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ABSTRACT
With the advancement of machine learning based automation in

the current digital world, the problem of safety verification of such

systems is becoming crucial, especially in safety-critical domains

like self-driving cars, robotics, etc. Reinforcement learning (RL) is

an emerging machine learning technique with many applications,

including in safety-critical domains. The classical safety verification

approach of making a binary decision on determining whether a

system is safe or unsafe is particularly challenging for an RL system.

Such an approach generally requires prior knowledge about the

system, e.g., the transition model of the system, the set of unsafe

states in the environment, etc., which are typically unavailable

in a standard RL setting. Instead, this paper addresses the safety

verification problem from a quantitative safety perspective, i.e., we

quantify the safe behavior of the policy in terms of probability. We

formulate the safety verification problem as a chance-constrained

optimization using the technique of barrier certificate. We then

use a sampling based approach called scenario optimization to

solve the chance-constrained problem, which gives the desired

probabilistic guarantee on the safe behavior of the policy. Our

extensive empirical evaluation shows the validity and robustness

of our approach in three RL domains.
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1 INTRODUCTION
Recent breakthroughs in the area of reinforcement learning (RL)

have led to the achievement of significant milestones in the field

of artificial intelligence (AI). The landmarks include playing atari

video games at the human level [24], beating the best human player
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Figure 1: A safe navigation RL environment where the objective
is to reach the goal (green circle) by avoiding an unsafe region (red
ellipse). The RL agent starts from an initial state below the unsafe
region. Different curve lines represent different trajectory samples
generated from the policy.

in the game of Go [33], and other challenging domains. However,

most of these breakthroughs are mainly in the so-called artificial do-
mains. Real-world applications of RL are limited [13]. In real-world

scenarios, especially in safety-critical domains like self-driving

cars, robotics, etc., achieving a high-performance RL objective is

not sufficient; verifying the safe behavior of the RL policy is also

paramount. In a typical real-world setting, training is generally

done in a simulation environment. For instance, training a physical

robot or a self-driving car in a real-world environment is imprac-

tical due to the risks involved. Such a learning-based AI system

trained in the simulation environment needs safety verification

before being deployed in a real-world scenario. There is a plethora

of work [2, 16, 20, 23, 24, 31, 32] on the development of new rein-

forcement learning algorithms. Still, a limited number of studies

address the problem of safety verification of RL policies. With this

work, we intend to fill the gap.

The classical safety verification problem of a dynamical sys-

tem [6, 17, 18] is generally studied under formal methods in which

the main goal is to prove with mathematical rigor that no trajectory

generated from an initial state of the dynamical system can ever

enter an unsafe region in the state space. The solution method is

typically a model-checking approach to verify whether the dynam-

ical system satisfies the given safety specifications, resulting in a

binary decision on whether the system is safe or unsafe. One of

the key challenges in the classical approach is that the solution

method generally requires prior knowledge about the system, e.g.,
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the transition dynamics of the system, the set of unsafe states in

the state space, etc.

In a standard RL setting, using a classical approach of safety

verification is challenging because, typically, the transition model

is unknown either due to a black-box model of the system or the

model is not in a closed form for formal verification, and the set

of unsafe states is also not available. Under such a setting, a clas-

sical formal methods based approach to verify the safe behavior

of an RL policy is not feasible. In this work, we address the safety

verification problem from a quantitative safety perspective, i.e., we

quantify the safe or unsafe behavior of the RL policy in terms of

probability. Formally, we seek to determine the probability of unsafe

behavior of the policy remaining below a user-specified quantita-

tive safety target with some specified confidence. We call such a

system probably approximately safe. Our proposed method of prob-
ably approximate safety (PAS) verification is motivated by the PAC

learning framework [34] as it also provides safety guarantees in

terms of error probability and confidence. Thus, our approach can

also be regarded as statistical safety verification of RL policies.

In Fig.1, we present a simple didactic RL task; the agent starts

from an initial state below the unsafe region. The objective is to

reach the goal (green circle) by avoiding an unsafe region (red

ellipse) in the state space. We observe that many trajectories can

reach the goal by preventing the unsafe region, but some of them

do enter the region. In this scenario, depending on a specified

safety tolerance level, the RL policy may be classified as a safety

risk even though it fulfills the objective of reaching the goal. With

our proposed PAS verification approach, given a safety threshold,

we aim to compute the probability of safe behavior for the given

policy with high confidence. In our method, we use the technique

of barrier certificates [26, 27], a popular tool used in certifying the

stability of dynamical systems. Using the barrier certificate, we

find a region in the state space called a barrier region for the policy.

An important feature of the barrier region is that it exhibits the

property of forward invariance [36], i.e., any trajectory originating

from this region stays within the same region. This property is key

in ensuring the probabilistic safety guarantees associated with the

barrier region would also apply to any trajectory within the region.

