
LgTS: Dynamic Task Sampling using LLM-generated Sub-Goals
for Reinforcement Learning Agents

Yash Shukla
Tufts University
Medford, USA

yash.shukla@tufts.edu

Wenchang Gao
Tufts University
Medford, USA

wenchang.gao@tufts.edu

Vasanth Sarathy
Tufts University
Medford, USA

vasanth.sarathy@tufts.edu

Alvaro Velasquez
University of Colorado Boulder

Boulder, USA
alvaro.velasquez@colorado.edu

Robert Wright
Georgia Tech Research Institute

Atlanta, USA
robert.wright@gtri.gatech.edu

Jivko Sinapov
Tufts University
Medford, USA

jivko.sinapov@tufts.edu

ABSTRACT
Recent advancements in reasoning abilities of Large Language Mod-
els (LLM) has promoted their usage in problems that require high-
level planning for artificial agents. However, current techniques
that utilize LLMs for such planning tasks make certain key assump-
tions such as, access to datasets that permit finetuning, meticu-
lously engineered prompts that only provide relevant and essential
information to the LLM, and most importantly, a deterministic ap-
proach to allow execution of the LLM responses either in the form
of existing policies or plan operators. In this work, we propose
LgTS (LLM-guided Teacher-Student learning), a novel approach
that explores the planning abilities of LLMs to provide a graphical
representation of the sub-goals to a reinforcement learning (RL)
agent that does not have access to the transition dynamics of the en-
vironment. The RL agent uses Teacher-Student learning algorithm
to learn a set of successful policies for reaching the goal state from
the start state while simultaneously minimizing the number of envi-
ronmental interactions. Unlike previous methods that utilize LLMs,
our approach does not assume access to a fine-tuned LLM, nor does
it require pre-trained policies that achieve the sub-goals proposed
by the LLM. Through experiments on a gridworld based DoorKey
domain and a search-and-rescue inspired domain, we show that a
LLM-proposed graphical structure for sub-goals combined with a
Teacher-Student RL algorithm achieves sample-efficient policies.
More details at https://llm-guided-task-sampling.github.io/

KEYWORDS
Large LanguageModels; Reinforcement Learning; CurriculumLearn-
ing

ACM Reference Format:
Yash Shukla, Wenchang Gao, Vasanth Sarathy, Alvaro Velasquez, Robert
Wright, and Jivko Sinapov. 2024. LgTS: Dynamic Task Sampling using LLM-
generated Sub-Goals for Reinforcement Learning Agents. In Proc. of the
23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

1 INTRODUCTION
Large Language Models (LLMs) have been trained on a large cor-
pus of natural language data that enables them to reason, en-
gage in dialogue and answer questions based on a user speci-
fied prompt [35, 39]. Recently, several techniques have utilized
such LLMs to command artificial agents to perform a set of house-
hold tasks using natural language [2, 30, 38]. To make such LLM-
guided task solving techniques work, current approaches utilize
several engineered tools (e.g. prompt engineering [36], LLM fine-
tuning [24]) that aid the LLM-guided agent to perform anticipated
actions [13, 30]. First, language guided agents require a large num-
ber of labeled examples that associate a natural language prompt to
a set of trajectories or to a successful policy that satisfies the natural
language prompt. This costly procedure requires the human engi-
neer to collect successful trajectories for each natural language label.
To prevent the LLM from proposing unreasonable responses/plans,
these techniques require fine-tuning the LLM on a labeled dataset
of prompt-response pairs [31]. Moreover, current approaches query
the LLM to produce a single static plan (e.g., [2, 12]) from the lan-
guage instruction and assume that the agent is capable of executing
the plan. This practice does not consider the environmental con-
figuration, and the same language instruction can produce plans
that are sub-optimal for different configurations. LLM-guided ap-
proaches used for task planning assume access to the Planning
Domain Definition Language (PDDL) [19] that informs the LLM
about which high-level actions (operators) are available, what is
the cost of following a particular path etc. In absence of high level
operators, iteratively querying the LLM once a RL policy fails to
satisfy a sub-goal is excessively expensive.

In our work, we ease the above mentioned limitations by query-
ing an off-the-shelf LLM to produce multiple feasible paths that
have the potential to lead to the goal state. Introducing redundancy
by querying multiple paths helps the agent explore several sub-
goals in the environment and use that knowledge to figure out
which sub-goal sequence will satisfy the goal objective. These mul-
tiple paths can be represented using a directed acyclic graph where
the nodes of the graph are the sub-goal states proposed by the LLM
and an edge of the graph is considered as a sub-task. A trajectory
induced by a successful policy for the sub-task transitions the agent
form one high-level state to another. The RL agent aims to learn
a set of policies for one of the paths proposed by the LLM. Since

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1736

https://llm-guided-task-sampling.github.io/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

(a) Gridworld domain

Provide 'four' distinct sequences of states from Start State to Goal State.

A state is defined as a conjunction of ground predicates using the list of predicates below.

Start State: At(OutsideRoom) Goal State: At(Green_Goal)

Objects:Key1, Key2, Door, Lava, Green_Goal, OutsideRoom

Predicates:At(?), Holding(?), Unlocked(?)

Each sequence of states you produce should be a 1-D python list containing the states.

Each sequence in your response should be like: ['At(OutsideRoom)', ..., 'At(Green_Goal)'].

LLM

[At(OutsideRoom), Holding(Key1), Unlocked(Door), At(Green_Goal)]

[At(OutsideRoom), Holding(Key2), Unlocked(Door), At(Green_Goal)]

[At(OutsideRoom), Unlocked(Door), At(Green_Goal)]

[At(OutsideRoom), Holding(Key2), At(Green_Goal)]

Prompt to the LLM

Holding(Key1)

Holding(Key2)

Unlocked(Door)

At(Green_Goal)

At(OutsideRoom)

(b) Prompt to the LLM (left) and the LLM output and corresponding DAG (right)

Figure 1: (a) Gridworld domain and descriptors. The agent (red triangle) needs to collect one of the keys and open the door to
reach the goal; (b) The prompt to the LLM that contains information about the number of paths 𝑛 expected from the LLM and
the symbolic information such as the entities, predicates and the high-level initial and goal states of the of the environment (no
assumptions if the truth values of certain predicates are unknown). The prompt from the LLM is a set of paths in the form of
ordered lists. The paths are converted in the form of a DAG. The path chosen by LgTS is highlighted in red in the DAG in Fig. 1b

0 1 2 3 4
Timesteps 1e6

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Su
cc

es
s R

at
e

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Figure 2: Learning curves for individual sub-tasks (in differ-
ent colors) generated using LgTS

the RL agent does not have information about the transition dy-
namics of the environment, the paths proposed by the LLM do not
convey information about which path is more feasible and the RL
agent needs to explore the environment to find out a feasible path.
The paths proposed by the LLM can be sub-optimal and hence it
is essential to minimize the number of times the agent interacts
with the environment. Minimizing the overall number of environ-
mental interactions while learning a set of successful policies is
non-trivial as this problem is equivalent to finding the shortest path
in a graph where the edge weights are unknown a priori [33]. In our
case, the edge weight denotes the total number of environmental
interactions required by the agent to learn a successful policy for
an edge in the graph, in which the agent must induce a visit to a
state where certain properties hold true. Additionally, we can only
sample interactions for a sub-task if we have a policy that can reach
the edge’s source node from the start node of the graph.

