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ABSTRACT
This research introduces a novel setting for reinforcement learning

with constraints, termed Relaxed Exploration Constrained Rein-

forcement Learning (RECRL). Similar to standard constrained re-

inforcement learning (CRL), the objective in RECRL is to discover

a policy that maximizes the environmental return while adhering

to a predefined set of constraints. However, in some real-world

settings, it is possible to train the agent in a setting that does not

require strict adherence to the constraints, as long as the agent

adheres to them once deployed. To model such settings, we intro-

duce RECRL, which explicitly incorporates an initial training phase

where the constraints are relaxed, enabling the agent to explore the

environment more freely. Subsequently, during deployment, the

agent is obligated to fully satisfy all constraints. To address RECRL

problems, we introduce a curriculum-based approach called CLiC,

designed to enhance the exploration of existing CRL algorithms

during the training phase and facilitate convergence towards a pol-

icy that satisfies the full set of constraints by the end of training.

Empirical evaluations demonstrate that CLiC yields policies with

significantly higher returns during deployment compared to train-

ing solely under the strict set of constraints. The code is available

at https://github.com/Shperb/RECRL.
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1 INTRODUCTION
Reinforcement learning algorithms aims to maximize (discounted)

returns received from the environment. However, many real-world

scenarios also require adhering to constraints not naturally charac-

terized within the reward function. Examples include maximizing

throughput without exceeding a specified average end-to-end de-

lay in message routing [2], optimizing energy consumption for

cooling data centers while staying below a certain temperature

threshold [20], and maximizing distance driven under behavioral

constraints (e.g., smoothness and lane centering) in autonomous
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driving problems. Other notable examples of constraints are fairness

(e.g., balancing resources for workers in a factory [11]), safety [17],

and energy consumption (fuel and/or power [39]). While it is pos-

sible to shape the reward function to introduce a high penalty

upon constraint violation, this approach often hinders the learning

process and leads to suboptimal policies (which often violate the

constraints) [1]. To tackle this issue, constrained reinforcement

learning (CRL) was introduced. In CRL, the objective is to optimize

the return while simultaneously adhering to a predefined set of

constraints. CRL is often modeled as a constrained Markov De-

cision Process (CMDP, [2]), where constraints are represented as

cost functions with specified limits that cumulative costs must not

exceed.

Many CRL approaches focus on quickly identifying and explor-

ing policies that satisfy the constraints while improving return.

Some even go further and attempt “safe exploration” [16] to avoid

constraint violations during training. However, strict adherence to

constraints can limit exploration and result in suboptimal policies.

This strict approach is necessary for certain scenarios, especially

those with critical safety constraints. However, in domains that

admit for a safe training period, either in the real world or due

to the availability of an accurate simulator, it becomes feasible to

allow more relaxed exploration during training and enforce con-

straints only during deployment. For instance, consider the training

of rescue workers tasked with saving individuals in cold water en-

vironments. In real operational scenarios, these workers might

need to operate in frigid waters, enduring no more than three min-

utes before succumbing to hypothermia. However, during training,

they could practice in relatively warmer waters with a 15-minute

tolerance. To model such scenarios, we introduce the problem of

relaxed exploration constrained reinforcement learning (RECRL).

This framework, built upon the CMDP formulation, facilitates an

initial relaxation of constraints throughout the training process,

with the ultimate objective of developing policies that adhere to

these constraints while maximizing environmental returns during

actual deployment. Notably, while some existing CRL methods may

experience constraint violations during training, their main objec-

tive is the swift convergence to a policy that satisfies constraints.

In contrast, RECRL is purposefully crafted for domains where strict

adherence to constraints during training is unnecessary. The clear

differentiation between RECRL’s training and deployment phases

provides strategic flexibility regarding constraints, thereby enabling

the attainment of superior policies.

In addition, we introduce the Cost-Limit Curriculum (CLiC) ap-

proach, which adapts existing CRL algorithms to RECRL.While CRL

algorithms typically use cost limits that are constant throughout

training, CLiC varies the cost-limit thresholds. Doing so enables the

given CRL algorithm to learn a policy that adheres to deployment
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constraints while achieving better returns compared to training

with constant cost limits. In the example above, the rescue workers

are trained with a gradually decreasing time limit in the water until

they learn to accomplish the task within three minutes.

The main contributions of this work are as follows: i) Introduc-

tion and formulation of the problem of Relaxed Exploration CRL

(RECRL). ii) Development of the CLiC approach with two types

of curricula, predefined (static) curricula that decay the cost lim-

its at different rates (linear, exponential, or cosine), and dynamic

curricula that adjust cost limits based on agent-environment inter-

actions. iii) Review of several existing CRL algorithms as inputs

for CLiC, and an analysis of their safety guarantees with cost-limit

curricula. iv) Demonstration of the approach on a toy gridworld

domain. v) An empirical evaluation conducted on the Safety Gym

benchmark [32], showcasing the performance improvements of

multiple CRL algorithms achieved by CLiC.

2 RELATEDWORK
This section briefly surveys the recent advances in constrained RL

(CRL) and curriculum learning for RL.

Constrained RL. CRL is typicallymodeled as a constrainedMarkov

decision process (CMDP, [2]), where the agent’s goal is to opti-

mize the environmental return under the condition that the ex-

pected discounted cost is below a pre-specified threshold [18, 23].

