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ABSTRACT

Causal discovery is the challenging task of inferring causal struc-

ture from data. Motivated by Pearl’s Causal Hierarchy (PCH), which

tells us that passive observations alone are not enough to distin-

guish correlation from causation, there has been a recent push to

incorporate interventions into machine learning research. Rein-

forcement learning provides a convenient framework for such an

active approach to learning. This paper presents CORE, a deep

reinforcement learning-based approach for causal discovery and

intervention planning. CORE learns to sequentially reconstruct

causal graphs from data while learning to perform informative

interventions. Our results demonstrate that CORE generalizes to

unseen graphs and eZciently uncovers causal structures. Further-

more, CORE scales to larger graphs with up to 10 variables and

outperforms existing approaches in structure estimation accuracy

and sample eZciency. All relevant code and supplementarymaterial

can be found at https://github.com/sa-and/CORE.
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1 INTRODUCTION AND RELATEDWORK

Causal discovery (CD) is the challenging task of inferring causal

structure from data [10, 35]. Traditional approaches to causal dis-

covery consider data from purely observational distributions. These

are approaches such as constraint-based ones [14, 31], score-based

ones [6], and more recently continuous optimization-based ones

[38, 39].
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Pearl’s Causal Hierarchy (PCH) asserts that distinguishing be-

tween mere correlations and genuine causal relationships requires

the integration of interventions in general [3]. As a response to

this requirement, there has been a recent push to incorporate inter-

ventions into causal discovery research [12, 23] including machine

learning [5, 18, 28], among others.

Reinforcement learning (RL) learns an optimal policy for sequen-

tial decision problems through interactions [32]. Therefore, RL is a

promising framework for using interventions to investigate causal

relationships. In particular, RL plays a dual role in the realm of

causal discovery - it can be used not only to recover the causal

structure of an environment [40], but also to learn causal discovery

algorithms [28], thus representing a versatile tool for CD.

In particular, RL has also been used to search the space of causal

structures more eZciently based on a Xxed dataset [36, 40] with the

possibility of incorporating prior knowledge [11]. Similarly, work

on RL-related GFlow Nets [4] has been deployed to generate good

estimates of the true causal structure [7, 17]. Furthermore, many

integrations of RL with causal concepts have been investigated that

restrict their CD process to supervised learning [9, 16, 21, 24, 34]. In

addition to that, RL has also been used to learn policies that choose

the best interventions to do for CD [1, 29, 33].

Although causal discovery has seen substantial progress with

these works over the years, leading to a multitude of methodolo-

gies, challenges persist in areas such as scalability, generalization,

and planning of interventions. In this context, this paper intro-

duces CORE (Causal DiscOvery with REinforcement Learning), a

deep-RL-based algorithm designed for the task of learning a CD

policy. CORE can learn a policy that sequentially reconstructs

causal graphs from both observational and interventional data,

while simultaneously performing informative interventions. This

dual learning paradigm allows CORE not only to uncover causal

structures eZciently, but also to identify interventions that enhance

its causal models. The following lists our main contributions:

● We formalize the task of learning a CD algorithm as a par-

tially observable Markov decision process (POMDP).

● We propose a dual Q-learning setup to learn intervention

design and structure estimation simultaneously.

● We demonstrate that CORE can be successfully applied for

causal discovery to previously unseen graphs of sizes of up

to 10 variables.
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In addition to those, we show the importance of jointly learning

which interventions to perform and graph generation, and investi-

gate the limitations of our approach regarding the applicability to

the real world.

The most distinctive feature of CORE is that it does not impose

a speciXc algorithm for identifying causal models, but rather at-

tempts to learn it. Among others, this can have positive eWects

on eZciency and transferability to new problem instances. While

MCD [28] and AVICI [19] solve the same task, they run into pitfalls

that hinder their application to realistic graph sizes or rely on of-

Yine data, respectively. We set steps to overcome these pitfalls by

imposing additional structure on our policy, more eZcient rewards,

and learning to actively perform relevant interventions.

Our results show robust generalization to unseen graphs and

the capability to scale to scenarios with up to ten variables, a step

forward over the state of the art, and a crucial advancement towards

addressing real-world complexities. The subsequent sections delve

into the intricacies of CORE’s architecture, its training methodolo-

gies, and empirical validations.

2 PRELIMINARIES AND NOTATION

In this section, we establish the necessary notation and provide an

overview of key concepts and techniques used in the Xeld of causal

discovery with interventions and reinforcement learning.

2.1 Causal Models

Causal relations are often formalized through a structural causal

model (SCM) which is a tuple 푀 = (X ,F ,U ,P) with a set of en-

dogenous (random) variables (i.e., relevant variables for the prob-

lem) X = {푋1, . . . , 푋푛}, U = {푈1, . . . ,푈푛} a set of exogenous (ran-

dom) variables (often also called unobservable or noise variables),

F = {푓1, . . . , 푓푛} the set of functions (also called structural equa-

tions) whose elements are in the form of푋푖 ← 푓푖(푃푎(푋푖),푈푖)where

푃푎(푋푖) ⊆ X �{푋푖} stands for endogenous parent variables of 푋푖 ,

and P = {푃1, ..., 푃푛} the set of pairwise independent probability

distributions deXned over U with 푈푖 ∼ 푃푖 .