Thus, ourmain objectives of this work are to find the policy’s barrier

region and obtain the probabilistic safety guarantees associated

with it. Our key contributions are summarised below:

– We introduce a novel statistical safety verification problem

of a given test RL policy.

– We also propose a novel approach to address the safety veri-

fication problem. We use the technique of barrier certificates

to formulate the problem of finding the barrier region of

the policy as a chance-constrained optimization with safety

constraints.

– We use a sampling-based approach called scenario optimiza-

tion [10] to solve the chance-constrained problem, which

gives the barrier region of the policy along with the desired

probabilistic safety guarantees.

The rest of the paper is outlined as follows. In Section 2, we

discuss some related works in the safety verification of RL sys-

tems. Section 3 provides the relevant background for our proposed

method. In Section 4, we describe our proposed probably approxi-

mate safety verification method of an RL policy. Extensive empirical

evaluations of our method are discussed in Section 5, and we sum-

marize the work in Section 6.

2 RELATEDWORK
This section discusses some recentworks in the safety verification of

RL systems. Fulton et al. [14] proposed a formal verification based

method for provably safe learning of RL systems. They provide

formal proof that incorporating safe control mechanisms obtained

by formal verification techniques into the learning system preserves

safety guarantees. However, their method relies on learning an

accurate RL environment model, which can be challenging. Bacci

et al. [1] proposed an approach that gives probabilistic guarantees

on the safety aspects of an RL system. The authors introduce a

probabilistic model-checking technique on an abstraction of the

original Markov Decision Process (MDP) to compute an upper-

bound probability of reaching a failure state. The work of Bastani et

al. [4, 5], Gupta et al. [15] and Berkenkamp et al. [7] also proposed

safety verification approaches in which either a nominal dynamics
model (an approximation of the true dynamics model) is known

in advance, or the dynamics model is learned from scratch. Verma

et al. [35] propose a program synthesis based approach to learn

interpretable and verifiable policy from a pre-trained RL policy.

However, the approach may not be scalable to complex domains

with large state and action spaces in which the policy is required

to learn intricate behaviors.

Another line of study is motivated by the technique of barrier

certificates. In classical safety verification problems, barrier cer-

tificate [19, 26, 27] is a popular tool for certifying the stability of

a dynamical system. Luo et al. [22] proposed a safety verification

technique in which the barrier certificate is learned along with the

policy and the dynamics model of the MDP in an iterative fashion.

The policy optimized within the barrier region is certified safe with-

out any safety violations. In their method, the set of unsafe states

is given in advance, which may not be available in many complex

domains with large state space. Cheng et al. [12] also use a similar

methodology of using barrier certificates to ensure the safety of

policy learned using any off-the-shelf RL algorithm. However, they

use a handcrafted barrier function and Gaussian Processes to model

the system dynamics, which requires domain knowledge.

In contrast to previous methods, our proposed probably approxi-
mate safety (PAS) verification approach is sampling-based. It does

not require knowledge of the model dynamics or knowledge of

the unsafe states in advance. The main requirement in our method

is access to the simulator that can provide the trajectory samples

along with a cost value at every time step, like the reward, which is

a common setting in a standard RL problem. Our approach is also

scalable because the sampling process can be easily parallelized. To

the best of our knowledge, our proposedmodel-free sampling-based

approach is first in the safety verification of RL policies.

3 BACKGROUND
3.1 Markov decision process
A standard reinforcement learning problem is formally described

by a Markov Decision Process (MDP) [28]. An MDP is defined
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Figure 2: The figure shows the system diagram of our proposed
probably approximate safety (PAS) verification approach. The trajec-
tory samples of the policy 𝜋 test are obtained from the simulator. Like
the reward value, the simulator also provides a cost value 𝑐𝑡 at each
time step, which is used to compute the safety value of trajectory
𝑉 unsafe (𝜏 ) . For given values of the safety threshold 𝛼 and confidence
level (1 − 𝛽 ) , our PAS verification approach provides the barrier
region (CB𝜙 ) along with the probability of safe behavior (1 − 𝜖 ) of
the policy.

by a tuple ⟨𝑆,𝐴,T , 𝑟 , 𝛾, 𝐻 ⟩, where 𝑠𝑡 ∈ 𝑆 and 𝑎𝑡 ∈ 𝐴 denote the

state and action of the agent, respectively. At each time step 𝑡 , the

agent transitions to a next state 𝑠𝑡+1 following a transition model

T (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ). 𝑟 (𝑠𝑡 , 𝑎𝑡 ) is a reward function, 𝛾 ∈ [0, 1) is a discount
factor and𝐻 is a planning horizon. 𝑆 ini denotes a set of initial states,

and 𝑝0 (·) is the initial state distribution. The agent gets action 𝑎𝑡
from a policy 𝜋 (·|𝑠𝑡 ). The main goal in a standard RL problem is

to find a policy 𝜋 that maximizes the expected long-term reward

E[∑𝐻−1
𝑡=0 𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 )].