Various optimization methods, including augmented Lagrangian-

based methods [21], trust-region methods [1], and Lyapunov-based

methods [10], have been employed to address CMDP problems.

Bayesian optimization has also been explored to address explo-

ration in safe RL, where a backup safety policy corrects the agent’s

behavior in unsafe states, allowing exploration in the face of uncer-

tainty [3, 7, 19, 38]. Learning from hallucination (LfH) is another

method that balances exploration and learning under constraints by

generating trajectories offline without constraints, then inferring re-

strictive constraints from this data [42]. In contrast to all this work,

we do not assume that the constraints are constant throughout

the training, thus granting the agent more freedom to explore and

discover a safe policy that achieves a high return at convergence.

Throughout this paper, we will be focusing on two CRL algo-

rithms, Constrained policy optimization (CPO, [1]), which enforces

constraints throughout training by solving trust region optimiza-

tion problems at each policy update, and PPO-Lagrangian (denoted

by PPO-L, [32]), a variant of the well-known Proximal policy op-

timization (PPO, [36]) that enforces constraints by using adaptive

penalty coefficients. While some of the CRL algorithms mentioned

above are more sophisticated than CPO and PPO-L, these two al-

gorithms are representative baseline algorithms that have been

commonly used in CRL empirical evaluations (e.g., [4]).

Curriculum Learning in RL. Curriculum learning (CL, [8, 37])

involves designing curricula for specific tasks or task distributions

to improve the agent’s eventual performance compared to direct

learning on the target task. CL has been applied in RL by modifying

learning tasks’ order and complexity [25]. Examples include decom-

posing hard tasks into easier missions [5], prioritizing transitions

for policy updates [35], controlling initial or goal states [13, 31], and

modifying reward functions or transition dynamics [41]. In related

work, Turchetta et al. [40] considered a teacher-agent framework

where the teacher generates a curriculum of subtasks to teach the

agent safe behavior. The teacher intervenes by temporarily mod-

ifying transition dynamics to steer the agent back to safe states

when it is in danger. Our approach, to the best of our knowledge,

is the first to propose a curriculum based on cost limits for CRL

problems. By relaxing constraints during training, we enable better

exploration and a higher likelihood of finding improved solutions

for CMDPs.

3 BACKGROUND ON CONSTRAINED MDPS
A constrained Markov decision process (CMDP) is an extension

of the standard Markov decision process (MDP) that allows for

constraints on the set of valid policies. Formally, a CMDP is a

tuple𝑀 = (S,A,𝑇 ,𝛾, 𝑅,𝐶, 𝑑). As in ordinary MDPs, S is the state

space,A is the action space, and𝑇 is the transition function (where

𝑇 (𝑠 ′ | 𝑠, 𝑎) is the probability of reaching state 𝑠 ′ as a result of taking
action 𝑎 from state 𝑠). 𝑅 : S × A × S → R is the reward function

and 𝛾 is the discount factor, which determines the planning horizon.

The expected discounted return of a policy 𝜋 is defined as:

𝐽 (𝜋) = E𝜏∼𝜋 [
∞∑︁
𝑗=0

𝛾𝑡 · 𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)]

The last two elements in a CMDP, 𝐶 and 𝑑 , are used for restricting

the set of feasible policies. 𝐶 = {𝐶1, . . . ,𝐶𝑘 } is a set of 𝑘 cost func-

tions, 𝐶𝑖 : S × A → R for all 1 ≤ 𝑖 ≤ 𝑘 . 𝑑 = {𝑑1, . . . , 𝑑𝑘 } is a set
of cost limits that correspond to the cost functions in 𝐶 . The set

of feasible policies, which satisfy the constraints, is defined with

respect to 𝐶 and 𝑑 :

Π(𝐶,𝑑) = {𝜋 |𝐽𝐶𝑖
(𝜋) ≤ 𝑑𝑖 ,∀1 ≤ 𝑖 ≤ 𝑘}

where 𝐽𝐶𝑖
(𝜋) = E𝜏∼𝜋 [

∞∑
𝑡=0

𝛾𝑡 ·𝐶𝑖 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)]
The CRL problem, defined for CMDPs, is to find a feasible policy

that maximizes the expected discounted return,

𝜋∗ = argmax

𝜋 ∈Π (𝐶,𝑑)
𝐽 (𝜋)

While this work primarily focuses on discounted costs as con-

straints, the introduced methods can be easily extended to handle

other constraint formulations, such as bounding the worst-case vio-

lation, value-at-risk (VaR), or conditional value-at-risk (CVaR) [33].

4 RELAXED EXPLORATION CRL
In CRL problems, the aim is to find a policy that maximizes envi-

ronmental return while adhering to given constraints. To address

scenarios where constraints can be relaxed during policy training,

we introduce the Relaxed Exploration Constrained Reinforcement
Learning (RECRL) problem.

In RECRL, agents undergo two distinct phases: a training phase
and a deployment phase. During deployment, agents are restricted

to policies that do not violate constraints, similar to standard CRL.