The high-level overview of our approach is given in Fig. 1. As
an example, let us look at the environment in Fig. 1a. The goal for
the agent is to collect any of the two Keys, followed by opening
the Door and then reaching the Goal while avoiding the Lava at

all times. Our prompt to the LLM (Fig. 1b) contains information
about the entities that are present in the environment along with
the predicates the agent can identify. We assume that the agent has
access to sensors that can detect entities in the environment and
can also determine whether a certain predicate is true or not. The
LLM is not provided the type hierarchy i.e., it does not have the
information that associates predicates to its applicable entities. We
assume access to a labeling function that maps an environmental
state to a high-level symbolic state that informs the agent which
predicates are true. The LLM outputs a number of ordered sub-goal
sequences (lists) that can potentially be the paths of satisfying the
high level goal. Each element in the list (a high-level state) is a
conjunction of predicates and entities and satisfying this high-level
state is a sub-goal for the RL agent (Fig. 1b). These set of sequences
can effectively be converted to a directed acyclic graph where the
start node of the graph is the initial high-level state of the agent
and the goal node is the final high-level state (Fig. 1b). Each path in
the graph is a sequence of states proposed by the LLM.

The RL agent interacts with the environment to find a set of
successful policies that guide the agent from the high-level start
state to the high-level goal state. The LLM is not provided with
information about the environment configuration, such as: the
optimal number of interactions required to reach 𝐷𝑜𝑜𝑟 from 𝐾𝑒𝑦1
are much higher compared to the interactions required to reach
𝐷𝑜𝑜𝑟 from 𝐾𝑒𝑦2, making the 𝐾𝑒𝑦1 to 𝐷𝑜𝑜𝑟 trajectory sub-optimal.
Hence, while interacting with the environment, it is crucial to
prevent any additional interactions the agent spends in learning
policies for sub-tasks (individual edges in the DAG) that ultimately
do not contribute to the final path the agent takes. That is, the agent
should realize that the individual transitions 𝑞1 → 𝑞3, 𝑞0 → 𝑞3 and
𝑞2 → 𝑞4 will take longer to train, and hence the amount of time
spent in learning them should be minimized.

To tackle this problem, we employ an adaptive Teacher-Student
learning strategy, where, (1) the Teacher agent uses its high-level
policy to actively sample a sub-task for the Student agent to learn.
The high-level policy considers the graphical representation and
the Student agent’s expected performance on all the sub-tasks, and

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1737

aims to satisfy the high-level objective in the fewest number of
interactions, and (2) the Student agent interacts with the environ-
ment for a few steps (much fewer than the interactions required
to learn a successful policy for the sub-task) while updating its
low-level RL policy for the sampled sub-task. The Teacher observes
the Student’s performance on these interactions and updates its
high-level policy. Steps (1) and (2) continue alternately until the
Student agent learns a set of successful policies that guide the agent
to reach an environmental goal state. The trajectory by a successful
RL policy for a sub-task (an edge) switches the agent’s high-level
state from the edge’s source node to the edge’s destination node.

Our proposed approach, LgTS begins with the aim of learning
three distinct policies 𝜋01 for the task of visiting 𝑞1 from 𝑞0, 𝜋02 for
the task of visiting 𝑞2 from 𝑞0, 𝜋03 for the task of visiting 𝑞3 from 𝑞0,
avoiding𝐿𝑎𝑣𝑎 at all times. The Teacher initially samples evenly from
these three sub-tasks but later biases its sampling toward the sub-
task on which the Student agent shows higher learning potential.
Once the agent learns a successful policy for one of the sub-tasks
(let’s say the learned policy 𝜋∗01 satisfies the transition 𝑞0 → 𝑞1),
the Teacher does not sample that task anymore, identifies the next
task(s) in the graphical representation, and appends them to the set
of tasks it is currently sampling (in this case, the only next task is:
𝑞1 → 𝑞3). Since the agent only has access to the state distribution
over 𝑞0, it follows the trajectory given by 𝜋∗01 to reach a state that
lies in the set of states where 𝑞1 holds true before commencing its
learning for the policy (𝜋13) for 𝑞1 → 𝑞3. If the agent learns the
policies 𝜋∗02 for satisfying the sub-task defined by 𝑞0 → 𝑞2 and 𝜋∗23
for 𝑞2 → 𝑞3 before learning 𝜋13 and 𝜋03, it effectively has a set
of policies to reach the node 𝑞3. Thus, the Teacher will now only
sample the next task in the graphical representation 𝑞3 → 𝑞4, as
learning policies for paths that reach 𝑞3 are effectively redundant.
This process continues iteratively until the agent learns a set of
policies that reach the goal node (𝑞4) from the start node (𝑞0). The
learning curves in Fig. 2 empirically validate the running example.
The agent learns policies for the path 𝑞0 → 𝑞2 → 𝑞3 → 𝑞4 that
produce trajectories to reach the goal node 𝑞4 from the initial node
𝑞0, without excessively wasting interactions on the unpromising
sub-tasks 𝑞1 → 𝑞3, 𝑞0 → 𝑞3 and 𝑞2 → 𝑞4. The dashed lines in
Fig. 2 signify the interactions at which a task policy converged.

In this work, we propose LgTS, a framework for generating a
graphical representation of sub-tasks through an LLM response and
then using this graph to learn policies to satisfy the goal objective.
Through experiments, we demonstrate that LgTS is able to construct
sub-tasks using the LLM output, realize which of these sub-tasks
are unpromising, and only learn policies that will satisfy the goal
while minimizing the number of environmental interactions.

2 RELATEDWORK
Large Language Models (LLMs) [21] are trained on a huge corpora
of natural language prompts that enables them to answer questions,
reason and engage in dialogue. Recently, several approaches have
used LLMs for robot planning tasks where the role of LLM is to
decompose the natural language instruction into language that can
directly be fed to an artificial agent or a robot for execution [2, 5, 11].
Applications of LLMs in embodied agents include error correction
during long horizon planning [25], intrinsically shaping the reward

to promote exploration [17], object rearrangement in robotics [32]
and for augmenting a symbolic planner by providing a workable
symbolic plan [19]. These techniques rely on several strongly en-
gineered tools such as chain-of-thought prompting, fine-tuning of
datasets and assumption of a verifier (such as a symbolic planner)
that can determine if an LLM-generated plan can succeed [31]. Ab-
sence of these techniques significantly reduces the accuracy of the
LLM-generated plans. Unavailability of high-level operators that
can solve the plan, it is very difficult to verify the correctness of the
plan. Instead of completely relying on a single plan generated by
the LLM, our approach queries multiple plans from an off-the-shelf
LLM (no finetuning) that have the potential to satisfy the high-
level goal objective. We then construct a graphical representation
from the LLM output and use an adaptive Teacher-Student learning
algorithm to learn a set of policies that can satisfy the goal objective.

Another line of research has investigated representing the goal
using high-level specification languages, such as finite-trace Linear
Temporal Logic (LTL𝑓) [9, 27, 28] or Reward Machines (RM) [3,
8, 15, 34, 37] that allow defining the goal using a graphical repre-
sentation informing the agent which sub-goals must be achieved
prior to attempting the final goal. Automaton-based RL approaches
assume that the high-level goal is known before commencing the
task, and that the goal objective can be represented using a set of
formal language rules that build on sub-goals. Automaton-guided
RL has been used for robotic domains [6, 18] and for multi-agent
settings [14]. RM approaches still require human guidance in defin-
ing the reward structure of the machine, which is dependent on
knowing how much reward should be assigned for each sub-goal.
Unlike the approaches mentioned above, our approach does not
require a predetermined reward structure, nor does it assume that
the graphical structure for the sub-goals is available in advance. Our
method queries the LLM to provide us multiple goal reaching paths,
which we later use to construct a graphical structure of sub-goals.