Interpreting variables as nodes and the functional dependency

between variables as directed edges, every SCM 푀 induces a di-

rected graph structure 퐺 , which we will call the corresponding

causal graph. Directed edges represent direct causation from parent

nodes to child nodes, hence absence of edges is as important as

present edges. For the sake of simplicity, we shall follow the com-

mon assumption that no variable is its own cause i.e., there is no

circular functional dependency, hence the induced causal graph is

always a directed acyclic graph (DAG). Furthermore, each SCM 푀

induces a joint distribution 푃푀(X ) over its endogenous variables,

whose structural properties inherited from the corresponding in-

duced graph 퐺 satisfy the Markov condition. That is, each 푋푖 is

independent of its non-descendants, given its parents 푃푎(푋푖 ). Along

with the independence of the noise variables, this condition implies

the following factorization [26]:

푃푀(X ) = ∏
푋푖∈X

푃(푋푖 ∣푃푎(푋푖)) (1)

We shall refer to this distribution as observational distribution.

Figure 1: A simple graphical illustration of a (hard) inter-

vention. Given the causal graph 퐺 with endogenous vari-

ables X = {푋,푌,푍} and the corresponding noise variables
U = {푈푋 ,푈푌 ,푈푍}, intervening on variable 푋 (i.e., 푑표(푋 = 푥))
results in modifying퐺 into퐺 ′ by pruning the incoming edges

to node 푋 and assigning the value 푥 .

Note that SCMs are generative models, i.e., we can sample values

for X from them. We can sample the exogenous variables from

P and determine the values of endogenous variables according

to their functions in F . This procedure eWectively corresponds to

sampling from the joint distribution over endogenous variables

[26].

2.2 Interventions

Interventions play a crucial role in causal discovery, allowing us to

investigate causal relationships by actively manipulating variables

in a system. In general, imposed by Pearl’s causal hierarchy [3], in-

terventions are necessary to distinguish causation from correlation,

and eventually to reason about causal eWects.

Formally, an intervention on a variable 푋 changes the variable’s

value to 푥 (an arbitrary but Xxed value), independently of 푋 ’s ac-

tual causes. Then 푋 is called the intervention target. EWectively,

at the graph level, intervening on a variable 푋 , removes all the

edges incoming to 푋 , resulting in 푃푎(푋) = ∅. This operation is

the so-called do-operation (denoted as 푑표(푋 = 푥)), and allows us to

distinguish the causal eWect of variable 푋 on variable(s) 푌 from the

confounding inYuence of common parents of 푋 and 푌 (Figure 1).

In an SCM, intervening on a variable 푋 implies that the corre-

sponding structural equation 푓푋 ∈ F is replaced by푋 ← 푥 , resulting

in a modiXed SCM 푀′. Therefore, an intervention aWects the distri-

bution of the intervention target, since:

푃푀′(푋 ∣푃푎(푋)) = 푃푀′(푋 ∣∅) = 푃푀′(푋) = 훿푥 (2)

where 훿푥 is the probability density function that has all mass on 푥 .

Put diWerently, an intervention replaces the factor associated with

the intervened variable. We refer to the resulting joint distribution

푃푀(X ∣푑표(푋 = 푥)) = ∏
푋푖∈X∖{푋}

푃푀(푋푖 ∣푃푎(푋푖)) ⋅ 푃푀′(푋 = 푥) (3)

as post-interventional distribution. To simplify the notation, we

will sometimes use 푃푀푑표(푋=푥)
(X ) or 푃푀푑표(푋)

(X ) to refer to the

expression 푃푀(X ∣푑표(푋 = 푥)) when the target variable or 푥 is clear

from the context.
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2.3 Reinforcement Learning

Reinforcement learning (RL) is a general approach to learning

through interaction with the world [32], especially in sequential

decision problems. An RL agent aims to Xnd the sequence of actions

that maximize the expected return, i.e., the cumulative (discounted)

reward. How the RL agent selects its actions only relies on (possibly

indirect) measures of how the world changes after each action is

taken.

POMDP. In reinforcement learning problems, the relationship

between an agent and the environment in which the states are

not fully observable is often modeled as a Partially Observable

Markov Decision Process (POMDP). Formally, a POMDP is a tuple

(S,A,T ,R,Ω,O,훾) where S is a set of states,A is a set of actions,

T ∶ S×A×S �→ [0, 1] is a set of transition probabilities between

states, R ∶ S×A → IR is the reward function, Ω is a set of obser-

vations, O ∶ S×A×Ω → [0, 1] is the set of conditional observation

probabilities, and 훾 ∈ [0, 1) is the discount factor.