Note that the objective of this paper is not to find an optimal

policy for a given MDP, but to propose a new methodology for the

safety verification of a test RL policy. Thus, we assume the test

policy for the given MDP is provided.

3.2 Problem setup
Let, 𝜋 test (𝑎𝑡 |𝑠𝑡 ) denote the test RL policy, 𝑠0 ∼ 𝑝0 (·) be an ini-

tial state sampled from an initial state distribution 𝑝0, and 𝜏 =

(𝑠0, 𝑎0, 𝑠1, 𝑎1, ..., 𝑠𝐻−1) be a trajectory induced by the test policy

𝜋 test . The distribution of a trajectory 𝜏 is given by:

𝑃𝜋 test (𝜏) = 𝑝 (𝑠0) ·
𝐻−1∏
𝑡=0

𝜋 test (𝑎𝑡 |𝑠𝑡 ) · T (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) (1)

Since the transition model T (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) is not available, we obtain
the trajectory samples through a simulator. Our goal in this work is

to verify the safe behavior of the test policy 𝜋 test. The classical safety

verification problem is concerned with proving that no trajectory

originating from an initial state can ever enter an unsafe region

in the state space. However, such a problem is very challenging

to solve because addressing it would require prior knowledge of

the unsafe states and access to the transition model T of the MDP,

which are generally not available in a standard RL setting. In many

complex domains with large state spaces, defining the set of unsafe

states may not be feasible. It would require enumeration over the

state space with a safety or cost function. Instead, in this paper,

we measure the safety aspect of the policy in a more general and

tractable way. Like in a standard RL setting, the simulator provides

a reward value for each state and action; we also receive a cost value

for each state and action at each time step. The cost value is then

used to compute the safety value of the trajectory. Our motivation

for this work is quantitative safety, i.e., determining the probability

of unsafe behavior of the policy staying below a quantitative safety

target with some specified confidence. We now formally define the

problem.

Problem 1: Given a parameter 𝛽 ∈ (0, 1), the objective is to com-

pute a probability 𝜖 ∈ (0, 1) such that, with confidence at least

(1 − 𝛽), an unsafe behavior value 𝑉 unsafe (𝜏) of any trajectory

𝜏 ∼ 𝑃𝜋 test (·) starting from an initial state 𝑠0 ∈ 𝑆 ini and follow-

ing the dynamics of the MDP induced by the policy 𝜋 test as per (1),

is below a given safety threshold 𝛼 with a probability larger than

(1 − 𝜖).
𝑃

(
𝑉 unsafe (𝜏) ≤ 𝛼

)
≥ (1 − 𝜖) (2)

where a trajectory 𝜏 is a sample from the distribution 𝑃𝜋 test (·),
𝑉 unsafe (𝜏) = ∑𝐻−1

𝑡=0 𝛾𝑡 · 𝑐𝑡 , and 𝑐𝑡 is a cost value for each state

and action at each time step from the trajectory. The cost value is

provided by the simulator.

3.3 Barrier certificate
A barrier certificate (BC) [26, 27] is a common technique in safety

verification for dynamical systems. It is generally employed for

evaluating stability in continuous-time dynamical systems. Re-

cently, [22, 29] have used BC in a discrete-time dynamical system.

In this work, we use it to evaluate a test policy’s safe behavior in

a discrete-time MDP. A barrier certificate is formally defined as a

real-valued function B : 𝑆 → R if for any state 𝑠 ∈ 𝑆 such that

B(𝑠) ≥ 0,B(𝑠′) ≥ 0, where 𝑠′ is the next state. Below are the two

conditions a BC must satisfy:

• C1: For 𝑠0 ∈ 𝑆 ini, B(𝑠0) ≥ 0 with probability 1.

• C2: For any 𝑠 such that 𝐵(𝑠) ≥ 0,min𝑠′∈S′𝑠 B(𝑠
′) ≥ 0

where, S′𝑠 is a set of next-states for state 𝑠 .
Let CB = {𝑠 : B(𝑠) ≥ 0} be the superlevel set of the function B.

The conditions above guarantee that if 𝑠 ∈ CB , then 𝑠′ ∈ CB . We

refer to the region of state space covered underCB as a barrier region
(BR) [7]. The region exhibits a vital property known as forward
invariant property [36], i.e., any trajectory originating from this

region stays within the same region. One of the primary objectives

of this work is to find the barrier region of the test policy, and

we obtain it by learning the barrier certificate function using the

trajectory samples generated from the test policy.

4 METHODOLOGY
In this section, we present our sampling-based approach for proba-
bly approximate safety (PAS) verification of a test RL policy 𝜋 test.