Teacher-Student algorithms [20] have been studied for Curricu-
lum Learning [22, 29] and in the Intrinsic Motivation literature [23].
The idea is to have the Teacher propose tasks to Student based on
the Student’s promise. This strategy helps Student learn simpler
tasks earlier, transferring its knowledge to complex tasks. These
approaches optimize a curriculum to learn a single policy and do
not scale well to temporally-extended tasks. Instead, we propose an
LLM-guided Teacher-Student learning strategy that learns a set of
policies for promising transitions in the sub-goal graph, promoting
sample-efficient training compared to the baselines.

3 PRELIMINARIES
Symbolic Planning:We assume access to symbolic information
defined as Σ = ⟨E, F ,Q, 𝑞0, 𝑞𝑔⟩, where E =

{
𝜀1, . . . 𝜀 | E |

}
is a

finite set of known entities within the environment, and F ={
𝑓1 (⊙), . . . 𝑓 | F | (⊙)

}
, where ⊙ ⊂ E, is a finite set of known pred-

icates with their negations. Each predicate 𝑓𝑖 (⊙), along with its
negation ¬𝑓𝑖 (⊙), is contained in F . Q =

{
𝑞1 . . . 𝑞 | Q |

}
is the set

of symbolic states in the environment. A symbolic state 𝑞 ∈ Q is
defined as a complete assignment over all predicate-entity pairs, i.e.
𝑞 =

⋃ | E |
𝑖=1

⋃ | F |
𝑗=1 𝑓𝑗 (𝑒𝑖). The starting state is given by 𝑞0 ⊂ Q, and,

𝑞𝑔 ⊂ Q is the goal state. We assume access to a single word natural
language description of the predicates and entities.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1738

LLM prompt: Autoregressive LLMs are trained with a maximum
likelihood loss to model the probability of a sequence of tokens 𝑦
conditioned on an input sequence 𝑥 , s.t. 𝜙 = argmax𝜙 𝑃 (𝑦 |𝑥, 𝜙),
where 𝜙 are the LLM parameters. We assume access to a prompt
function 𝑓𝑝 : (Σ, 𝑛) → 𝑥 that takes in the symbolic information Σ
along with the number of paths that the LLM should generate 𝑛
and produces a natural language prompt 𝑥 that serves as an input
to the LLM. The prompt to the LLM 𝑥 is designed in such a way
that the output from the LLM 𝑦 = LLM𝜙 (𝑥) can be construed into
a graph. The LLM output 𝑦 is converted to a set of ordered lists,
where each element of the list is a high-level state 𝑞 ∈ Q. The first
element of the list is the start state 𝑞0 and the final element of the
list is the goal state 𝑞𝑔 . If any of the lists in the output 𝑦 do not
satisfy the start state and the goal state conditions, i.e. if the first
element of the LLM-generated list is not 𝑞0 and the final element is
not 𝑞𝑔 , the LLM is reprompted to produce another ordered list as a
response where the first element is 𝑞0 and the final element is 𝑞𝑔 .

Additionally, we assume access to a function Graph : List(𝑦) →
U that takes in the ordered lists generated from the LLM output
𝑦 as its input and produces a directed acyclic graph U = (𝑉 , 𝐸)
where each vertex 𝑣 ∈ 𝑉 is a high-level state, i.e., 𝑉 ⊆ Q, and the
set of edges 𝐸 ⊆ 𝑉 ×𝑉 connects two high-level states, i.e. 𝑒𝑖 𝑗 is a
directed edge from 𝑣𝑖 to 𝑣 𝑗 (see Fig. 1b).
LabeledMDP:An episodic labeledMarkovDecision Process (MDP)
𝑀 is a tuple (S,A, 𝜏, 𝑅,S0,S𝑓 , 𝛾,𝑇 ,Q, 𝐿), whereS is the set ofMDP
(low-level) states, A is the set of actions, 𝜏 (𝑠′ |𝑠, 𝑎) is the transition
probability of reaching state 𝑠′ ∈ S from 𝑠 ∈ S using action 𝑎 ∈ A,
𝑅 : S ×𝐴 × S → R is the reward function, S0 are the initial states,
S𝑓 are the terminal states, 𝛾 ∈ [0, 1] is the discount factor, 𝑇 is the
maximum number of interactions in any episode, Q is the set of
high-level states, and 𝐿 : S → Q is a labeling function that maps
an MDP state 𝑠 ∈ S to a high-level state 𝑞 ∈ Q.

In every interaction, the agent observes the current state 𝑠 and
selects an action 𝑎 according to its policy function 𝜋 (𝑎 |𝑠, 𝜃) with
parameters 𝜃 . The MDP transitions to a new state 𝑠′ ∈ S with prob-
ability 𝜏 (𝑠′ | 𝑠, 𝑎). The agent’s goal is to learn an optimal policy 𝜋∗

that maximizes the discounted return𝐺0 =
∑𝑇
𝑡=0𝛾

𝑡𝑅(𝑠′𝑡 , 𝑎𝑡 , 𝑠𝑡) until
the end of the episode, which occurs after at-most 𝑇 interactions.

3.1 Problem Statement
Given the symbolic information Σ and access to large-language
model LLM𝜙 , the aim of this work is to:
• Convert the LLM output 𝑦 = LLM𝜙 (𝑓𝑝 (Σ, 𝑛)) into a directed
acyclic graph U = (𝑉 , 𝐸) such that each vertex 𝑣 ∈ 𝑉 is a
high-level state 𝑞 ∈ Q and 𝐸 ⊆ 𝑉 ×𝑉 .
• Construct a sub-taskMDP Task(𝑣𝑖 , 𝑣 𝑗) corresponding to each
transition of the graph. A sub-task defined by an edge 𝑒𝑖 𝑗
from node 𝑣𝑖 to 𝑣 𝑗 ∈ 𝑉 defines a reach-avoid objective for
the agent represented by the formula:

Task(𝑣𝑖 , 𝑣 𝑗) = Eventually(𝑣 𝑗)∧Always
©­«

∧
𝑟 ∈Succ(𝑣𝑖),𝑟≠𝑣𝑗

¬𝑣𝑟
ª®¬ (1)

where 𝑣 𝑗 is the symbolic state corresponding to the destina-
tion node of edge 𝑒𝑖 𝑗 and Succ(𝑣𝑖) is the set of states of suc-
cessors of node 𝑣𝑖 in the DAGU. The Task(𝑣𝑖 , 𝑣 𝑗) represents

an MDP𝑀′ where all initial states 𝑠′ ∈ S𝑀 ′0 are mapped to
the high-level state 𝐿(𝑠′) → 𝑣𝑖 and terminal states 𝑠′ ∈ S𝑀 ′

𝑓

of Task(𝑣𝑖 , 𝑣 𝑗) are mapped to the high-level state 𝐿(𝑠′) → 𝑣 𝑗 .
Task(𝑒𝑖 𝑗) and Task(𝑣𝑖 , 𝑣 𝑗) are used interchangeably.
• Learn a set of policies 𝜋∗

𝑖 𝑗
, 𝑖, 𝑗 = 0, . . . , 𝑛 − 1, s.t.:

(i) Following 𝜋∗01 results in a trajectory in the task MDP
Task(𝑒01) that induces a transition from 𝑞0 to some state
𝑞1 ∈ 𝑄 in the DAG, following 𝜋∗12 results in a path in MDP
Task(𝑒12) that induces a transition from𝑞1 to some state𝑞2 ∈
𝑄 in the DAG, and so on. (ii) The resulting path 𝑞0𝑞1 . . . 𝑞𝑔
in the DAG terminates at the goal state 𝑞𝑔 , with probability
greater than a given threshold, 𝜂 ∈ (0, 1). (iii) The total
number of environmental interactions spent in exploring the
environment and learning sub-task policies are minimized.