RL:. The strategy of actions of an RL agent is called policy. A pol-

icy can be either deterministic or stochastic. A deterministic policy

휋 ∶ S �→ A maps states to an action, whereas a stochastic policy

휋 ∶ S×A �→ [0, 1] is characterized by a conditional distribution

of actions given states. To maximize the return in the long run, RL

agents often estimate the so-called value function 푉 ∶ S �→ IR or

action value function 푄 ∶ S×A�→ IR. These functions determine

the desirability of a state or a state-action pair, respectively. The

optimal Q-function 푄∗ allows us to derive an optimal policy 휋∗

that maximizes the return by greedily choosing the action that max-

imizes the value of each state, that is, 휋∗(푠) = argmax푎푄
∗(푠,푎)

[32].

Deep Q-Learning: The Q-learning algorithm [37] estimates the

state-action value function푄 using the temporal di@erence (TD). In

particular, TD learning decomposes the problem of estimating the

expected return of a given policy as the sum of the instantaneous

reward and the value accumulated by following the optimal policy

in the next step:

푄(푠, 푎) = 푟(푠, 푎) +훾max푎′푄(푠′, 푎′) (4)

where 푟(푠,푎) is the instantaneous reward of the state-action pair.

To estimate the future reward, we assume that the agent follows

the optimal policy 휋∗(푠), i.e., argmax푎푄
∗(푠,푎). Especially in the

Xrst iterations of the algorithm, the estimate of 푄 does not cor-

respond to the optimal value function 푄∗. However, tabular Q-

learning can still converge to the optimal solution [37]. The deep

Q-network (DQN) algorithm [22] adapts the Q-learning algorithm

to non-tabular settings, e.g., continuous state spaces, where the

Q-function needs to be approximated via a neural network. DQN

utilizes the TD-learning rule to generate a target for the training of

the neural network that approximates the Q-value by means of the

loss function:

L(휃) = IE푠,푎,푟,푠′[(푟(푠, 푎) +훾max푎′푄(푠′, 푎′
;휃

−) −푄(푠, 푎;휃))2] (5)

where 푄(푠,푎;휃) is the Q-function approximated by the neural net-

work of parameters 휃 , while 푄(푠,푎;휃−) is the so-called target net-

work, used to generate a Xxed target and stabilize the training

dynamics, and 훾 is the discount factor.

3 LEARNING A CAUSAL DISCOVERY POLICY
WITH INFORMATIVE INTERVENTIONS

In this section, we present our algorithmic setup for learning causal

discovery policies. We consider the classic agent-environment in-

teraction scheme commonly used in RL. The goal is to learn a policy

that represents a CD algorithm that uses observational and inter-

ventional data to sequentially estimate the true causal structures

by performing informative interventions. Such modules can be

applied to previously unseen causal structures through a few for-

ward passes of a neural network without retraining, making them

a highly eZcient tool for causality [19, 28].

Following this line of research, we learn a policy that collects a

stream of data by intervening on the environment to infer a causal

structure estimate. This setup acknowledges the strong inYuence

that informative interventions have, especially when there is a

limited budget for interventions. We learn to perform these inter-

ventions by rewarding interventions that lead to the generation of

a better structural update and limiting the budget for interventions

by means of possible steps in an episode.

One key aspect of learned CD modules is that they need informa-

tion about the ground truth causal structure only during training.

This promises the possibility of (i) training the CD policy on syn-

thetic data where the ground truth can easily be generated, and

then (ii) applying it to estimate the causal structure of environments

where the ground truth structure is potentially unknown, such as

in the real world.

3.1 POMDP Formulation of Causal Discovery
Through Interventions

To conveniently model the causal discovery process where there is

partial observability, we will use a POMDP. However, since such a

formalization is not entirely obvious, it constitutes our Xrst contri-

bution, which we will present in this section.

State Space: Our environment is determined by SCMs.1 There-

fore, each state will correspond to an SCM. We shall describe each

SCM as the set of functions that determine the endogenous vari-

ables. Therefore, having 푛 endogenous variables, a state is a set

푠 = {푓0, ..., 푓푛−1} of functions that deXne the current SCM. Further-

more, each state contains the ground truth observational graph 퐺∗
푠

induced by the observational SCM 푀푑표(∅).

Action Space: We model our action space as a multi-discrete

space 퐴 = [푛 + 1] × [2푛(푛 − 1) + 1] where the notation [푛] =

{1, 2, . . . , 푛}with푛 being the number of nodes in the graph. The Xrst

dimension of the action space represents the endogenous variables

of the current SCM and determines the intervention targets. For

each variable 푋푖 ∈ X , there is an action 푑표(푋푖 = 푐), where 푐 is a

predeXned constant. In addition, the agent can do nothing and just

collect observational data. In total, this dimension of the action

space has 푛 + 1 elements. The second dimension represents the

structural actions. Each action in this space indexes the removal and

addition of edges on the currently estimated graph. Additionally,

the agent can perform a void structural update which leads to a total

1Our approach can be applied to any data-generating process that allows for sampling

from and intervening on its variables.
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Figure 2: Overview of COREs training setup (right) and a minimal example of the transition dynamics for an SCM with two

endogenous variables (left). At each step, the agent picks the intervention/structural actions according to an 휖-greedy policy on

푄푖푛 and 푄푠푡 respectively. The intervention is applied to the SCM푀푖 leading to a post-interventional distribution 푃푀푑표(.)
from

which an observation is sampled. The agent receives a reward based on the structure action and the induced graph of 푀 푖
푑표(∅).