Here, we refer to a trajectory 𝜏 from the distribution 𝑃𝜋 test (·) as a
sample. Since we do not have access to the transition model T , we
get the trajectory sample from a simulator. Along with the trajec-

tory samples, we also receive the cost value 𝑐𝑡 from the simulator
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at every time step. We then use it to compute 𝑉 unsafe (·), the safety
value of the trajectory sample. The complete system diagram is

shown in Fig.2.

As discussed in the previous section, the notion of barrier region

(BR) is mainly used in the classical safety verification problem of a

dynamical system, where the goal is to find the BR of the system. It

ensures that any state trajectory originating within the BR will not

leave the region. However, as highlighted in the previous section,

our goal in this work is to provide probabilistic safety guarantees

for a given policy. Formally, we want to determine the probability

of unsafe behavior of the policy staying below a safety target with

high confidence. We now redefine our original problem in Problem

1 using barrier region.

Problem 2: Given a parameter 𝛽 ∈ (0, 1), the goal is to find a

barrier region (CB) of the given policy over the state space of the

MDP, such that with a degree of confidence (1 − 𝛽) any trajectory

𝜏 ∼ 𝑃𝜋 test generated within the barrier region satisfies the safety

constraint in (2) with a high probability (1 − 𝜖).
Let B𝜙 be a parameterized linear function representing a barrier

certificate (BC) with parameter 𝜙 , defined as B𝜙 (𝑠) = 𝜙𝑤 · 𝑠 + 𝜙𝑏 ,
where 𝜙 = {𝜙𝑤 , 𝜙𝑏 }. Let CB𝜙 = {𝑠 : B𝜙 (𝑠) ≥ 0} be the BR we

are interested in finding, 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, ..., 𝑠𝐻−1) be a trajectory
sample from the distribution 𝑃𝜋 test (·). S𝜏 = {𝑠0, 𝑠1, . . . , 𝑠𝐻−1} de-
note a set containing states from the trajectory 𝜏 and S𝜙𝜏 = {𝑠 :

𝑠 ∈ S𝜏 ∧ 𝑠 ∈ CB𝜙 } denote a set containing states that belong to

both state trajectory set S𝜏 and CB𝜙 . We know that any BC must

satisfy the conditions C1 and C2. Regarding the condition C1, we
can always initialize the parameters of the BC to include the ini-

tial states. The condition C2 basically states, for any state 𝑠 in the

barrier region, we want to make sure that the next state 𝑠′ with a

minimum value of B𝜙 (𝑠′) ≥ 0. For a given value of 𝜙 , we have,

𝐽 (𝜙) = max

𝑠∈S𝜙𝜏 , 𝑠′∈SP𝜏
𝑠

−B𝜙 (𝑠′) (3)

where, SP𝜏𝑠 denotes the set of next-states for state 𝑠 from the

trajectory 𝜏 . Note that in the case of a discrete state space, there

can be multiple next states for a state in a trajectory. Our goal is

to find the BR that also satisfies the safety behavior constraint (2)

with high probability. Thus, the complete optimization problem

becomes,

min

𝜙
𝐽 (𝜙) = min

𝜙
max

𝑠∈S𝜙𝜏 , 𝑠′∈SP𝜏
𝑠

−B𝜙 (𝑠′) (4)

s.t. 𝑃

(
𝑉 unsafe

(
S𝜙𝜏

)
≤ 𝛼

)
≥ (1 − 𝜖) (5)

where, a trajectory 𝜏 is a sample from the distribution 𝑃𝜋 test (·) and
𝑉 unsafe

(
S𝜙𝜏

)
=
∑
𝑠𝑡 ∈S𝜙𝜏

𝛾𝑡 · 𝑐𝑡 .
Note that this formulation is an instance of a chance-constrained

optimization problem (CCP) [11] with trajectory 𝜏 as the uncer-

tain parameter. CCPs are known to be computationally hard to

solve. In this work, we use the scenario optimization approach

proposed by [9, 10] to address the CCP above. This approach offers

a deterministic relaxation of the original stochastic problem with

a confidence bound on the solution. The key idea is to substitute

the probabilistic constraint with 𝑁 i.i.d sample constraints. We sub-

stitute the chance-constraint (5) in the formulation above with 𝑁

sample instances of the constraint as follows,

min

𝜙
𝐽𝑁 (𝜙) = min

𝜙
max

𝑠∈S𝜙
𝑁
, 𝑠′∈SP𝑁

𝑠

−B𝜙 (𝑠′) (6)

s.t. 𝑉 unsafe

(
S𝜙𝜏𝑖

)
≤ 𝛼, ∀𝑖 ∈ [1, 𝑁 ] (7)

where S𝜙
𝑁

=
⋃𝑁

𝑖=1 S
𝜙
𝜏𝑖 and SP

𝑁
𝑠 =

⋃𝑁
𝑖=1 SP

𝜏𝑖
𝑠 .