4 METHODOLOGY
Sub-task representation: First, given the symbolic information
Σ = ⟨E, F ,Q, 𝑞0, 𝑞𝑔⟩ and 𝑛, the number of ordered lists of sub-goal
paths we expect from the LLM, we generate a natural language
prompt 𝑥 = 𝑓𝑝 (Σ, 𝑛). An example of a prompt is shown in Fig. 1. The
prompt directs the LLM to produce outputs that is converted to a set
of 𝑛 ordered lists, where each element in the list is a high-level state,
the first element of the list is initial high-level state 𝑞0, and the final
element of the list is the goal high-level state 𝑞𝑔 . This prompt is fed
to a large language model (LLM) to produce a sequence of tokens
where each token is given by 𝑦 = LLM𝜙 (𝑓𝑝 (Σ, 𝑛)). For our work,
we used LLAMA2 [35], an open-source LLM that allows version
control and is easily accessible. While the output generated by the
LLM depends on its training protocol and on the dataset used for its
training, this work does not involve investigating and comparing
the output from different LLMs as that is tangential to our study.

The next step is to convert the natural language output from
the LLM 𝑦 into a directed acyclic graphU = (𝑉 , 𝐸) such that each
element 𝑣 ∈ 𝑉 is a high-level state 𝑞 ∈ Q and 𝐸 ⊆ 𝑉 × 𝑉 . If the
output 𝑦 from the LLM does not satisfy the high-level initial and
goal state conditions (see Sec. 3), the LLM is reprompted until the
output 𝑦 matches the correct syntax. We parse the output to get
𝑛 distinct paths of reaching the high-level goal state 𝑞𝑔 from the
initial high-level state 𝑞0. These 𝑛 distinct paths are in the form of
an adjacency list for a graph. While constructing the graph, we omit
self-loops and cycles, generating a directed acyclic graph (DAG)U.

Given the DAG U, we define a set of sub-tasks based on the
edges of the DAG. Intuitively, given the current MDP state for the
agent 𝑠 ∈ S and its corresponding DAG node 𝐿(𝑠) → 𝑞, a sub-task
defined by an edge from node 𝑞 to 𝑝 ∈ 𝑄 defines a reach-avoid
objective for the agent represented by the formula 1.

Each sub-task Task(𝑞, 𝑝) defines a problem to learn a policy
𝜋∗(𝑞,𝑝) such that, given any MDP state 𝑠0 that maps to the high-
level state 𝑞 (i.e., 𝐿(𝑠0) → 𝑞), following 𝜋∗(𝑞,𝑝) results in a path
𝑠0𝑠1 . . . 𝑠𝑛 in MDP that induces the symbolic path 𝑞𝑞 . . . 𝑞𝑝 . That is,
the high-level state of the agent remains at 𝑞 until it transitions to 𝑝 .

LgTS Initialization: The algorithm for LgTS is described in
Algo. 1. We begin by initializing the following quantities (lines 2-4):
(1) Set of: Active Tasks AT , Learned Tasks LT , Discarded Tasks

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1739

DT ; (2) A Dictionary 𝑃 that maps a sub-task Task(𝑒) of the DAG
U to a policy 𝜋𝑒 ; (3) A Dictionary 𝑄 that represents the Teacher
Q-Values by mapping the learning progress (success rate) of the
sub-task Task(𝑒) to a Q-value associated with that sub-task.

Firstly, we convertU into an Adjacency Matrix X (line 6), and
find the set of all the outgoing edges 𝐸𝑞0 ⊆ 𝐸 from the initial node
𝑞0 (line 7). Satisfying the edge’s formula 𝑒𝑞0,𝑞1 ∈ 𝐸𝑞0 represents
a reachability sub-task 𝑀′ where each goal state 𝑠 ∈ S𝑀 ′

𝑓
of 𝑀′

satisfies the condition 𝐿(𝑠) → 𝑞1. The agent receives a positive
reward for satisfying Task(𝑒𝑞0,𝑞1) and a small negative reward at
all other time steps. The state space, the action space and the tran-
sition dynamics of MDP𝑀′ are equivalent to MDP𝑀 . To complete
the sub-task, the agent must learn a policy 𝜋∗(𝑞0,𝑞1) that ensures
a visit from 𝑞0 to 𝑞1 with probability greater than a threshold (𝜂).
The policy must also avoid triggering unintended transitions in the
DAG, e.g., while picking up 𝐾𝑒𝑦1, the policy must not inadvertently
pick up 𝐾𝑒𝑦2 as evident from the task objective formula 1.

Teacher-Student learning: We set the Teacher Q-Values for
all the sub-tasks corresponding to edges in AT (i.e., ∀𝑒 ∈ 𝐸𝑞0)
to zero (line 8). We formalize the Teacher’s goal of choosing the
most promising task as a Partially Observable MDP [16], where the
Teacher agent observes the Student agent’s performance on a task
(e.g., success rate or average returns), and as an action, chooses a
task Task(𝑒) ∈ AT the Student agent should train on next. In this
POMDP setting, each Teacher action (a sub-task) has a Q-Value
associated with it. Intuitively, higher Q-Values correspond to tasks
on which the Student agent is more successful, and the Teacher
should sample such tasks at a higher frequency to reach the goal
node 𝑞𝑔 in fewest overall interactions.

(Step i) Given the Teacher Q-Values, we sample a sub-task Task(𝑒)
∈ AT using the 𝜖−greedy exploration strategy (line 10), and (Step
ii) The Student agent trains on task Task(𝑒) using the policy 𝑃 [𝑒]
for ‘𝜁 ’ interactions (line 11). In one Teacher timestep, the Student
trains for 𝜁 environmental interactions. Here, 𝜁 << total number
of environmental interactions required by the agent to learn a suc-
cessful policy for Task(𝑒), since the aim is to keep switching to a
task that shows highest promise. (Step iii) The Teacher observes
the Student agent’s average return 𝑔𝑡 ′ on these 𝜁 interactions, and
updates its Q-Value for Task(𝑒) (line 12):

𝑄 [𝑒] ← 𝛼 (𝑔𝑡 ′) + (1 − 𝛼)𝑄 [𝑒] (2)

where 𝛼 is the Teacher learning rate, 𝑔𝑡 ′ is the average Student
agent return on Task(𝑒) at the Teacher timestep 𝑡 ′. As the learning
advances, 𝑔𝑡 ′ increases, and hence we use a constant parameter 𝛼 to
tackle the non-stationary problem of a moving return distribution.
Several other algorithms could be used for the Teacher strategy
(e.g., UCB [1], Thomspson Sampling [4]). Steps i, ii and iii continue
successively until the policy for any Task(𝑒) ∈AT task converges.