The observation is added to the history of observations and serves as input to the agent. At the beginning of each episode a new

푀 푗 is drawn from the training set and the observation history is cleared.

size of 2푛(푛 − 1) + 1 actions in this dimension since we disallow

reYective edges. The action space scales quadratically with the

number of nodes. To address this problem, we mask the possible

actions at every step such that the agent cannot add an already

existing edge or remove a non-existing edge. This eWectively halves

the size of this action space dimension.

Transition Dynamics: Each episode starts in the observational

SCM 푀푑표(∅) where no intervention is performed. An intervention

푑표(푋푖) on this SCM deterministically leads to a new SCM 푀푑표(푋푖)
where 푓푖 is replaced by some constant 푐 . This eWectively replaces

푓푖 in the state. With an intervention 푑표(푋 푗 ), we transition from

푀푑표(푋푖) to 푀푑표(푋 푗), that is, 푇 (푀푑표(푋푖), 푑표(푋 푗 ), 푀푑표(푋 푗)) = 1 or,

equivalently,푇 (푀푑표(푋푖), 푑표(푋 푗 )) =푀푑표(푋 푗). A minimal example

of the transition dynamics of our approach can be seen in Figure 2.

Observations: At each step 푡 , the agent collects the value of

the endogenous variables {푥0, . . . , 푥푛−1} from the joint distribution

푃푀푑표(푋)
(X ) induced by the current SCM 푀푑표(푋). Therefore, the

observation is 표푡 ∼ 푃푀푑표(푋)
(X ).

State Representation: The use of a single observation 표푡 is not

suZcient to determine the best action in POMDPs. Thus, the agent

has to build its own state representation ℎ푡 using the history of

observations and actions [32].We denote the history of observations

and actions by ℎ푡 = [푥0, 푎0, ..., 푥푡 , 푎푡 ].

Reward: The structural Hamming distance (SHD) measures the

distance between two DAGs by counting the number of diWerent

edges. Since our goal is to minimize the distance between the gen-

erated and the ground truth observational graphs at every step,

we consider the SHD as a natural candidate for our reward func-

tion. For a ground truth observational graph 퐺∗
푠 , a graph estimate

퐺̂푡 , and a graph estimate 퐺̂푡 ′ in the consecutive step 푡 ′, we de-

Xne the potential-based reward [15] as 푟(푠,푎) = 푆퐻퐷(퐺∗
푠 , 퐺̂푡) −

푆퐻퐷(퐺∗
푠 , 퐺̂푡 ′).

To simplify, we rewrite our reward function in the following

way: Let 퐸(푎) be the directed edge that is manipulated in action 푎.

Then, when adding an edge 퐸(푎), our reward becomes:

푟(푠,푎) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if 퐸(푎) ∈퐺∗
푠

−1 if 퐸(푎) /∈퐺∗
푠

(6)

When removing an edge 퐸(푎) our reward becomes −푟(푠,푎). In all

other cases (퐸(푎) = ∅) the reward is 0.

This formulation has the computational advantage that only

퐸(푎) must be compared to the edges of 퐺∗
푠 instead of comparing

the entire graph 퐺̂푠′ . Furthermore, it makes the reward denser and

depends only on 푠 and 푎 instead of relying on the entire history

of structural actions that make up the current graph estimate. In

Appendix A we demonstrate that this formulation is equivalent to

푆퐻퐷(퐺∗
푠 , 퐺̂푠) − 푆퐻퐷(퐺∗

푠 , 퐺̂푠′).

3.2 Data-Generation

We train our CORE agents using a training set of DAGs. In addition,

we have an evaluation set of DAGs that the agent has not seen

during training. To ensure that the evaluation set does not include

any graphs from the training set, we Xrst create a set of unique

DAGs, shu[e it to ensure equal sparsity throughout the list, and

then divide it into training and evaluation sets. As per common

assumption in machine learning, we assume that having more

graphs in the training set will help us to generalize better to the

evaluation set.

Since the space of DAGs grows superexponentially in the number

of its nodes, it quickly becomes infeasible to generate all possible

graph structures with 푛 nodes. For this reason, we generate all

possible graphs only for graphs with 3 nodes (for a total of 25

graphs) and graphs with 4 nodes (for a total of 543 graphs). For

graphs with more than 4 nodes, we generate subsets of the possible

graphs. Similarly to many works in the literature, each graph is

generated as an Erdös-Rényi [8] graph with an edge probability of
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0.2. We diversify the training data by generating SCMs based on

these graphs by sampling a function 푓푖(푃푎퐺(푋푖)) from a class of

possible functions for every node푋푖 in the graph퐺 at the beginning

of each episode.