However, the training phase allows for relaxed constraints (cost lim-

its). Formally, a RECRL problem consists of a training budget 𝐵 and

twoCMDPs,𝑀𝑡 = (S,A,𝑇 ,𝛾, 𝑅,𝐶, 𝑑𝑡 ) and𝑀𝑑 = (S,A,𝑇 ,𝛾, 𝑅,𝐶, 𝑑𝑑 ),
corresponding to training and deployment phases, respectively.
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Both CMDPs are identical, except for their cost limits. To accommo-

date relaxed constraints during training, we assume that 𝑑𝑡𝑖 ≥ 𝑑𝑑𝑖
for all 1 ≤ 𝑖 ≤ 𝑘 .1 If the agent is trained using a simulator, we can

set 𝑑𝑡𝑖 = ∞ for all 1 ≤ 𝑖 ≤ 𝑘 , effectively reducing 𝑀𝑡 to an MDP.

The objective in RECRL is to find a policy for 𝑀𝑑 that optimizes

the return subject to the constraint:

𝜋∗ = argmax

𝜋 ∈Π (𝐶,𝑑𝑑 )
𝐽 (𝜋)

However, during the initial 𝐵 episodes, the agent operates on 𝑀𝑡
and can explore policies within Π(𝐶,𝑑𝑡 ), which may be more per-

missive. Existing CRL algorithms can be applied to RECRL problems

by enforcing 𝑑𝑑 throughout training, potentially applying tighter

constraints than required by 𝑑𝑡 . In this work, we propose methods

that gradually transition the constraints from 𝑑𝑡 to 𝑑𝑑 , facilitating

better exploration compared to direct training on 𝑑𝑑 and reducing

the risk of getting stuck in local optima.

Some existing approaches for addressing standard CRL problems,

formulated as CMDP, often encounter some level of constraint vio-

lation in the pursuit of finding a policy that adhere to the specified

constraints (e.g., [1, 12, 32, 34, 44]). Nevertheless, the overarching

objective of these methods is to rapidly converge toward a policy

that satisfies the constraints. In contrast, RECRL is explicitly de-

signed for domains in which it is not necessary to adhere to the

constraints during training. In RECRL, both the deployment and

training phases are governed by distinct sets of constraints, mark-

ing a fundamental departure from the conventional CRL setting.

Moreover, the flexibility allowed between constraints during the

training and deployment phases can be strategically leveraged to

attain superior policies, as demonstrated below.

5 CURRICULUM-BASED RECRL APPROACH
CRL algorithms can learn a valid policy when applied directly on

𝑀𝑑 . However, there’s an opportunity to adapt them for RECRL,

capitalizing on the benefits of training with relaxed constraints.

We present a toy domain called RiverGrid (based on the popular

MiniGrid environment [9]), inspired by the scenario of training

rescue workers. In this grid-based environment (shown in Figure 1),

the agent (depicted as a red triangle) must reach a goal tile (green

tile) while adhering to a constraint limiting the number of time steps

it can spend in cold river tiles (blue tiles). Figure 1a illustrates an

instance where the agent must cross at least five river tiles to reach

the goal. When the cost limit is 5, the optimal policy of moving

forward only allows the agent to reach the goal while respecting

the constraint. However, it is challenging for CRL algorithms to

discover this optimal policy. We have tested CPO and PPO-L on this

simple example; both fail to find the optimal policy and converge

to a policy where the agent remains at its initial position.

In this section, we present a method called Cost-Limit Curricu-

lum (CLiC) to adapt any CRL algorithm and leverage the addi-

tional exploration opportunities provided by RECRL. Instead of

training the agent on 𝑀𝑡 throughout the entire training phase,

the agent is presented with a curriculum, i.e., a sequence of mod-

els,M = 𝑀𝑡1 . . . 𝑀𝑡𝑛 , that differ in their cost limits. In this work,

we consider CRL agents represented by a set of parameters (e.g.,

1
We do not consider cases where some constraints could benefit from being tighter

during training in this paper.

(a) An instance in which al-
gorithms can benefit from re-
laxed exploration; agents can
step onto at most 5 river tiles.

(b) An instance in which re-
laxed exploration might be
harmful; agents can step onto
at most 1 river tile.

Figure 1: Two instances of the RiverGrid domain

weights of a neural network), i.e., 𝜋\ is an agent that corresponds

to a parameter configuration \ . Let \M
𝑁

be the parameters of 𝜋\
after training on curriculumM for 𝑁 episodes. Given a CRL agent,

the objective of a curriculum learning problem for RECRL is to find

a curriculumM, to be used by the agent during the training phase,

that maximizes the performance of the agent when it is deployed:

M∗ = argmax

M
𝐽 (𝜋

\M
𝐵

) (1)

s.t. 𝜋
\M
𝐵

∈ Π(𝐶,𝑑𝑑 ),

𝑀 ∈ M ∀𝑀 ∈ M

where M = {(S,A,𝑇 ,𝛾, 𝑅,𝐶, 𝑑) |𝑑𝑖 ≤ 𝑑𝑡𝑖 for all 1 ≤ 𝑖 ≤ 𝑘} is the
set of all possible models with cost limits that are at least as strict as

the constraint of𝑀𝑡 . In curriculum learning terms,𝑀𝑑 is the target
task, andM is the set of all potential source tasks. In addition, the

algorithm that generates the curriculum is known as the teacher,
while the agent that solves each model in the curriculum is called

the student.
Directly optimizing Eq. 1 is challenging, as the effect of any

curriculum can only be accurately measured once the agent has

finished training, where the effect of a curriculum is the difference

between the initial performance of the agent and its performance

after training with the curriculum; this effect is known as global
learning progress [29]. Consequently, most curriculum learning

approaches aim to optimize alternative objectives such as local

learning progress [6, 15, 22, 24, 28], intermediate difficulty [13, 14],

diversity [27], and surprise [26]. However, these methods are de-

fined for unconstrained RL, making them unsuitable for generating

a curriculum by actively managing and controlling the cost limit.