Sub-task convergence criteria:Wedefine a policy for Task(𝑞, 𝑝)
to be converged (line 13) if a trajectory𝜔 produced by the policy trig-
gers the transition with probability Pr𝜔∈Ω [𝜔 satisfiesTask(𝑞, 𝑝)] ≥
𝜂 and Δ(𝑔𝑡 ′𝑔𝑡 ′−1) < 𝜇 where 𝜂 is the expected performance and 𝜇
is a small value. Intuitively, a converged policy attains an average

success rate ≥ 𝜂 and has not improved further by maintaining con-
stant average returns. Like other Reward Machine (RM) approaches,
we assume access to the labeling function 𝐿 to examine if the trajec-
tory 𝜔 satisfies the transition corresponding to the edge 𝑒 (𝑞,𝑝) by
checking if the final environmental state 𝑠 of the trajectory satisfies
the condition 𝐿(𝑠)→𝑝 . The sub-goal regions need not be disjoint,
i.e., the state 𝑠 can satisfy predicates for multiple DAG nodes.

Discarding unpromising sub-tasks: Once a policy for the
Task(𝑞, 𝑝) converges, we append Task(𝑞, 𝑝) to the set of Learned
Tasks LT and remove it from the set of Active Tasks AT (line
14). Since the Teacher agent always samples a task from the set
AT , this learned task will not be sampled again. Once we have
a successful policy for the Task(𝑞, 𝑝) (the transition 𝑞 → 𝑝), we
determine the sub-tasks that can be discarded (line 16). We find the
sub-tasks corresponding to edges that: (1) lie before 𝑝 in a path from
𝑞0 to the goal state 𝑞𝑔 , and, (2) do not lie in a path to 𝑞 ∈ Q that
does not contain 𝑝 . Intuitively, if we already have a set of policies
that can generate a successful trajectory to reach the node 𝑝 , we
do not need to learn policies for sub-tasks that ultimately lead only
to 𝑝 . We add all such sub-tasks to the set of Discarded Tasks DT
(line 17). If any of these discarded tasks are present in AT , we
remove them from AT to prevent them from being sampled for
the Student learning agent (line 18). By discarding such sub-tasks,
we might fail to explore certain sub-tasks which could have led to
an optimal path from the start to the goal node. In this work, our
aim is not to find optimal policies but to learn policies that reach
the goal node with two important criterion: (1) The probability of
generating a trajectory that reaches 𝑞𝑔 from 𝑞0 is ≥ 𝜂 and (2) The
overall number of environmental interactions are minimized.

Traversing in the DAG until goal is satisfied: Subsequently,
we determine the next set of tasks 𝐸AT in the DAG to add to
the AT set (line 19). This is calculated by identifying sub-tasks
corresponding to all permissible outgoing edges from 𝑝 . Since the
edge 𝑒𝑞,𝑝 corresponds to the transition 𝑞 → 𝑝 , we have a successful
policy that can produce a trajectory that ends in the high-level state
𝑝 , and 𝐸AT corresponds toX[𝑝]\DT i.e., sub-tasks corresponding
to all the outgoing edges from 𝑝 that do not lie in the DT set.

Once we identify 𝐸AT , we set the Teacher Q-values for all
Task(𝑒) ∈ 𝐸AT to 0 so that the Teacher will sample these tasks (line
23). We consider an episodic setting where the episode starts from
a state 𝑠 ∈ S0 where the high-level state 𝑞0 holds true, and if the
current sampled sub-task is Task(𝑝, 𝑟), the agent follows a trajec-
tory using corresponding learned policies from Π∗ to reach a MDP
state where the high-level state 𝑝 holds true, and then attempts
learning a separate policy for Task(𝑝, 𝑟).

The above steps (lines 9-26) go on iteratively until 𝐸AT is an
empty set, which indicates we have no further tasks to add to our
sampling strategy, and we have reached the goal node 𝑞𝑔 . Thus, we
break from the while loop (line 21) and return the set of learned
policies Π∗, and edge-policy dictionary 𝑃 (line 27). From 𝑃 and Π∗,
we get an ordered list of policies Π∗

𝑙𝑖𝑠𝑡
= [𝜋 (𝑞1,𝑞2) , . . . , 𝜋 (𝑞𝑘−1,𝑞𝑘)]

such that sequentially following 𝜋 ∈ Π∗
𝑙𝑖𝑠𝑡

generates trajectories
that reach the high-level goal state 𝑞𝑔 1.

1More details and Code: https://llm-guided-task-sampling.github.io/

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1740

https://llm-guided-task-sampling.github.io/

Algorithm 1 LgTS (U, 𝑀, 𝜂, 𝑥)
Output: Set of learned policies : Π∗, Edge-Policy Dictionary 𝑃

1: Placeholder Initialization:
2: Sets of: Active Tasks (AT)← ∅;

Learned Tasks (LT)← ∅; Discarded Tasks (DT)← ∅
3: Edge-Policy Dictionary 𝑃 : Task(𝑒) → 𝜋

4: Teacher Q-Value Dictionary:𝑄 : Task(𝑒) → −∞
5: Algorithm:
6: X ← Adjacency_Matrix (U)
7: AT ← AT ∪ {X[𝑞0] }
8: ∀ Task(𝑒) ∈ AT : 𝑄 [𝑒] = 0
9: while True do
10: 𝑒 ← Sample(𝑄)
11: 𝑃 [𝑒], 𝑔← Learn(𝑀,U, 𝑒, 𝑥, 𝑃)
12: Update_Teacher(𝑄, 𝑒,𝑔)
13: if Convergence(𝑄, 𝑒,𝑔, 𝜂) then
14: Π∗ ← Π∗ ∪ 𝑃 [𝑒] ; LT ← LT ∪{Task(𝑒) } ;

AT ← AT \{Task(𝑒) }
15: 𝐸DT ← Discarded_Tasks(X, 𝑒)
16: DT ← DT ∪ 𝐸DT
17: 𝐸AT ← Next_Tasks (X, 𝑒, DT)
18: if |𝐸AT | = 0 then
19: break
20: end if
21: ∀ Task(𝑒) ∈ 𝐸AT : 𝑄 [𝑒] = 0
22: AT← AT ∪ 𝐸AT
23: end if
24: end while
25: return Π∗, 𝑃

5 EXPERIMENTS
We aim to answer the following questions: (Q1) Does LgTS yield
sample efficient learning compared to other baseline approaches?
(Q2) How does LgTS perform when distractor objects are present in
the environment that are not essential for satisfying the high-level
goal? (Q3) Does LgTS yield sample efficient learning even when
the prompt to the LLM is modified by using synonyms for objects
and predicates? (Q4) How does LgTS scale when the environment
is complex and the optimal plan is longer than the DoorKey task?
(Q5) What are certain failure cases of LgTS?

5.1 LgTS - DoorKey Domain

To answer Q1, we evaluated LgTS on a Minigrid [7] inspired
domain. The environment configuration is shown in Fig. 1. Essen-
tially, the agent needs to collect any of the two available Keys before
heading to the Door. After toggling the Door open, the agent needs
to visit the Green_Goal. At all times, the agent needs to avoid the
Lava object. We assume an episodic setting where an episode ends
if the agent touches the Lava object, reaches the Green_Goal or
exhausts the number of allocated interactions.

This is a complex sequential decision making problem for a
reinforcement learning agent as the agent needs to perform a series
of correct actions to satisfy the high-level objective, which is to
navigate to any of the two keys, pick a key and then unlock the door.
Then, navigate to reach the green-goal state. In this environment,
the agent has access to three navigation actions: move forward,
rotate left and rotate right. The agent can also perfom: pick-up

action, which adds a Key to the agent’s inventory if it is facing
the Key, drop places the Key in the next grid if Key is present in
the inventory, and, toggle that toggles the Door (closed↔ open)
only if the agent is holding the Key. The agent can hold only one
Key in its inventory. Hence, it needs to perform the drop action
to drop a key present in its inventory before picking up another
key. For this environment, we assume a fully-observable setting
where the environmental state is a low-level encoding of the image.
For each cell in the grid, the low-level encoding returns an integer
that describes the item occupying the grid, along with additional
information, if any (e.g., the Door state can be open or closed).