3.3 Learning Approach

The CORE agent is based on the DQN algorithm [22], but it main-

tains two multilayer perceptron Q networks simultaneously. One

network, 푄푠푡 (ℎ,푎푠푡 ;Θ푠푡 ), estimates the Q-values speciXc to the

structural updates, the other 푄푖푛(ℎ, 푎푖푛 ;Θ푖푛) maintains the values

for the interventions. Each of the two networks comes with its

own target network, and the loss is computed separately. Note that

Q values are determined on the basis of the history of observa-

tions, as is often done when applying DQN to POMDP problems

[22]. The networks are identical except for the output layers due to

diWerent dimensionalities of the action space. The overall output

of the Q-function is the concatenation of the individual Q-values,

and our greedy policy picks 푎푖푛 and 푎푠푡 in such a way that the

corresponding Q-values are maximized.

At the procedural level, our algorithm generates a new SCM

based on a random sample of the graph data at the beginning of each

episode. Furthermore, we start every episode with an empty graph

estimate. The inference time for a given SCM is fully determined by

the Xxed number of steps per episode. This puts a hard upper bound

on the number of samples and makes inference highly eZcient.

Figure 2 gives an overview of our agent.

4 GENERALIZATION TO UNSEEN
STRUCTURES

In this section, we empirically validate whether our learned policy

constitutes a good causal discovery algorithm. To this end, we train

our model on a training set of SCMs with known causal structures

and evaluate it on SCMs with causal structures that were not seen

during training.

4.1 Training Data

For this experiment, we generate graphs with 3, 4, 5, 8, and 10

variables as described in Section 3.2. We split the generated graphs

into training and test sets as follows: We Xrst generate the graphs

(25, 543, 16000, 91000, 101000), and then split the Xnal list into

train and test sets with splits 19/6, 401/142, 15000/1000, 90000/1000,

100000/1000 for 3, 4, 5, 8 and 10 variables, respectively. We limit the

number of test graphs to 1000 since the evaluation would otherwise

slow down the training prohibitively.

At the beginning of each episode, a graph is sampled from the

data set. To generate the SCMs in accordance with Section 3.2, we

deXne a class of linear additive functions. For each node 푋푖 in the

graph 퐺 , we sample ∣ 푃푎퐺(푋푖) ∣ weights from 푈푛푖 푓 표푟푚(0.5, 2.0).
The generated function for this node is then푋푖 ← Σ푋 푗 ∈푃푎(푋푖)푤 푗 ⋅푥 푗

for the current values 푥 푗 of the parents of 푋푖 . If 푋푖 is a root node,

we assign a default value of 0. We use an intervention value of 20 to

provide a strong signal about the causal structure w.r.t. to the true

causal eWect sizes. This value can be considered as a hyperparameter

and we discuss its impact further in Section 6.

4.2 Experimental Setup

We evaluate the generalization capability of CORE w.r.t. the avail-

able baselines. While AVICI [19] learns a graph generator that

estimates the causal structure of an o[ine dataset, CORE operates

in a few-shot online data sample regime. Therefore, a meaningful

comparison with AVICI is out of reach. Consequently, MCD [28] is,

to the best of our knowledge, the only SOTA method that learns a

CD algorithm that actively intervenes. Furthermore, we compare

with the random baseline that generates random DAGs, and the

empty baseline which represents the empty graph.

We train both MCD and our approach for the same amount of

steps and align all relevant hyperparameters including the neural

network sizes. MCD runs into diZculties when scaling up to graphs

with more than 4 nodes. Due to such computational infeasibility, we

cannot run experiments for MCD on SCMs with 8 or 10 variables. A

detailed description of the hyperparameters and the architectures

used can be found in Appendix B. We set a maximum compute

budget via a timeout of 25 training hours. The precise hardware

conXguration can be found in Appendix C.We paid special attention

to setting comparable episode lengths for both approaches. For the

sake of fair comparison, we set the episode length of our approach

to half the episode length used in MCD, since our approach can

perform interventions and structure updates synchronously, while

MCD can only perform them sequentially.

4.3 Results

The results in Table 1 are from applying the learned models to three

SCMs randomly generated for each graph in the held-out test set.

The model that achieved the best performance during training was

chosen for each evaluation.

We can see the favorable performance of CORE compared to

MCD and the trivial baselines. For all sizes of graphs tested, we

observe that our approach estimates graphs that are closer to the

ground-truth structures than the other approaches in less than

34 milliseconds per graph. We generate an average of 0.5, 0.5, 1.3,

2.0, and 5.2 wrong edges in graphs with 3, 4, 5, 8, and 10 nodes,

respectively. Even in a set of graphs with 10 variables, our approach

adds approximately 2 correct edges out of 90 potential edges while

only observing 15 data points. For smaller graphs, the ratio of

correctly identiXed edges is even higher.