To overcome this limitation, we explore an alternative way to

obtain a curriculum by considering sequences with non-ascending

cost limits, where the final source task is the target task (𝑀𝑑 ), i.e.,

curricula of the form:{
M = 𝑀𝑡1 , . . . , 𝑀𝑡𝑛

���� 𝑑𝑡𝑖 ≥ 𝑑𝑡1𝑖 ≥ · · · ≥ 𝑑𝑡𝑛𝑖 = 𝑑𝑑𝑖
∀1 ≤ 𝑖 ≤ 𝑘

}
This formulation enables CRL algorithms to train with progres-

sively tighter constraints, ensuring the final policy adheres to the

deployment constraints while promoting better exploration during
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Algorithm 1 Static Curriculum Teacher

1: Input: 𝑑𝑡 , 𝑑𝑑 , 𝐵, 𝜋 ,𝑀 = (S,A,𝑇 ,𝛾, 𝑅,𝐶, 𝑑)
2: for episode 𝑏 from 1 to 𝐵 do
3: 𝑝 ← 𝑏

𝐵
// Progress of the training

4: for 1 ≤ 𝑖 ≤ 𝑘 do
5: if exponential curriculum then

6: Set 𝑑𝑖 ←
𝑑𝑡𝑖 −𝑑𝑑𝑖
1−𝑒−1

exp(−𝑝) + 𝑑𝑑𝑖 −𝑒
−1𝑑𝑡𝑖

1−𝑒−1
.

7: else if linear curriculum then
8: Set 𝑑𝑖 ← 𝑝 · 𝑑𝑑𝑖 + (1 − 𝑝)𝑑𝑡𝑖 .
9: else if cosine curriculum then
10: Set 𝑑𝑖 ← cos

( 𝜋 ·𝑝
2

)
𝑑𝑡𝑖 + (1 − cos

( 𝜋 ·𝑝
2

)
)𝑑𝑑𝑖 .

11: end if
12: end for
13: Execute 𝜋 on𝑀

14: end for

training (compared to training only with 𝑑𝑑 ). To generate the cur-

riculum, the teacher must decide which cost limits (source tasks)

to present to the agent, and the duration of training on each task.

5.1 Static Curricula
We initially consider static curricula (static CLiC), which are

predetermined and do not require any runtime information. Three

types of static curricula are studied, based on common scheduling

strategies: Linear decay (CLiC𝐿), Cosine decay (CLiC𝐶 ), and Ex-

ponential decay (CLiC𝐸 ). These curricula change the cost limit at

each episode based on the fraction of completed training episodes,

relative to the training budget 𝐵, and the training and deployment

costs 𝑑𝑡 and 𝑑𝑑 , respectively. The pseudocode for the three types of

static curricula is shown in Algorithm 1. Note that the decay func-

tions are not well-defined when 𝑑𝑡𝑖 = ∞ ≠ 𝑑𝑑𝑖 for some 1 ≤ 𝑖 ≤ 𝑘 .

Hence, a finite initial cost limit should be used. For instance, the

agent can be executed on the training model𝑀𝑡 for a few episodes,

and the incurred costs can be used as the initial cost limits. We de-

note CLiC𝑋 -𝐴 as the policy obtained by training a CRL algorithm

𝐴 on the curriculum produced by CLiC𝑋 (where 𝑋 represents one

of the CLiC methods described above). While the static CLiC meth-

ods are relatively straightforward, they effectively improve the

agent’s exploration during training. For example, CLiC𝑋 -CPO and

CLiC𝑋 -PPO-L successfully find the optimal solution in the example

depicted in Figure 1a, for all types of static curricula (𝑋 ∈ {𝐿,𝐶, 𝐸}).

5.2 Bounding Constraint Violations
The static CLiC approach has the useful property of bounding the

cumulative constraint violation induced by the relaxed exploration

when students have bounds on their constraint violation. This prop-

erty can be important when training is done in a real environment

(rather than a simulator). For instance, in the example of training

rescue workers, having a bound on the maximal time actually spent

in the water throughout training can be important.

To demonstrate how the student’s bounds on constraint violation

can be utilized to bound the cumulative constraint violation during

training with relaxed constraints, we analyze CPO’s worst-case

constraint violation (WCCV) with respect to a static curriculum

𝐷 . Let 𝐷 (𝑏, 𝑖) denote the cost limit 𝑑𝑏𝑖 assigned to the 𝑖-th cost

function at episode 𝑏. CPO updates the policy at each iteration

according to the following objective:

𝜋𝑏+1 = argmax

𝜋
E
𝑎∼𝜋
[𝐴𝜋𝑏 ]

s.t. 𝐽𝐶𝑖
(𝜋𝑏 ) +

1

1 − 𝛾 E𝑎∼𝜋 [𝐴
𝜋𝑏
𝐶𝑖
(𝑠, 𝑎)] ≤ 𝑑𝑑𝑖 , ∀𝑖

�̄�𝐾𝐿 (𝜋 | |𝜋𝑏 ) ≤ 𝛿. (2)

where �̄�𝐾𝐿 (𝜋 | |𝜋𝑏 ) = E𝑠∼𝜋𝑏 𝐷𝐾𝐿 (𝜋 | |𝜋𝑏 ), 𝐷𝐾𝐿 is the KL-divergence
of the two policies, 𝛿 > 0 is the step size, and 𝐴𝜋𝑏 (𝑠, 𝑎), 𝐴𝜋𝑏

𝐶𝑖
(𝑠, 𝑎)

are the advantage functions of the reward and costs, respectively.