A key limitation in finding the solution satisfying all the 𝑁 con-

straints is that the quality of the resulting solution can be poor.

The solution may not be a good approximation of the chance-

constrained solution. Thus, we allow some violating constraints

from the total sampled constraints to be removed. This essentially

improves the robustness of the solution quality
1
. The number of

violating constraints that are removed has a direct impact on the

safety probability value (1 − 𝜖). For a given value of a total number

of samples 𝑁 and safety threshold 𝛼 , the actual number of violating

constraints is fixed. We also perform an ablation study in the exper-

imental section to analyze the effect on the safety probability value

by increasing the number of violating constraints that are removed

from a smaller value to the actual number of violating constraints.

Let 𝑘 out-of 𝑁 violating constraints be selected and removed. We

now rewrite the above optimization with the remaining constraints,

min

𝜙
𝐽𝑁,𝑘 (𝜙) = min

𝜙
max

𝑠∈S𝜙
𝑁 −𝑘 , 𝑠

′∈SP𝑁 −𝑘
𝑠

−B𝜙 (𝑠′) (8)

s.t. 𝑉 unsafe

(
S𝜙𝜏𝑖

)
≤ 𝛼, ∀𝑖 ∈ [1, 𝑁 − 𝑘] (9)

where S𝜙
𝑁−𝑘 =

⋃𝑁−𝑘
𝑖=1 S

𝜙
𝜏𝑖 and SP

𝑁−𝑘
𝑠 =

⋃𝑁−𝑘
𝑖=1 SP

𝜏𝑖
𝑠 .

The complete algorithm for solving the optimization problem

above is presented in Algorithm 1.

Algorithm sketch: We first initialize the barrier region set CB𝜙 =

𝑆 ini to the set of initial states. Next, we get 𝑁 trajectory samples

from the simulator by executing the test policy 𝜋 test. Then, we

identify the trajectories out of 𝑁 trajectories that violate the safety

constraint and denote it as𝑘 . From line 8 to line 22, we are essentially

computing the inner maximization in (8), which is to find 𝑠′ for a
given 𝜙 . In lines 23 and 24, we obtain the gradient w.r.t 𝜙 and update

the parameter using gradient descent. We repeat this process for𝑀

number of iterations. In line 26, we obtain the barrier region CB𝜙 .

4.1 Computation of 𝜖
Let P(·) be a violation probability function of the safety constraint

for any given value of 𝜙 and 𝜏 , and 𝑝
𝜙

vio
denote the probability

value.

𝑝
𝜙

vio
= P

(
𝑉 unsafe

(
S𝜙𝜏

)
> 𝛼

)
(10)

Let 𝜙𝑁,𝑘 be the solution of the sampling based optimisation in

Eq. (8). Note that 𝜙𝑁,𝑘 is a random variable because it depends

on random multi-samples of 𝜏 as (𝜏1, . . . , 𝜏𝑁 ). As a result, the vio-
lation probability with 𝜙𝑁,𝑘 , 𝑝

𝜙𝑁,𝑘

vio
is also a random variable. Let

P𝑁 = P × · · · × P be a probability measure which is a product prob-

ability because each trajectory 𝜏𝑖 is an independent sample of the

1
Appendix A, part A.1 in [10] provides a more detailed description regarding constraint

removal for interested readers to gain more insights.
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Algorithm 1:
1 Initialize barrier certificate parameter 𝜙 , CB𝜙 = 𝑆 ini

2 Collect 𝑁 trajectories {𝜏1, . . . , 𝜏𝑁 } from the simulator by running

test policy 𝜋 test

3 Identify all trajectories that violate the safety constraints and

remove them. Let this number denote 𝑘 .