We attribute the improvement over MCD to a variety of aspects.

First, addressing the structural actions and the intervention ac-

tions with separate networks makes learning the corresponding

Q-functions more eZcient. This is because two separate networks

have a greater degree of freedom to represent structural and inter-

vention actions that are inherently diWerent. Second, representing

the reward densely instead of a summary at the end of each episode

often improves performance [25]. Third, instead of learning to in-

tegrate observations from the environment via a long short-term

memory (LSTM) [13], we directly input the history of samples into

our policy. And, lastly, by not generating graphs at runtime, but

rather having a pre-deXned training set, we avoid a signiXcant

computational overhead.

Furthermore, we observe the rather unfavorable performance of

MCD compared to the baselines. We partly attribute this to a lack

of extensive hyperparameter tuning, since this would likely have
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3 variables 4 variables 5 variables 8 variables 10 variables

random 3.29 ± 0.97 5.92 ± 1.41 8.33 ± 1.22 11.08 ± 2.80 14.85 ± 4.01

empty 1.80 ± 0.90 3.80 ± 1.10 6.20 ± 0.42 5.10 ± 1.60 7.0 ± 2.50

MCD 1.85 ± 1.10 4.97 ± 1.61 6.18 ± 0.44 - -

CORE 0.50 ± 0.50 0.54 ± 0.65 1.26 ± 1.06 2.04 ± 1.64 5.16 ± 2.69

Table 1: Average SHDs on the test set of SCMs with unseen causal structures.

Figure 3: Two examples of how the learned CORE policy estimates the causal structure of two unseen SCMs described in

Equations (7) and (8). Green elements indicate intervention (do (c = 20)) and structural update (adding an edge) in the current

step, respectively. The red arrow indicates the deletion of an edge.

been needed to achieve the results in [28]. For the 4 and 5 variable

cases, MCD reached the timeout of 25 hours.

Given these results, we conclude that CORE is capable of suc-

cessfully learning a CD algorithm that can be applied to previously

unseen causal structures. Even for these cases, our approach esti-

mates the ground truth graph accurately without having to retrain

on the new structure. Furthermore, we show that with CORE’s nov-

elties, we are able to scale towards graph sizes of more relevance for

real-world applications, while simultaneously increasing training

eZciency.

4.4 Examples

We present qualitative results on how our learned policy performs

on the following two randomly selected example SCMs with unseen

causal structures:

푀
0
푑표(∅) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

푋0 ← 0.54 ⋅ 푋1 + 0.91 ⋅ 푋3 + 0.83 ⋅ 푋4,

푋1 ← 1.52 ⋅ 푋2 + 1.84 ⋅ 푋3,

푋2 ← 1.38 ⋅ 푋3,

푋3 ← 0, 푋4 ← 0

(7)

푀
1
푑표(∅) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

푋0 ← 0,

푋1 ← 1.61 ⋅ 푋3,

푋2 ← 0.83 ⋅ 푋1 + 1.60 ⋅ 푋3 + 1.5 ⋅ 푋4,

푋3 ← 1.39 ⋅ 푋0,

푋4 ← 0.54 ⋅ 푋0,

(8)

In Figure 3, we can see that in both cases the agent identiXes the

underlying causal structure almost correctly, with the exception

of the missing edge 푋3 → 푋0 in the Xrst instance. In the second

instance, it even recognizes an error and corrects it in Step 7.

5 ON THE IMPORTANCE OF JOINTLY
LEARNING AN INTERVENTION POLICY

As described in Section 3, our method is designed to jointly learn a

causal graph generator and an intervention policy. In this section,

we show that learning an intervention policy, aimed at performing

the interventions that are most informative for CD, helps in learning

a CD policy.

It is worth noting that our agent does not receive any speciXc

reward that represents the quality of the intervention performed

in the environment. Instead, the reward function depends only on

the structural update of the currently estimated causal structure

(see Equation (6)). Since, for the full identiXcation of the causal

structure, interventions are generally needed [3], our agent has to

learn to perform interventions to update the estimate of the causal

structure. Therefore, our agent receives good rewards only if it

performs interventions that are relevant to discover the current

causal structure.

Although it is clear that interventions, in general, are helpful for

CD, we argue that learning an intervention policy by measuring

the usefulness for structure identiXcation helps the overall learning

process. Especially when the budget for performing interventions

is very restrictive, as is the case in many real-world applications, it

is crucial to perform the interventions that are most informative

about the underlying causal structure [30, 33]. Which interventions

are the most informative ones depends on the causal structure that

is currently being discovered. This further motivates learning the

intervention policy jointly with the structure generation policy. In

this section, we empirically show that there is in fact a beneXt in

learning an intervention policy jointly with the CD policy.
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Figure 4: Plot of the average SHD on the test set (lower is bet-

ter). We present the means over three training runs of CORE

with random interventions (blue) and when jointly learning

an intervention policy (red) over graphs with 4 variables.