Achiam et al. [1] analyzed the above policy-update rule and proved

the following bound on the worst-case constraint violation of CPO.

lemma 1 (CPO WCCV). Suppose 𝜋𝑏 , 𝜋𝑏+1 are related by (2), and
that Π\ in (2) is any set of policies with 𝜋𝑏 ∈ Π\ . An upper bound on
the 𝐶𝑖 -return of 𝜋𝑏+1 is

𝐽𝐶𝑖
(𝜋𝑏+1) ≤ 𝑑𝑖 +

√
2𝛿𝛾𝜖

𝜋𝑏+1
𝐶𝑖

(1 − 𝛾)2
,

where 𝜖𝜋𝑏+1
𝐶𝑖

= max

𝑠
|E𝑎∼𝜋𝑏+1 [𝐴

𝜋𝑏
𝐶𝑖
(𝑠, 𝑎)] |.

Denote by SUM-𝐽𝐶𝑖
=

∑𝐵
𝑏=1

𝐽𝐶𝑖
(𝑏) the cumulative constraint

violations during training in dimension 𝑖 . SUM-𝐽𝐶𝑖
can be bounded

directly by using Lemma 1:

SUM-𝐽𝐶𝑖
=

𝐵∑︁
𝑏=1

©«𝑑𝑖 +
√

2𝛿𝛾𝜖
𝜋𝑏+1
𝐶𝑖

(1 − 𝛾)2
ª®¬ (3)

The policy update procedure of CPO when using the curriculum

𝐷 can be defined by replacing 𝑑𝑖 with 𝐷 (𝑏, 𝑖):
𝜋𝑏+1 = argmax

𝜋 ∈Π\

E
𝑎∼𝜋
[𝐴𝜋𝑏 ]

s.t. 𝐽𝐶𝑖
(𝜋𝑏 ) +

1

1 − 𝛾 E𝑎∼𝜋 [𝐴
𝜋𝑏
𝐶
(𝑠, 𝑎)] ≤ 𝐷 (𝑏, 𝑖), ∀𝑖

�̄�𝐾𝐿 (𝜋 | |𝜋𝑏 ) ≤ 𝛿. (4)

By considering this adapted update rule, SUM-𝐽𝐶𝑖
can be bounded

when using a static curriculum 𝐷 .

proposition 1 (CPO Cumulative WCCV with Curriculum).

Suppose 𝜋𝑏 , 𝜋𝑏+1 are related by (4), that Π\ in (4) is any set of policies
with 𝜋𝑏 ∈ Π\ , and that 𝐷 is a linear curriculum used for training 𝜋 .
An upper bound on SUM-𝐽𝐶𝑖

is

SUM-𝐽𝐶𝑖
≤

𝐵(𝑑𝑑𝑖 + 𝑑𝑡𝑖 )
2

+
𝐵∑︁
𝑏=1

√
2𝛿𝛾𝜖

𝜋𝑏+1
𝐶𝑖

(1 − 𝛾)2

Proof. By replacing 𝑑𝑖 with the cost limit obtained by the cur-

riculum in Prop. 1, we get:

𝐽𝐶𝑖
(𝜋𝑏+1) ≤ 𝐷 (𝑏, 𝑖) +

√
2𝛿𝛾𝜖

𝜋𝑏+1
𝐶𝑖

(1 − 𝛾)2

Consequently, SUM-𝐽𝐶𝑖
can be bounded with respect to any cur-

riculum 𝐷 as:

SUM-𝐽𝐶𝑖
≤

𝐵∑︁
𝑏=1

©«𝐷 (𝑏, 𝑖) +
√

2𝛿𝛾𝜖
𝜋𝑏+1
𝐶𝑖

(1 − 𝛾)2
ª®¬
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Algorithm 2 Dynamic Curricula Teacher

1: Input: 𝑑𝑡 , 𝑑𝑑 , 𝐵, 𝜋 ,𝑀 = (S,A,𝑇 ,𝛾, 𝑅,𝐶, 𝑑),
𝑊 , 𝜖𝑟 , 𝜖𝑐 , , 𝜖𝜋 .

