𝑈 . We construct payoffs such that taking

action 𝑡𝑖 corresponds to purchasing item 𝑖 in 𝑢 and the leader’s

payment function corresponds to an item pricing in𝑈 . Specifically,

the leader receives some very large utility 𝑍 whenever the follower

plays any action 𝑏𝑖 , but the follower of type \𝑣 receives utility

−𝑍 +𝑣𝑖 for playing 𝑏𝑖 . Committing to a payment of 𝑍 −𝑟𝑖 for action

𝑏𝑖 then corresponds to setting a posted price of 𝑟𝑖 : if 𝑏𝑖 is played

the leader gets utility 𝑍 − (𝑍 − 𝑟𝑖 ) = 𝑟𝑖 and the follower gets utility

(−𝑍 + 𝑣𝑖 ) + (𝑍 − 𝑟𝑖 ) = 𝑣𝑖 − 𝑟𝑖 . Because the follower in 𝐺 plays the

single action that maximizes his utility, his behavior is equivalent

to a unit demand buyer in 𝑈 , who purchases the single item which

maximizes his utility. □

Corollary 5.1.1. In a two-player Bayesian game with follower

types only, computing the leader’s optimal commitment to a pay-

ment function and a (mixture over) actions is NP-hard, even if the

leader has only a single action, assumingNP⊈ ∩𝛿>0BPTIME(2𝑂 (𝑛𝛿 ) ).

Because our construction requires only a single leader action,

it immediately shows the hardness of both the pure and mixed

commitment versions of the problem. Likewise, with only 𝑛 = 2

players a single leader action, there is clearly no possible correlation

to be had, and so access to signaling devices makes no difference.

Since this hardness result applies to any version of the setting with

follower types, we now consider settings with leader types only.

5.2 Leader Types–Nash Equilibrium
When the leader has types, it’s not immediately obvious whether

to model the leader as already knowing her type at the time of

commitment: Should the leader make her commitment ex ante or
ex interim? However, if the leader with types commits ex interim
with a realized type \𝑖 , the problem instance is equivalent to one

without leader types in which the leader’s utility function is 𝑢
\𝑖
1
:

Once the leader commits to her strategy, the follower(s) simply best

respond and the leader’s utility function (and hence her type and

uncertainty over it) has no further impact on the game.
3

Therefore, we’ll assume the leader seeks to maximize her ex ante
expected utility, where the expectation is over the randomness in

her realized type (as well as the randomness in the game, of follow-

ers’ types, etc.). In this setting, a commitment is a payment function

and a mapping from types to actions. Note that it would make no

difference if the leader could commit to different payment functions

for different types: The follower’s followers’ actions and leader’s ex
ante expected utility depend only on the expected payment function

(over leader types).

Unlike with follower types, the pure and mixed commitment

settings with leader types differ in hardness. We’ll begin with the

former. Even for 𝑛 = 2 players, the analog of the problem without

payments is NP-hard [15, Theorem 5]. We now show this hardness

continues to hold when the leader can commit to payments.

Theorem 5.2. In a two-player Bayesian game with leader types

only, computing the leader’s ex ante optimal commitment to a

payment function and an action for each type is NP-hard.

Proof Sketch. Weprove this via reduction fromVertexCover.

The leader has 𝐾 types, each of which occur with equal probability,

and an action 𝑎𝑣 corresponding to each vertex 𝑣 in the graph. We

show that she achieves strictly positive utility if and only if she

commits to a strategy where, for each vertex 𝑣 in a 𝐾-cover of 𝐺 ,

𝑎𝑣 is the action of one of her types. The follower has strategies 𝑏𝑒
corresponding to each edge in 𝑒 ∈ 𝐸 and an additional strategy 𝑏0.

All leader types get utility 1 if the follower plays 𝑏0 and 0 otherwise.

3
Except that we assume the follower(s) break ties in favor of the leader’s realized type.
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The follower’s utility function is such that, if all edges are covered

by some leader type, the follower will prefer to play 𝑏0, resulting in

a leader utility of 1. However, if there exists an “uncovered” edge

𝑒 for which no leader type plays a vertex 𝑣 ∈ 𝑒 , the follower will
prefer to play 𝑏𝑒 rather than 𝑏0, resulting in a leader utility of 0.

The leader cannot pay the follower enough to incentivize him to

play 𝑏0 when an uncovered edge exists while still getting positive

utility herself. Therefore, the leader can achieve strictly positive

utility if and only if there exists a 𝐾-cover in the Vertex Cover

instance.