5.1 Experimental Setup

To show the hypothesized performance gain, we compare the per-

formance of the agent that learns the intervention policy and the

structure generation policy jointly, to an agent that learns only the

structure generation policy and randomly picks an intervention

target at each step. We train the two agents 3 times each on environ-

ments with 4 endogenous variables. The graphs, function classes,

and hyperparameters remain the same as described in Section 4.1.

5.2 Results

Figure 4 shows the aggregated results for the two types of agents.

We can see that learning the intervention policy jointly with the CD

policy results in a signiXcantly better estimation of the ground truth

causal structure. Additionally, it decreases the number of learning

steps needed to reach a certain level of performance. Lastly, Fig-

ure 4 suggests that even with random interventions, our approach

performs reasonably well (average SHD of ∼ 2.3). This indicates the

robustness of the CORE agent to less informative interventions.

Overall, we observe that the ability to learn the intervention

policy is an integral part of learning a CD policy and that rewarding

interventions leading to better structure estimates is sensible.

6 APPLICABILITY TO THE REAL-WORLD

Throughout this work, we acknowledge the capability of learning

CD algorithms that can be applied to environments with previously

unseen causal structures with up to 10 variables. This constitutes

a substantial improvement over the SOTA when it comes to the

application of learned CD algorithms in the real world, as many

problems can be modeled with 10 variables [27, 41]. Therefore

CORE, reaches graph sizes that are relevant in CD. However, we

acknowledge that many applications with up to 5000 variables [20]

are currently out of reach. In this section, we shed light on some

of the limitations that this approach currently has with regard to

applying it in a real-world scenario.

Here, we speciXcally investigate two design aspects that limit

real-world applicability, and they are interconnected. First, during

training, the functions of the SCMs are sampled from a speciXc

function class, and for some function classes (e.g., non-linear func-

tions), discovering the true causal structure can be harder than for

others [10]. Consequently, as we will show in this section, learning

a CD algorithm for these classes of functions is more diZcult.

Second, our approach is tailored to generate graph estimates

for the function class on which it was trained. This means that

when used for diWerent causal structures, the same function class

is expected during inference. Consequently, this can lead to a de-

crease in performance if the function class is altered. We expect an

exception for this for function classes that are either very similar

to the training functions or that subsume them. Therefore, when

CORE is trained with the intention of being used in a real-world

setting, the real-world function class has to be anticipated during

training.

6.1 Transferability across Noise and
Non-Linearity

Motivated by these aspects, we show the diZculty in training CD

policies on some function classes and test CORE on function classes

that it was not trained on.

6.1.1 Experimental Setup. For the data-generating processes in

this section, we test how noise and non-linearities inYuence the

performance and transferability of CORE. Therefore, we use three

function classes that deXne each function class 푓푖(푃푎(푋푖),푈푖) in

an SCM as follows:

● linear: 푓푖 = Σ푋 푗 ∈푃푎(푋푖)푤 푗 ⋅ 푥 푗 (same as Section 4.1)

● linear + noise: 푓푖 = Σ푋 푗 ∈푃푎(푋푖)푤 푗 ⋅ 푥 푗 + 푢푖 , where 푢푖 ∼

N (0, 0.5)
● interaction: 푓푖 = Σ푋 푗 ∈푃푎(푋푖)푤 푗 ⋅ 푥 푗 + 푥푘 ⋅ 푥푙 , where 푋 푗 , 푋푘 ∈

푃푎(푋푖) are randomly chosen

where the lowercase 푥푖 represents the current value of the variable

푋푖 . Whenever a node is a root node, we set a default value of 0.

We train two CORE models for various graph sizes for each

of the two linear functions, one with an intervention value of 5

and the other with an intervention value of 20. This setup gives

us further insight into how the signal-to-noise ratio aWects our

performance. For the interaction function, we train one model with

an intervention value of 5. We then tested all the trained models in

all three function classes.

6.1.2 Results. In Table 2, we show how models that were trained

with one function class perform when applied to various function

classes with previously unseen causal structures.

Our Xrst observation is that, as hypothesized, the application of

our learned CD algorithm on previously unseen function classes is

problematic if the testing function class is very diWerent from the

training function class. While applying the linear models to their

noisy/non-noisy counterparts still leads to good estimates, applying

them to the interaction data mostly fails. This supports our claim

that the function class chosen for training must be informative

about the function class encountered during testing.