2: 𝑑 ← 𝑑𝑡 , last_change← 0

3: for episode 𝑏 from 1 to 𝐵 do
4: if 𝑏 ≥ 2𝑊 and last_change ≥𝑊 then
5: if | 𝑟 (𝑏−𝑊 :𝑏)

𝑟 (𝑏−2𝑊 :𝑏−𝑊 )
− 1| ≤ 𝜖𝑟 and ∀𝑖,

|
𝐶𝑖 (𝑏−𝑊 :𝑏)

𝐶𝑖 (𝑏−2𝑊 :𝑏−𝑊 )
− 1| ≤ 𝜖𝑐 then // 𝜋 has converged

6: if ∀𝑖,𝐶𝑖 (𝑏−𝑊 :𝑏) ≤ 𝑑𝑖 then // Switch cost limit

7: ∀𝑖, 𝑑𝑖 ← max(𝑑𝑑𝑖 ,𝐶𝑖 (𝑏−𝑊 :𝑏) −
𝐶𝑖 (𝑏−𝑊 :𝑏) −𝑑𝑑𝑖

𝐵−𝑏 )
8: else // Stuck at a higher cost

9: Increase exploration by adding 𝜖𝜋 noise to 𝜋

10: end if
11: last_change← 0

12: end if
13: end if
14: Execute 𝜋 on𝑀

15: last_change← last_change + 1

16: end for

In a linear curriculum,

∑𝐵
𝑏=1

𝐷 (𝑏, 𝑖) = 𝐵 (𝑑𝑑𝑖 +𝑑𝑡𝑖 )
2

, thus

SUM-𝐽𝐶𝑖
≤

𝐵(𝑑𝑑𝑖 + 𝑑𝑡𝑖 )
2

+
𝐵∑︁
𝑏=1

√
2𝛿𝛾𝜖

𝜋𝑏+1
𝐶𝑖

(1 − 𝛾)2

□

With these bounds, it becomes possible to compute appropriate

training cost limits 𝑑𝑡 given a budget for overall constraint viola-

tions during training. This ensures that the violations remain within

the specified boundwhen using static curricula.While proposition 1

is defined for linear curriculum and cumulative WCCV, similar

bounds can be defined for the other static curriculum types and

maximal WCCV.

5.3 Dynamic Curricula
Using static curricula offers certain advantages, such as improved

exploration and the ability to bound worst-case cost violations dur-

ing training. However, this approach is not without its limitations,

manifesting in three critical aspects.

First (Limitation 1), it neglects the consideration of the student’s

return, potentially resulting in constant changes to the cost limits

without stable policy learning.

Second (Limitation 2), there is a persistent risk of converging

to a policy that violates 𝑑𝑑 . Take, for instance, the RiverGrid prob-

lem illustrated in Figure 1b, where agents can navigate at most

one river tile. In this scenario, the policy of navigating around

the water allows the agent to reach the goal without breaching

the constraint. Nonetheless, some agents that use a cost-limit cur-

riculum, particularly those relying on trust-region methods, may

fail to discover this policy even as the cost limits converge to 𝑑𝑑 .

This limitation became evident in the application of CLiC𝑋 -CPO

and CLiC𝑋 -PPO-L with three static curricula (𝑋 ∈ 𝐿,𝐶, 𝐸) on the

specified problem instance. In all cases, the models converged to

Figure 2: Safety Gym benchmark environments with safety
level 2 and a car robot.

a policy that violates the deployment constraint. In contrast, CPO

and PPO-L, directly trained on the deployment model 𝑀𝑑 (without

curriculum), successfully identified the optimal constraint-obeying

policy.

Third (Limitation 3), the use of predetermined cost limits in the

curriculum may not accurately reflect the student’s actual cost

experiences. This inaccuracy can result in wasted iterations and a

lack of progress toward satisfying 𝑑𝑑 .

To mitigate these weaknesses of static CLiC, we introduce a

novel teacher capable of generating a dynamic curriculum (CLiC𝐷 ,

Algorithm 2) based on the recent history of the student’s experience.

Initially, the teacher assigns the student the task corresponding to

the trainingmodel𝑀𝑡 and observes its experience costs and rewards

across two consecutive time windows, each of𝑊 episodes (where

𝑊 is a hyperparameter). Then, at every episode, the teacher assigns

the student a new model (corresponding to a set of thresholds 𝑑)

based on its performance in the previous 2𝑊 episodes. The teacher

first determines whether the student has converged to a policy

with respect to the current task by evaluating the ratio between

the average reward (and cost) in the last time window and the

previous time window (line 5). If these ratios significantly deviate

from 1, with respect to two thresholds 𝜖𝑟 and 𝜖𝑐 , it indicates that

the student has not converged to a policy for the current task and

will continue facing the same task in the next episode. Therefore,

the teacher only assigns a new task to the student once a stable

policy is reached, effectively addressing limitation 1.

Once the student has converged to a policy, the teacher checks

if the policy adheres to the current task’s constraints. If the learned

policy does not satisfy the current costs, the teacher introduces

noise to the student’s policy to encourage exploration and escape

possible local optima (lines 8-9), thereby mitigating limitation 2.

Finally, if the student has converged to a policy that adheres to the

constraints, the teacher introduces the student to a new task. In this

new task, the cost limits are gradually reduced in each dimension

toward 𝑑𝑑 , taking into account the average experienced cost in the

last window and the remaining training budget (lines 6-7).

In the context of the problem instances depicted in Figure 1b,

both CLiC𝐷 -CPO and CLiC𝐷 -PPO-L outperform their static CLiC

counterparts by successfully learning the optimal policy. This no-

table improvement underscores the dynamic curriculum’s potential

to effectively mitigate the limitations of static curricula, all the

while encouraging additional exploration.
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Figure 3: Evaluation of the Static and Dynamic Curricula applied to PPO-L on the Safe-RL benchmark.