4 For the remaining (𝑁 − 𝑘 ) trajectories,
5 Compute S𝑁 −𝑘 =

⋃𝑁 −𝑘
𝑖=1 S𝜏𝑖

6 Compute SP𝑁 −𝑘
𝑠 =

⋃𝑁 −𝑘
𝑖=1 SP

𝜏𝑖
𝑠 ∀𝑠 ∈ S𝑁 −𝑘 ,

7 for𝑀 iterations do

8 S𝜙
𝑁 −𝑘 = {}

9 for each 𝑠 ∈ S𝑁 −𝑘 do
10 if B𝜙 (𝑠 ) ≥ 0 then
11 S𝜙

𝑁 −𝑘 = S𝜙
𝑁 −𝑘 ∪ {𝑠 } /*Only the states within BR */

12 CB𝜙 = CB𝜙 ∪ {𝑠 }
13 end
14 end
15 for each 𝑠 ∈ S𝜙

𝑁 −𝑘 do
16 for each 𝑠′ ∈ SP𝑁 −𝑘

𝑠 do
17 if −B𝜙 (𝑠′ ) ≥ 0 and −B𝜙 (𝑠′ ) ≥ −B𝜙 (max_𝑠′ ) then
18 max_𝑠′ = 𝑠′

19 end
20 end
21 end
22 𝑠′∗ = max_𝑠′

23 Compute gradient, ∇𝜙 𝐽 (𝜙 ) = −∇𝜙B𝜙 (𝑠′∗ )
24 Update, 𝜙 ← 𝜙 − 𝛿 · ∇𝜙 𝐽 (𝜙 )
25 end
26 return CB𝜙

distribution 𝑃𝜋 test (·). Thus, 𝑝𝜙𝑁,𝑘

vio
can be less than 𝜖 for some multi-

samples (𝜏1, . . . , 𝜏𝑁 ) and greater for others. The theorem below

establishes the condition under which 𝑝
𝜙𝑁,𝑘

vio
> 𝜖 has any arbitrary

small probability 𝛽 .

Theorem 4.1. [10] Let 𝛽 ∈ (0, 1) be any small confidence param-
eter. If 𝑁 and 𝑘 are such that(

𝑘 +𝑚 − 1
𝑘

) 𝑘+𝑚−1∑︁
𝑖=0

(
𝑁

𝑖

)
𝜖𝑖 (1 − 𝜖)𝑁−𝑖 ≤ 𝛽 (11)

where𝑚 = |𝜙 | is the number of optimization variables, then with at
least (1 − 𝛽) confidence, we have,

P𝑁
(
𝑝
𝜙𝑁,𝑘

vio
≤ 𝜖

)
≥ (1 − 𝛽) (12)

Substituting 𝑝
𝜙𝑁,𝑘

vio
from (10) in the above inequality, we get,

P𝑁
(
P
(
𝑉 unsafe

(
S𝜙𝑁,𝑘
𝜏𝑖

)
> 𝛼

)
≤ 𝜖

)
≥ (1 − 𝛽) (13)

where, 𝑖 ∈ [1, 𝑁 − 𝑘]. The above inequality can also be shown in

terms of the probability of constraint satisfaction,

P𝑁
(
P
(
𝑉 unsafe

(
S𝜙𝑁,𝑘
𝜏𝑖

)
< 𝛼

)
≤ (1 − 𝜖)

)
≥ (1 − 𝛽) (14)

This theorem establishes the relation between the key parameters—

the number of trajectory samples (𝑁 ), the number of trajectories

violating the safety constraint (𝑘), the probability of satisfying the

safety constraint (1 − 𝜖), and confidence level (1 − 𝛽). From Eq. (8)

in [10], and assuming𝑚 ≤ 5, we get an expression to compute a

lower bound on 𝜖 given other parameters,

𝜖 ≥ min

{
1,

1

𝑁

[
𝑘 + ln 1

𝛽
+
√︄
ln
2
1

𝛽
+ 2𝑘 ln 1

𝛽

]}
(15)

5 EXPERIMENTS
We evaluate our proposed probably approximate safety (PAS) verifi-

cation approach on three RL domains: i) safe navigation as shown in

Fig.1, ii) safe mountain car as shown in Fig.3c and iii) safe cartpole

as shown in Fig.4a. As mentioned above, our objective in this paper

is not to find an optimal policy but to provide a probability of safe

behavior for a given policy. For our analysis, we use two kinds of

policies— unsafe and safe policies. The motivation behind using the

two policies is to compare the probability of safe behavior between

the two policies and verify empirically the safe policy has a higher

safety probability than the unsafe one. We obtained the unsafe

policy by training for fewer training steps than the safe policy.

5.1 Test environments

Safe navigation: We modified the popular multiagent-RL domain

of cooperative navigation [21] for a single-agent setting and added

an unsafe region in the state space as shown in Fig.1. In this en-

vironment, the agent starts from an initial state below the unsafe

region, and the goal is to reach the green circle by avoiding the

red ellipse region (unsafe region)
2
. The agent’s reward is a com-

bination of a negative of the Euclidian distance from the goal and

a cost of -10 if the agent enters the unsafe region. We train both

policies using a popular off-the-shelf RL algorithm called Proximal

Policy Optimization (PPO) [32]. We use the stable-baseline3 [30]

implementation of the PPO algorithm. We train the safe policy for

500k steps, while the unsafe policy is trained only for 100k steps.

In Fig.3a and Fig.3b, we present the trajectory samples generated

by unsafe and safe policies, respectively. For the unsafe policy in

Fig.3a, most of the trajectories are entering the unsafe region. In

contrast, for the safe policy in Fig.3b, almost all the trajectories

can avoid the unsafe region while also reaching close to the goal.