Our reduction is the same as that of Conitzer and Sandholm [15]

to the version of this setting without commitment to payments. □

In contrast to the pure commitment case, the mixed commitment

case with leader types is tractable with 𝑛 = 2 players.

Theorem 5.3. In a two-player Bayesian game with leader types

only, the leader’s ex-ante optimal commitment to a payment func-

tion and a mixture over actions for each type can be computed in

polynomial time.

Proof Sketch. We extend our LP approach from Theorem 3.2,

which considers the analogous setting without types. Our LP vari-

ables now encode a distribution over actions for each leader type

and optimizes the leader’s ex ante expected utility over her types,

again subject to the constraint that the follower is incentivized to

play a particular pure action. As usual, we then maximize over the

|𝐵 | follower actions. □

If the leader doesn’t have access to a signaling device, the prob-

lem becomes hard for 𝑛 ≥ 3: Even without leader types, we’ve

already given hardness results in Theorem 3.3 and Theorem 3.5 for

both single and sequential mixed commitment, respectively.

5.3 Leader Types–Correlated Equilibrium
Hence, we turn to the case where the leader can commit to a sig-

naling scheme. With signaling, the problem becomes tractable for

any number of players 𝑛.

Theorem 5.4. In an𝑛-player Bayesian gamewith leader types only,

the leader’s ex ante optimal commitment to a payment function, a

mixture over actions for each type, and a signaling scheme can be

computed in polynomial time.

Proof Sketch. We extend our linear programming approach

from Theorem 4.1, which considers the analogous setting without

types. Our LP variables now encode a different distribution over

outcomes for each leader type, as well as payments. We optimize the

leader’s ex ante expected utility over her types, and the incentive

constraints now hold in expectation over the leader’s types. □

One may recall that for the normal-form case with access to

signaling devices, we could extend themixed commitment approach

to the pure setting by simply having one LP for each leader action.

Taking the same approach doesn’t work with leader types, however,

because commitments to pure actions are now functions from leader

types to actions, rather than just single actions. Hence, we’d need

one LP for each of the Ω( |𝐴1 | |Θ |) commitment functions rather

than just one per leader action. Indeed, with pure commitment and

Table 4: Summary of Results from Section 5

Pure Commitment Mixed Commitment
Follower
Types 𝑛 = 2

NP-hard under standard complexity-

theoretic assumptions (Corollary 5.1.1)

Leader
Types

𝑛 = 2 NP-hard (Theorem 5.2)

1 LP solve per follower

action (Theorem 5.3)

𝑛 = 3,

no signaling

—-

NP-hard even without types

(Theorem 3.3, Theorem 3.5)

Any 𝑛,

signaling

—- 1 LP solve (Theorem 5.4)

leader types, we already have the hardness result from the 𝑛 = 2

case (Theorem 5.2), in which signaling is not helpful.

6 CONCLUSION
In this work, we’ve presented amodel combining Stackelberg games

with outcome-conditional utility transfers and analyzed the com-

putational complexity of computing optimal commitments. We’ve

varied our setting along several dimensions: whether the leader

commits to mixed or pure actions, whether the leader can commit

to a signaling scheme, whether the followers play simultaneously or

make commitments sequentially, and whether players have private

information about their payoffs. We’ve given a mixture of efficient

algorithms for computing optimal commitments, primarily via lin-

ear programming, and NP-hardness results. For an overview of the

specific results, we refer back to Tables 2, 3 and 4.

There are many open directions for future work. One natural

idea is to extend the framework of commitments to both actions and

payments to game representations besides normal form. Another is

to vary the assumptions we make about the payments. For instance,

one could consider settings where there are costs associated with

commitment, akin to the legal costs of writing a contract. One could

also consider restrictions on what the payments can depend on,

for instance if only certain actions can be detected and thus have

payments associated with them.

One could also consider weakening the strong, completely bind-

ing model of commitment we’ve studied in this work. For instance,

agents might only be able to commit to certain aspects of actions,

or they might be able to commit against taking certain pure actions

without being able to commit to a mixture over the remaining ac-

tions (as in [19]). Examples of weaker levels of commitment are

prevalent in economic and societal interactions. For instance, firms

give press releases and may fear the public relations or stock price

ramifications of reversing course. Similarly, they make investments

that make the indicated actions very likely, but not entirely certain.
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