6 EMPIRICAL EVALUATION
Experimental Setting. We conducted experiments to assess the

impact of different CLiC methods on the learned policies in RECRL

instances using the Safety Gym benchmark [32]. The benchmark

involves a robot operating in environments with unsafe elements,

and the goal is to achieve specific objectives while avoiding unsafe

outcomes. We focused on the car robot, a wheeled robot with dif-

ferential drive control, and considered three types of environments

and objectives: pushing a yellow box into a green area (Push), mov-

ing the robot to the green area (Goal), and pressing a highlighted

button (Button). Unsafe outcomes include entering dangerous ar-

eas, touching dangerous objects (movable or immovable, stationary

or moving), and pressing the wrong button (Button environment).

At each step, a binary cost function indicates whether any unsafe

outcome occurred. We evaluated the scenarios with level 2 safety,

where environments are densely populated with unsafe elements

and safety constraints can hinder exploration.

To test our hypothesis that combining CRL algorithms with a

cost-limit curriculum enhances policy learning, we integrated CLiC

methods with CPO and PPO-L. We compared the performance of

policies learned using the curriculum to those trained solely on

deployment constraints. As explained previously, we use CPO and

PPO-L as representative CRL algorithms. In principle, CLiC can be

combined with any CRL algorithm.

Each experiment involved the agent interacting with the environ-

ment for 1𝑒7 steps. The first 95% of the steps constituted the training

phase, where the agent was trained with relaxed constraints. The

last 5% of the steps (500k) represented the deployment phase, where

the agent had to adhere to the full set of constraints.

To obtain statistically significant results, each combination of

CLiC method, environment, and CRL algorithm was executed five

times with different seeds. The training was parallelized on five

servers, each equipped with four A40 GPUs, Intel(R) Xeon(R) Gold

6342 CPU, 500 GB of RAM, and 3.6 TB of disk space. The implemen-

tations of all environments and CRL algorithms were directly taken

from the publicly available Safety Gym repository [32], along with

the corresponding hyperparameters and environment configura-

tions.

For CLiC𝐷 , the hyperparameters determining when the policy

has converged (𝜖𝑟 and 𝜖𝑐 ) were set to 0.1 after brief tuning. The

performance differences observed during tuning had a maximal dif-

ference of 11%. Therefore, the reported trends are relatively robust

to the chosen parameter values.

Results. The results for PPO-Lagrangian are presented in Figure 3,
while those for CPO are available in Figure 4. Each row in the
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Figure 4: Evaluation of the Static and Dynamic Curricula applied to CPO on the Safe-RL benchmark.

figures corresponds to a different task (Button, Goal, Push), and the

columns display the returns (first column) and costs (third column)

during training and deployment. The second and fourth columns

provide a magnification of the deployment phase (500k steps). The

solid lines represent the mean values of returns or costs, the dashed

horizontal line (cyan) indicates the deployment cost limit (𝑑𝑑 ), and

the dashed vertical line (black) marks the transition between the

training phase and the deployment phase. The shaded areas in the

plots indicate the standard error.

The results demonstrate that the CLiC methods effectively im-

prove student performance, yielding policies with better returns

while incurring similar costs. In fact, all CLiC approaches consis-

tently outperformed the students by the end of the training phase

across all tasks. Among the static CLiC methods, CLiC𝐸 showed the

smallest return improvement, ranging from 10% to 300% for PPO-L

and 3% to 30% for CPO. It also induced the least cost overhead

during training. CLiC𝐿 achieved the best performance among the

static curricula in two out of the three tasks and had the second-

smallest overhead, resulting in a return improvement ranging from

20% to 600% for PPO-L (CLiC𝐿-PPO-L) and 5% to 60% for CPO

(CLiC𝐿-CPO). However, CLiC𝐶 had the highest overhead among

the three static curricula and showed superiority in just one task.

Nonetheless, it improved PPO-L by 20% to 400% and CPO by 10%

to 40%.

Notably, CLiC𝐷 outperformed all static curricula in terms of

return across all tasks. It learned policies that were significantly

better than the base algorithms, improving by 40% to 900% over

PPO-L and 15% to 80% over CPO. Additionally, the CLiC𝐷 incurred

a cost overhead during training comparable to the Linear CLiC.

Finally, it is important to note that CLiC’s ability to learn a policy

that satisfies the final constraints depends on the student. CPO is

not guaranteed to adhere to the constraints and often does not

in practice. Consequently, the CLiC variants of CPO also learned

policies that violated the constraint similarly. In contrast, PPO-

L learned policies that satisfied the constraints, as did its CLiC

variants.

Generated Curricula. The curricula generated by each of the

approaches for the different tasks can be found in Figure 5. Natu-

rally, the static CLiC methods result in the same curriculum for all

tasks and algorithms, as they are solely dependent on the training

and deployment cost limits (𝑑𝑡 and 𝑑𝑑 , respectively). In contrast,

the dynamic CLiC method results in different curricula for each

underlying algorithm and task, as well as for each individual run.

7 CONCLUSION AND FUTUREWORK
In this work, we introduced RECRL, a constrained reinforcement

learning (CRL) setting that is designed for agents that have the abil-

ity to train with more lenient constraints than during deployment.
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Figure 5: Cost-limit curricula generated by the different approaches.