For our PAS algorithm, we use the cost value 𝑐𝑡 = 10 to compute

the unsafe behavior value (𝑉 unsafe (𝜏)) of a trajectory (𝜏) and the

number of parameters of the barrier certificate𝑚 = 5.

Safe mountain car: We modify the original mountain car do-

main [8, 25] to include unsafe region (red box) as shown in Fig.3c.

The unsafe region is based on the car’s position along the x-axis. If

the car’s position is less than -0.95, the car enters the unsafe region.

In the original mountain car environment, the car receives a reward

of −1 at every time step. The goal is to reach the flag as quickly as

possible. We also include an additional cost of −10 to the reward

if the agent enters the unsafe region. We use the PPO algorithm

to train both unsafe and safe policies. The unsafe and safe policies

are trained for 1M and 5M steps, respectively. In Fig.3d and Fig.3e,

we show the trajectory samples generated from the unsafe and

2
Note, this unsafe region is unknown to our PAS algorithm but is only used in the

trajectory simulator to generate cost values.
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(a) Unsafe policy (b) Safe policy (c) Safe mountain car (d) Unsafe policy (e) Safe policy

Figure 3: (a) and (b) show the trajectory samples generated from the unsafe and safe policies in a safe navigation environment, respectively. (c)
shows the safe mountain car environment. The goal of the car agent is to reach the yellow flag on the top of the mountain by avoiding the
unsafe region in the red box. (d) and (e) show the trajectory samples generated from unsafe and safe policies. The x-axis shows the episode
length, and the y-axis shows the horizontal position of the car. The various curves denote the trajectory samples.

(a) Safe cartpole (b) Unsafe policy (c) Safe policy

Figure 4: (a) shows the safe cartpole environment. The goal is to
balance the pole by applying forces in the left and right direction of
the cart and also by avoiding entering into unsafe regions. (b) and
(c) show the trajectory samples generated from the unsafe and safe
policies. The x-axis shows the episode length, and the y-axis shows
the horizontal position of the cart. The various curves denote the
trajectory samples.

safe policies, respectively. In Fig.3d, many of the trajectories are

entering the unsafe region (red box), and very few reach the flag

at the horizontal position of 0.6. However, for the safe policy in

Fig.3e, we see very few enter the unsafe region for a short number

of time steps, and most of them reach the flag position. For our PAS

algorithm, we use the cost value 𝑐𝑡 = 10 to compute the unsafe

behavior value (𝑉 unsafe (𝜏)) of a trajectory (𝜏) and the number of

parameters of the barrier certificate𝑚 = 2.

Safe cartpole: We modify the original cartpole environment [3, 8]

to include unsafe regions (red boxes) as shown in Fig.4a. The unsafe

regions are based on the cart’s position along the x-axis. If the cart’s

position is less than -1 ormore than 1, then the cart enters the unsafe

region. In the original cartpole environment, the RL agent receives

a reward of +1 at every time step for keeping the pole upright

and 0 otherwise. The goal is to keep the pole upright as long as

possible. We also include an additional cost of -5 to the reward if

the agent enters the unsafe regions. We use the PPO algorithm to

train both unsafe and safe policies. The unsafe and safe policies are

trained for 300k and 1M steps, respectively. In Fig.4b and Fig.4c, we

show the trajectory samples generated from the unsafe and safe

policies, respectively. In Fig.4b, many trajectories enter the unsafe

region (red box). However, for the safe policy in Fig.4c, we see very

few enter the unsafe region, thus resulting in a high total reward.

For our PAS algorithm, we use the cost value 𝑐𝑡 = 5 to compute

the unsafe behavior value (𝑉 unsafe (𝜏)) of a trajectory (𝜏) and the

number of parameters of the barrier certificate𝑚 = 2.

The complete description of the experimental setup and different

hyperparameters used are provided in the supplementary material
3
.

5.2 Probability of safe behavior with varying
number of trajectory samples

Since our proposed method is sampling-based, this experiment

shows how the probability of safe behavior changes with varying

numbers of trajectory samples. We compute the safety probability

(1 − 𝜖) from the expression for 𝜖 in (15). In all experiments, we use

five different seeds because there can bemultiple sample trajectories

for a fixed value of 𝑁 . We set a high confidence level (1 − 𝛽) =
0.99999, and the total number of constraint violations 𝑘 is obtained

by evaluating whether each trajectory sample is violating the safety

constraint (2) for the given threshold 𝛼 . Also, note that, for a given

value of 𝛼 and 𝑁 , we may have different values of 𝑘 for different

seeds depending on the quality of the trajectory samples. This will

lead to different values of the safety probability (1 − 𝜖) since 𝜖

depends on 𝑁 , 𝛽 , and 𝑘 as per Eq. (15). Thus, we report the average

probability value and standard deviations over the different seeds.