The prompt to the LLM contains information about the high-
level start state 𝐴𝑡 (𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑜𝑜𝑚), the high-level goal state
𝐴𝑡 (𝐺𝑟𝑒𝑒𝑛_𝐺𝑜𝑎𝑙), the entities present in the environment - 𝐾𝑒𝑦1,
𝐾𝑒𝑦2, 𝐷𝑜𝑜𝑟,𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑅𝑜𝑜𝑚,𝐺𝑟𝑒𝑒𝑛_𝐺𝑜𝑎𝑙, 𝐿𝑎𝑣𝑎, the predicates that the
agent can detect through its sensors - 𝐻𝑜𝑙𝑑𝑖𝑛𝑔(?), 𝐴𝑡 (?),
𝑈𝑛𝑙𝑜𝑐𝑘𝑒𝑑 (?), and a hyperpameter that defines the number of feasi-
ble high-level sequences given by the LLM 𝑛. We performed grid-
search to find the value of 𝑛. For our experiments, 𝑛 = 4.

For the RL pipeline, we use PPO [26], which works for discrete
and continuous action spaces. We consider a standard actor-critic
architecture with 2 convolutional layers followed by 2 fully con-
nected layers. For LgTS, the reward function is sparse. The agent
gets a reward of (1 − 0.9 (𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑡𝑎𝑘𝑒𝑛)

(𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑)) if it achieves the
goal in the sub-task, and a reward of 0 otherwise. For individual
tasks, 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 = 100. The agent does not receive any
negative rewards for hitting the 𝐿𝑎𝑣𝑎.

5.1.1 Baselines: We compare our LgTS method against four base-
line approaches and an oracle approach.

(1) Learning from scratch (LFS) where the goal for the agent is to
learn a single policy that learns to satisfy the final high-level
goal state using RL without any shaped reward.

(2) Teacher-student curriculum learning (TSCL) appraochwhere
the Teacher agent samples most promising task (based on av-
erage success rate) without the use of any graphical structure
to guide the learning progress of the agent. In our experi-
ments, the set of tasks included every feasible transition in
the automaton description of the task.

(3) (Oracle approach)Automaton-guided Teacher-Student learn-
ing (AgTS) where the graphical structure of the sub-goal
is generated using the finite-trace Linear Temporal Logic
(LTL𝑓) formula given by an oracle. For this task, the LTL𝑓 for-
mula is:𝜑𝑓 := G¬𝐿𝑎𝑣𝑎∧F((𝐾𝑒𝑦1 |𝐾𝑒𝑦2)∧F(𝐷𝑜𝑜𝑟&F(𝐺𝑜𝑎𝑙)))
where𝐺 and 𝐹 represent Always and Eventually respectively.
We use the equivalent DFA representation of the above LTL𝑓
formula as the graphical representation, and perform the
Teacher-Student learning approach outlined in section 4.

(4) Automaton-guided Reward Shaping (AGRS) where the DFA
representation of the LTL𝑓 formula is used as a reward shap-
ing mechanism to guide the agent toward the final high-level
goal state. The reward given to the agent is proportional to
the distance from the goal node.

(5) LLM-guided Reward Shaping (LgRS) where the graph gener-
ated from the 𝑛 high-level sub-goal sequences is used as a
reward shaping mechanism to guide the agent toward the

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1741

Approach # Interactions
(Mean ± SD)

Success Rate
(Mean ± SD)

LgTS (3.98 ± 0.42) × 106 0.92 ± 0.03
AgTS (2.67 ± 0.36) × 106 0.94 ± 0.02
LFS 5 × 107 0 ± 0
AgRS 5 × 107 0.05 ± 0.04
LgRS 5 × 107 0 ± 0
TSCL 5 × 107 0 ± 0

Table 1: Table comparing #interactions & success rate for the
DoorKey domain.

Approach # Interactions
(Mean ± SD)

Success Rate
(Mean ± SD)

LgTS (4.64 ± 1.72) × 106 0.84 ± 0.08
AgTS (3.21 ± 0.57) × 106 0.90 ± 0.04
LFS 5 × 107 0 ± 0
AgRS 5 × 107 0 ± 0
LgRS 5 × 107 0 ± 0
TSCL 5 × 107 0 ± 0

Table 2: Table comparing #interactions & success rate for the
DoorKey domain with distractor objects.

final high-level goal state. The reward given to the agent is
proportional to the distance from the goal node.

The results in Table 4 (averaged over 10 trials) show that LgTS
reaches a successful policy quicker compared to the learning from
scratch, teacher-student curriculum learning, and LLM-guided re-
ward shaping baseline approaches. We observe that the number of
environmental interactions taken by our proposed approach are
comparable to the automaton-guided teacher student (AgTS) algo-
rithm where the ground truth graph is in the form of an automaton,
and the graph is provided by an oracle. Several of the other baseline
approaches such as LFS, TSCL, LgRS, AgRS fail to learn a successful
policy for reaching the high-level goal state demonstrating that
approaches that tend to learn a single policy for the entire objective
are unable to satisfy the goal condition. Reward shaping fails as
agent greedily favours reaching the high level state 𝑞1 over 𝑞2 and
is unable to reach node 𝑞3 from 𝑞1.

We evaluated the average graph edit distance (GED) between the
graphs generated using the 𝐿𝑔𝑇𝑆 and the AgTS approach. The GED
is the number of edge/node changes needed to make two graphs
isomorphic. We observed an average graph edit distance of 2.1±0.2.
This indicates that the graph generated by the oracle through AgTS,
which has five nodes and five edges, can be converted to the graph
generated by LgTS by performing ∼ 2.1 changes.

5.2 LgTS with distractor entities
To answer Q2, we evaluated LgTS on a task environment that
contains entities that do not affect the optimal path for reaching the
high-level goal state. During each run, the environment contains
1 − 3 instances of distractor objects that are modeled in the LLM
prompt and in the environment dynamics. For our experiment, the
distractor items are household kitchen items such as apple, plate,
fruit etc. Since the optimal path or the task solution has not changed,
the paths suggested by the LLM should ignore the distractor objects.

Approach # Interactions
(Mean ± SD)

Success Rate
(Mean ± SD)

LgTS (4.87 ± 0.74) × 106 0.81 ± 0.09
AgTS (2.67 ± 0.36) × 106 0.94 ± 0.02
LFS 5 × 107 0 ± 0
AgRS 5 × 107 0.05 ± 0.04
LgRS 5 × 107 0 ± 0
TSCL 5 × 107 0 ± 0

Table 3: Table comparing #interactions & success rate for the
DoorKey domain with modified prompt.

The results in Table 4 (averaged over 10 trials) show that LgTS
reaches a successful policy quicker compared to the LFS, TSCL, and
LgRS. The overall number of interactions to learn a set of successful
policies for satisfying the high-level goal objective are higher in
presence of distractor objects because of low level agent interactions
with these objects and the increased dimensionality of the state
space of the RL agent. For the experiment with distractor objects,
we observed a graph edit distance of 3.4 ± 0.4 between the LgTS
approach and the graph generated using the AgTS approach, which
is higher than the graph edit distance that was computed without
the presence of distractor objects. This difference indicates that
the graphs generated using the LgTS approach did contain paths
that involved distractor objects, however, the graph also contained
paths that did not involve the distractor object and the RL agent
was able to learn successful policies for such paths.