Looking at the model that was trained on interaction data, we

observe two interesting aspects. First, for graphs with 4 and 5

variables, CORE fails to learn a CD policy that generalizes to unseen

graphs. We believe that, given the right hyperparameters and a

suZcient training budget, we can solve the task for larger graphs,
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3 Variables 4 Variables 5 Variables

lin lin + noise interaction lin lin + noise interaction lin lin + noise interaction

empty 1.8 ± 0.9 3.8 ± 1.1 6.2 ± 0.4

lin 5 0.2 ± 0.4 1.2 ± 0.4 2.2 ± 0.7 0.6 ± 0.7 0.8 ± 0.8 3.4 ± 1.9 1.4 ± 1.1 1.8 ± 1.2 6.1 ± 2.4

lin 20 0.5 ± 0.5 0.8 ± 0.4 2.3 ± 0.5 0.5 ± 0.7 0.6 ± 0.6 3.8 ± 1.8 1.3 ± 1.1 1.2 ± 1.0 6.5 ± 2.2

lin+noise 5 0.7 ± 0.7 0.6 ± 0.7 1.3 ± 0.7 0.6 ± 0.7 0.8 ± 0.8 3.6 ± 2.0 2.0 ± 1.3 2.3 ± 1.3 5.9 ± 2.1

lin+noise 20 0.2 ± 0.4 0.8 ± 0.4 2.0 ± 0.8 0.6 ± 0.6 0.7 ± 0.7 4.3 ± 1.7 1.2 ± 1.0 1.2 ± 1.0 6.8 ± 2.2

interaction 5 0.8 ± 0.7 1.3 ± 0.7 1.0 ± 0.5 4.1 ± 1.3 4.1 ± 1.3 4.0 ± 1.3 7.9 ± 1.7 7.8 ± 1.7 7.9 ± 1.7

Table 2: We show the performance of trained CORE policies on unseen graphs with various function classes for their corre-

sponding SCMs. Each row describes which function class the model was trained on and what intervention value it uses. Each

column describes the function class it was tested on. Empty describes the baseline that generates the empty graph.

based on the results obtained from smaller graphs. However, these

results demonstrate that the performance of a learned CD algorithm

depends on the complexity of the SCM function that generates the

data. Second, we observe that, for the interaction case, the learned

policy can be successfully applied to the linear function. We argue

that this is because the interaction data encompasses the linear

data as well. This suggests that if the function classes used during

training are broad enough, the CD algorithm that is learned will be

relatively more applicable to real-world scenarios.

When comparing linear models with a higher intervention value

with those with a lower intervention value, we observe that they

tend to perform better on function classes that they successfully

learned. We attribute this to a higher signal-to-noise ratio w.r.t. the

data-generating process.

Overall, we can say that learning CD algorithms is limited by

the function class that is observed during training. This currently

obstructs their application to real-world scenarios, but Xnding more

general functions on which CORE can be trained is a promising

research direction.

6.2 Further Limitations

Apart from aspects related to the function classes on which CORE is

trained, we point out the additional limitations of learning a model

that is applicable to the real world.

One of them is the assumption of being able to intervene on any

variable with any target value. In real-world scenarios, it might

be that some variables cannot be manipulated (imagine changing

the outside temperature) or a good target value is unknown during

training. Furthermore, CORE-like algorithms might suWer from the

presence of unobserved confounders. For both the unknown target

value and unobserved confounders, there is hope that augmenting

the learning procedure in the future will overcome these limitations.

7 SUMMARY AND CONCLUSION

In this paper, we introduce CORE, a deep RL-based approach to

tackle the task of causal discovery. CORE learns a policy to sequen-

tially perform informative interventions and generate candidate

causal graphs from scratch. Moreover, the learned policy general-

izes to previously unseen graphs of up to 10 variables in size. CORE

outperforms the current SOTA baseline (i.e., MCD [28]) both in the

number of variables it can deal with and in the accuracy of the esti-

mated structure. Furthermore, it demonstrates that by learning to

perform the most informative interventions, highly sample-eZcient

CD algorithms can be learned (∼ 15 data samples for 10 variables).

Such improvement can be attributed to several key design fea-

tures. One such feature is the imposed additional structure in the

policy that separates the networks for interventions and structural

updates. However, such separation is not completely isolated. As

shown in our ablation study, CORE learns to perform relevant in-

terventions outperforming random interventions. Learning which

interventions are relevant is guided solely through a dense reward

that assesses the accuracy of the generated graph.

Moreover, we outlined the real-world applicability of our ap-

proach in terms of the number of variables and generalizability

across more complex function classes. For the former, while the

number of variables that CORE can deal with matches some do-

mains, for some other domains, usual practice is still out of reach.

For the latter, it turns out that CORE delivers good estimates when

it comes to linear functions, training on noisy functions, and testing

on non-noisy counterparts, and vice versa. However, generalizing to

more complex classes such as non-linear functions necessitates im-

provements. Furthermore, we empirically conXrmed that training

on more complex function classes and testing on simpler classes

yields promising estimates. Such an observation can serve as a

key idea along the road of applying these methods to real-world

problems.

Future work includes investigating the limitations of our ap-

proach in the presence of confounders, soft interventions, and

determining the right target value for interventions. In partic-

ular, it would be interesting to understand how robust our ap-

proach is when it comes to diWerent topologies regarding such

non-intervenable variables and unobservable confounders. Another

avenue that we plan to address is an extensive study of the trans-

ferability of our approach across diWerent function classes, such

that learned CD algorithms that autonomously plan interventions

can be applied to real-world data.
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