In such settings, the distinctions between training constraints and

deployment constraints foster superior exploration compared to

standard CL, enabling the acquisition of high-return policies while

maintaining adherence to deployment constraints. In addition, we

presented CLiC, a curriculum-based approach, which enhances ex-

isting CRL algorithms by leveraging the RECRL framework. We

explored static and dynamic curricula, enhancing the performance

of CPO and PPO-L on Safery Gym benchmarks. All CLiC meth-

ods showcased improvements over their base algorithms, with

dynamic CLiC achieving significant performance gains. However,

CLiC’s effectiveness relies on the student’s ability to find constraint-

respecting policies. In addition, the proposed CLiC methods only

consider curricula in which the cost limits are in non-increasing or-

der, a limitation that could be addressed in future work. In particular,

incorporating meta-curriculum-learning models [30, 43] may effi-

ciently learn cost-limit curricula based on experience from similar

tasks. Moreover, enhancing results may be achieved by combining

CLiC-based methods with other curriculum learning mechanisms.

For instance, in the framework introduced by Turchetta et al. [40]

for safety-oriented learning, CLiC could serve as a meta-teacher

to determine the current cost limit (and noise), complementing

the methodology outlined in Turchetta et al.’s work to more effec-

tively acquire a safe policy within the given cost constraints. Finally,

combining CLiC with Sim2Real approaches could be beneficial for

transferring policies trained on simulators to physical robots.

ACKNOWLEDGMENTS
This collaboration involves Ben-Gurion University (BGU) and the

Learning Agents Research Group (LARG) at UT Austin. The work

at BGU was supported by the Israel Science Foundation (ISF) grant

#909/23 and by Israel’s Ministry of Innovation, Science and Tech-

nology (MOST) grant #1001706842, awarded to Shahaf Shperberg.

LARG research is supported in part by NSF (FAIN-2019844, NRT-

2125858), ONR (N00014-18-2243), ARO (E2061621), Bosch, Lockheed

Martin, and UTAustin’s Good Systems grand challenge. Peter Stone

serves as the Executive Director of Sony AI America and receives

financial compensation for this work. The terms of this arrange-

ment have been reviewed and approved by the University of Texas

at Austin in accordance with its policy on objectivity in research.

REFERENCES
[1] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. 2017. Constrained

Policy Optimization. In ICML (Proceedings of Machine Learning Research, Vol. 70).
PMLR, 22–31.

[2] Eitan Altman. 1999. Constrained Markov decision processes. Vol. 7. CRC Press.

[3] Yarden As, Ilnura Usmanova, Sebastian Curi, and Andreas Krause. 2022. Con-

strained policy optimization via bayesian world models. arXiv preprint
arXiv:2201.09802 (2022).

[4] Yarden As, Ilnura Usmanova, Sebastian Curi, and Andreas Krause. 2022. Con-

strained Policy Optimization via Bayesian World Models. In ICLR. OpenRe-
view.net.

[5] Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda. 1996.

Purposive behavior acquisition for a real robot by vision-based reinforcement

learning. Machine learning 23, 2 (1996), 279–303.

[6] Adrien Baranes and Pierre-Yves Oudeyer. 2013. Active learning of inverse models

with intrinsically motivated goal exploration in robots. Robotics Auton. Syst. 61,
1 (2013), 49–73.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1734



[7] Dominik Baumann, Alonso Marco, Matteo Turchetta, and Sebastian Trimpe. 2021.

GoSafe: Globally Optimal Safe Robot Learning. In ICRA. IEEE, 4452–4458.
[8] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.

Curriculum learning. In Proceedings of the 26th annual international conference
on machine learning. 41–48.

[9] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. 2018. Minimalistic

Gridworld Environment for OpenAI Gym. https://github.com/maximecb/gym-

minigrid.

[10] Yinlam Chow, Ofir Nachum, Edgar A. Duéñez-Guzmán, and Mohammad

Ghavamzadeh. 2018. A Lyapunov-based Approach to Safe Reinforcement Learn-

ing. In NeurIPS. 8103–8112.
[11] Houston Claure, Yifang Chen, Jignesh Modi, Malte F. Jung, and Stefanos Niko-

laidis. 2019. Reinforcement Learning with Fairness Constraints for Resource

Distribution in Human-Robot Teams. ArXiv abs/1907.00313 (2019).

[12] Davide Corsi, Raz Yerushalmi, Guy Amir, Alessandro Farinelli, David Harel, and

Guy Katz. 2022. Constrained Reinforcement Learning for Robotics via Scenario-

Based Programming. CoRR abs/2206.09603 (2022).

[13] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. 2018. Automatic

Goal Generation for Reinforcement Learning Agents. In ICML.
[14] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter

Abbeel. 2017. Reverse curriculum generation for reinforcement learning. In CoRL.
PMLR, 482–495.

[15] Sébastien Forestier, Yoan Mollard, and Pierre-Yves Oudeyer. 2017. Intrinsically

Motivated Goal Exploration Processes with Automatic Curriculum Learning.

CoRR abs/1708.02190 (2017).

[16] Javier García and Fernando Fernández. 2012. Safe Exploration of State and Action

Spaces in Reinforcement Learning. J. Artif. Intell. Res. 45 (2012), 515–564.
[17] Javier García and Fernando Fernández. 2015. A comprehensive survey on safe

reinforcement learning. J. Mach. Learn. Res. 16 (2015), 1437–1480.
[18] Yoshinobu Kadota, Masami Kurano, and Masami Yasuda. 2006. Discounted

Markov decision processes with utility constraints. Comput. Math. Appl. 51, 2
(2006), 279–284.
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