5.3 LgTS - modified prompt
Recent approaches that use LLM for task guidance have a curated
prompt and a fine-tuned LLM that prevents generalization to newer
prompts that have similar meaning but different descriptors. This
finetuning prevents generalization to unseen out-of-distribution
prompts and descriptors. To demonstrate how the prompt influ-
ences the LLM output which in turn affects learning progress, we
evaluated LgTS by changing the prompt to the LLM. In this test,
a fraction (at random) of entity and predicate descriptors were
changed to a synonym chosen from Thesaurus [10] (for e.g., Key
was replaced with Code; Door was replaced with Gate).

The results in Table 4 (averaged over 10 trials) show that LgTS
reaches a successful policy quicker compared to the LFS, TSCL, and
LgRS. The overall number of interactions to learn a set of policies
that satisfy the high-level goal objective are higher when the prompt
was changed as compared to LgTS with a constant and curated
prompt. We observed that the LLM was able to accommodate the
new prompt and suggest paths that satisfied the high-level objective.

5.4 LgTS - Search and Rescue task
To demonstrate how LgTS performs when the plan length becomes
deeper, we evaluated LgTS on a more complex urban Search and
Rescue domain. In this domain, the agent acts in a grid settingwhere
it needs to perform a series of sequential sub-tasks to accomplish
the final goal of the task. The agent needs to open a door using
a key, then collect a fire extinguisher to extinguish the fire, and
then find and rescue stranded survivors. A fully-connected graph
generated using the above mentioned high-level states consists of

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1742

Approach # Interactions
(Mean ± SD)

Success Rate
(Mean ± SD)

LgTS (1.13 ± 0.26) × 107 0.76 ± 0.11
AgTS (8.61 ± 0.12) × 106 0.87 ± 0.04
LFS 5 × 106 0 ± 0
AgRS 5 × 107 0.05 ± 0.04
LgRS 5 × 107 0 ± 0
TSCL 5 × 107 0 ± 0

Table 4: Table comparing #interactions & success rate for the
Search and Rescue domain.

24 distinct transitions. This is a multi-goal task as the agent needs
to extinguish fire as well as rescue survivors to reach the goal state.
We use the LLM to produce seven distinct high-level paths that
help prune transitions that the LLM does not recommend while
providing little information about the environment as possible.

The results in Table 4 (averaged over 10 trials) show that LgTS
reaches a successful policy quicker compared to the LFS, TSCL, and
LgRS. The overall number of interactions to learn a set of successful
policies for satisfying the high-level goal objective are higher when
the prompt was changed as compared to LgTS with a constant and
curated prompt. The LLMwas able to accommodate the new prompt
and suggest paths that satisfied the high-level goal objective.

5.5 Discussion
We designed a method that queries an LLM to produce sub-goal
sequences based on entities and predicates known about the task.
Each entity and predicate is assumed to have a single word natural
language description. An off-the-shelf LLM is prone to associate
certain entities with certain predicates based on its training data
and procedure. For e.g., when we attempted to make the search
and rescue task even more complex by adding a debris element that
needs to be moved using themoving predicate, we observed that the
LLM is associating the predicate with other entities already present
in the environment, such as fire extinguisher, door etc. Since the
LLM does not have access to the type hierarchy that associates
predicates with entities, the LLM is conflicted when two similar
entities are applicable to the same predicate. As an experiment, we
also provided the type hierarchies to the LLM and we observed
that the graph generated using LgTS had a graph edit distance of
4.6 compared to the graph given by an oracle, which was lower
than the graph edit distance observed without the presence of type
hierarchies, which was found to be 7.3. Thus, incorporating infor-
mation that informs the LLM about predicate-entity associations
helps produce sub-goal sequences that are semantically closer to
the sub-goals given by the LTL𝑓 formula suggested by an oracle.

The prompts generated by the LLM also depend on the type of
language model used. When we changed our LLM from LLAMA2
to GPT-4 on the complex search and rescue task mentioned above,
we observed a graph edit distance of 5.1 compared to the graph
given by an oracle, which was lower than the GED for LLAMA2,
which was 7.3. This shows that GPT-4 was successful in produc-
ing responses and in turn graphs which were closer to the graph
generated from an oracle. With further advancements in the LLM
capabilities, we might observe even further improvements in the

reasoning ability of such models, which in turn will produce bet-
ter and meaningful entity-predicate associations. Existing tools
such as chain-of-thought prompting and access to a dataset that
can finetune the LLM to produce valid and useful outputs will fur-
ther improve the prediction accuracy of the LLM. However, even
with such advancements, the environmental configuration will be
unknown to an agent that does not have access to the transition dy-
namics model. This work is a step in that direction. LgTS attempts
to bridge the gap between the LLM-generated sub-goal outputs and
the policies that an agent can learn to satisfy these sub-goals while
minimizing the number of times it interacts with the environment.

6 CONCLUSION AND FUTUREWORK
We proposed LgTS, a framework for dynamic task sampling for
RL agents using a graphical representation of sub-goal sequences
suggested by a large language model. Through experiments, we
demonstrated that LgTS accelerates learning, converging to a de-
sired success rate quicker as compared to other curriculum learning
baselines and achieves comparable success compared to sub-goal
sequences provided by an oracle. We also evaluated our approach
on a complex long-horizon search and rescue task where the num-
ber of predicates and entities were higher and the agent needed
to satisfy several sub-goals to satisfy the final goal objective. LgTS
reduced training time without relying on human-guided dense re-
ward function. LgTS accelerates learning when information about
the entities present in the environment and the sensors that can
identify the truth assignment of predicates is available.

Limitations & Future Work: In certain cases, the natural lan-
guage description of the entities and the predicates might be incor-
rect or unavailable. In that case, the sub-goal sequences suggested
by the LLMwill be based on these incorrect descriptions, and the se-
quences might harm the learning progress of the agent. Our future
plans involve automating the entity identification process that will
eliminate the need to rely on predefined entities. In case of robotic
environments, this can be done using vision-language models. Our
approach recognizes and discards sub-tasks for which policies ex-
ist that can satisfy the sub-tasks’ goal objective. This technique
minimizes the number of interactions with the environment. As an
extension, we would like to explore biasing away from sub-tasks
rather than completely discarding them once the target node is
reached, so in the limit, optimal or near-optimal policies can be
obtained. We would also like to explore complex robotic and multi-
agent scenarios with elaborate goal directed objectives. On the LLM
front, we would like to incorporate closed-loop feedback from the
RL agent to the LLM that promotes improved response generation
by the LLM.

ACKNOWLEDGEMENTS
A portion of this work was conducted in the Multimodal Learn-
ing, Interaction, and Perception (MuLIP) Lab at Tufts University,
Georgia Tech Research Institute, and the University of Colorado
Boulder, with support from the Air Force Research Lab under con-
tract FA875022C0501. The authors would like to thank Georgia
Tech Research Institute Independent Research and Development
funding for supporting this work.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1743

REFERENCES
[1] Shipra Agrawal and Navin Goyal. 2012. Analysis of thompson sampling for the

multi-armed bandit problem. In Conference on learning theory. JMLR Workshop
and Conference Proceedings, 39–1.

[2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,
Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, et al. 2022. Do as i can, not as i say: Grounding language in robotic
affordances. arXiv preprint arXiv:2204.01691 (2022).

[3] Rajeev Alur, Suguman Bansal, Osbert Bastani, and Kishor Jothimurugan. 2022. A
framework for transforming specifications in reinforcement learning. In Principles
of Systems Design: Essays Dedicated to Thomas A. Henzinger on the Occasion of
His 60th Birthday. Springer, 604–624.

[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47 (2002), 235–256.

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen,
Krzysztof Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea
Finn, et al. 2023. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. arXiv preprint arXiv:2307.15818 (2023).

[6] Mingyu Cai, Erfan Aasi, Calin Belta, and Cristian-Ioan Vasile. 2023. Overcoming
Exploration: Deep Reinforcement Learning for Continuous Control in Cluttered
Environments From Temporal Logic Specifications. IEEE Robotics and Automation
Letters 8, 4 (2023), 2158–2165. https://doi.org/10.1109/LRA.2023.3246844

[7] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. 2018. Minimalistic
Gridworld Environment for Gymnasium. https://github.com/Farama-Foundation/
Minigrid

[8] Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi. 2019. Foun-
dations for restraining bolts: Reinforcement learning with LTLf/LDLf restraining
specifications. In Intl. Conf. on Automated Planning and Scheduling, Vol. 29.

[9] Giuseppe De Giacomo and Moshe Y Vardi. 2013. Linear temporal logic and linear
dynamic logic on finite traces. In IJCAI’13 Proc. of the Twenty-Third Intl. joint
Conf. on Artificial Intelligence. Association for Computing Machinery, 854–860.

[10] Merriam-Webster Dictionary. 2002. Merriam-webster. On-line at http://www. mw.
com/home. htm 8, 2 (2002).

[11] Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi Zhang. 2023. Leveraging
Commonsense Knowledge from Large Language Models for Task and Motion
Planning. In RSS 2023 Workshop on Learning for Task and Motion Planning.

[12] Yan Ding, Xiaohan Zhang, Chris Paxton, and Shiqi Zhang. 2023. Task and motion
planning with large language models for object rearrangement. arXiv preprint
arXiv:2303.06247 (2023).

[13] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdh-
ery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu,
et al. 2023. Palm-e: An embodied multimodal language model. arXiv preprint
arXiv:2303.03378 (2023).

[14] Lewis Hammond, Alessandro Abate, Julian Gutierrez, and Michael Wooldridge.
2021. Multi-agent reinforcement learning with temporal logic specifications.
arXiv preprint arXiv:2102.00582 (2021).

[15] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith.
2022. Reward machines: Exploiting reward function structure in reinforcement
learning. Journal of Artificial Intelligence Research 73 (2022), 173–208.

[16] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. 1998. Plan-
ning and acting in partially observable stochastic domains. Artificial Intelligence
101, 1 (1998), 99–134.

[17] Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. 2023. Reward
design with language models. arXiv preprint arXiv:2303.00001 (2023).

[18] Xiao Li, Cristian-Ioan Vasile, and Calin Belta. 2017. Reinforcement learning with
temporal logic rewards. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 3834–3839.

[19] Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas,
and Peter Stone. 2023. Llm+ p: Empowering large language models with optimal
planning proficiency. arXiv preprint arXiv:2304.11477 (2023).

[20] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. 2020. Teacher-
Student Curriculum Learning. IEEE Trans. Neural Networks Learn. Syst. 31, 9
(2020), 3732–3740. https://doi.org/10.1109/TNNLS.2019.2934906

[21] Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu
Nguyen, Oscar Sainz, Eneko Agirre, Ilana Heintz, and Dan Roth. 2021. Recent
advances in natural language processing via large pre-trained language models:
A survey. Comput. Surveys (2021).

[22] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor,
and Peter Stone. 2020. Curriculum Learning for Reinforcement Learning Domains:
A Framework and Survey. JMLR 21 (2020), 1–50.

[23] Pierre-Yves Oudeyer and Frederic Kaplan. 2009. What is intrinsic motivation? A
typology of computational approaches. Frontiers in neurorobotics (2009), 6.

[24] Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. 2023.
Instruction tuning with gpt-4. arXiv preprint arXiv:2304.03277 (2023).

[25] Shreyas Sundara Raman, Vanya Cohen, Eric Rosen, Ifrah Idrees, David Paulius,
and Stefanie Tellex. 2022. Planning with large language models via corrective
re-prompting. arXiv preprint arXiv:2211.09935 (2022).

[26] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR (2017). arXiv:1707.06347
http://arxiv.org/abs/1707.06347

[27] Yash Shukla, Tanushree Burman, Abhishek Kulkarni, Robert Wright, Alvaro
Velasquez, and Jivko Sinapov. 2024. Logical Specifications-guided Dynamic Task
Sampling for Reinforcement Learning Agents. arXiv preprint arXiv:2402.03678
(2024).

[28] Yash Shukla, Abhishek Kulkarni, Robert Wright, Alvaro Velasquez, and Jivko
Sinapov. 2023. Automaton-Guided Curriculum Generation for Reinforcement
Learning Agents. In Proceedings of the 33rd International Conference on Automated
Planning and Scheduling.

[29] Yash Shukla, Christopher Thierauf, Ramtin Hosseini, Gyan Tatiya, and Jivko
Sinapov. 2022. ACuTE: Automatic Curriculum Transfer from Simple to Complex
Environments. In 21st Intl. Conf. on Autonomous Agents and Multiagent Systems.
1192–1200.

[30] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan
Tremblay, Dieter Fox, Jesse Thomason, and Animesh Garg. 2023. Progprompt:
Generating situated robot task plans using large language models. In 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 11523–11530.

[31] Chan Hee Song, JiamanWu, ClaytonWashington, Brian M Sadler, Wei-Lun Chao,
and Yu Su. 2022. Llm-planner: Few-shot grounded planning for embodied agents
with large language models. arXiv preprint arXiv:2212.04088 (2022).

[32] Austin Stone, Ted Xiao, Yao Lu, Keerthana Gopalakrishnan, Kuang-Huei Lee,
Quan Vuong, Paul Wohlhart, Brianna Zitkovich, Fei Xia, Chelsea Finn, et al.
2023. Open-world object manipulation using pre-trained vision-language models.
arXiv preprint arXiv:2303.00905 (2023).

[33] Csaba Szepesvári. 2004. Shortest path discovery problems: A framework, algo-
rithms and experimental results. In AAAI. 550–555.

[34] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith.
2018. Teaching multiple tasks to an RL agent using LTL. In Autonomous Agents
and MultiAgent Systems.

[35] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[36] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in Neural Information Processing Systems 35
(2022), 24824–24837.

[37] Zhe Xu and Ufuk Topcu. 2019. Transfer of temporal logic formulas in reinforce-
ment learning. In IJCAI: proceedings of the conference, Vol. 28. NIH Public Access,
4010.

[38] Jianing Yang, Xuweiyi Chen, Shengyi Qian, Nikhil Madaan, Madhavan Iyengar,
David F Fouhey, and Joyce Chai. 2023. LLM-Grounder: Open-Vocabulary 3D
Visual Grounding with Large Language Model as an Agent. arXiv preprint
arXiv:2309.12311 (2023).

[39] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 (2023).

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1744

https://doi.org/10.1109/LRA.2023.3246844
https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Minigrid
https://doi.org/10.1109/TNNLS.2019.2934906
https://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Statement

	4 Methodology
	5 Experiments
	5.1 LgTS - DoorKey Domain
	5.2 LgTS with distractor entities
	5.3 LgTS - modified prompt
	5.4 LgTS - Search and Rescue task
	5.5 Discussion

	6 Conclusion and Future Work
	References