Results: In Fig.5, we show the probability of safe behavior for the

unsafe and safe policies for the three test environments. We evalu-

ated the results for varying values of safety constraint threshold 𝛼 .

Typically, the safety constraint threshold values are domain-specific.

For our evaluation, the main motivation is to analyze how the safety

probability values change with varying restrictions on the safety

constraints, i.e., from tighter to looser constraints. The lower and

higher values of 𝛼 denote the tighter and looser constraints, respec-

tively. For all the figures Fig.5a to Fig.5f, we observe a common

trend for both policies: the probability value increases with increas-

ing number of trajectory samples and converges around 𝑁 = 5000

as the probability values do not change much beyond 5000. For

the unsafe policies shown in Fig.5a, Fig.5c and Fig.5e, we observe

a high variation in the probability values for different values of

𝛼 . The safety probability value increases with increasing value of

the safety threshold. This is an expected behavior for the unsafe

policy because as the safety constraint loosens, more trajectories

satisfy the safety constraint, thus increasing the probability value.

3
http://jamesarambam.github.io/files/aamas24_sup.pdf
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(a) Safe Nav.: Unsafe policy (b) Safe Nav.: Safe policy (c) Safe Mcar: Unsafe policy (d) Safe Mcar: Safe policy (e) Safe Cpole: Unsafe policy (f) Safe Cpole: Safe policy

Figure 5: The figures show the probability of safe behavior for the unsafe and safe policies for the safe navigation environment in (a) and (b),
the safe mountain car environment in (c) and (d), and the safe cartpole environment in (e) and (f) with varying numbers of trajectory samples
(𝑁 ) for different safety thresholds (𝛼). The x-axis shows the number of trajectory samples (𝑁 ), and the y-axis shows the probability of safe
behavior (1 − 𝜖 ) .

At 𝑁 = 10000 for the tightest constraint (lowest 𝛼), we get very

low probabilities < 0.3 in all three domains.

However, in the case of the safe policies in Fig.5b, Fig.5d and

Fig.5f, we observe a high value of the safety probability at𝑁 = 10000

even for the tighter constraints (lowest 𝛼) in all three domains. This

is because of the good quality trajectory samples from the policy;

only a small fraction of the trajectory samples enter the unsafe

region for a small number of time steps. Thus resulting in a high

probability of safe behavior. Hence, with these experiments, we

empirically verified that the probability of safe behavior for the

safe policy is higher than that of unsafe policy.

5.3 Barrier region of policies
In Fig.6a and Fig.6b, we show the barrier region CB𝜙 of the unsafe

and safe policies, respectively, for the safe navigation environment.

We construct an approximate graphical representation of the barrier

region (in green color polygon) by joining the outermost points of

the point cloud (set of states) belonging to the barrier region set CB𝜙 .
We plot the barrier regions for the safe navigation experiment in

Fig.5a and Fig.5b at 𝑁 = 10000 and 𝛼 = 20. We use different 10000

trajectory samples for the trajectories inside the barrier region

to show the robustness of the obtained barrier region. For the

unsafe policy case in Fig.6a, we observe the obtained barrier region

overlaps significantly with the unsafe region. Most trajectories

enter the unsafe region for many time steps, thus violating the

safety constraint, resulting in a very low safety probability value of

0.333. On the other hand, in the safe policy case, we observe a more

concise graphical representation of the barrier region, as shown in

Fig.6b. This is due to the more structured behavior of the trajectory

samples, which is to avoid the unsafe region, thus giving a high

safety probability value of 0.997. In Table 1, we provide a numerical

value of the overlapping region. We compute it by counting the

number of states in the barrier region that are also inside the unsafe

region. The exact count of the overlap region (OR) is provided in

Table 1 safe navigation environment column. We observe an OR

value of 54641 for the unsafe policy with a low safety probability

value of 0.333 while the safe policy has a very low OR value = 2431

with a very high safety probability value of 0.997 of the barrier

region.

In Fig.7, we show the barrier regions of the policies for the safe

mountain car and safe cartpole environment. We plot the barrier

(a) Unsafe policy (b) Safe policy

Figure 6: The figures show an approximate graphical representation
of the barrier region of the unsafe and safe policies for the safe
navigation environment. The green polygon denotes the barrier
region with trajectory samples inside it.

Envs Safe navigation Safe mountaincar Safe cartpole

Pol.

𝛼 = 20 𝛼 = 20 𝛼 = 20

OR Prob. OR Prob. OR Prob.

Unsafe 54641 0.333 11218 0.303 16287 0.141

Safe 2431 0.997 9433 0.824 783 0.984

Table 1: This table shows the quantitative results on overlapping
regions (OR) of the barrier region and unsafe region for both the
unsafe and safe policies for the three domains along with the cor-
responding safety probabilities (Prob.) associated with the barrier
regions of the policies

regions for the safe mountain car and safe cartpole experiments in

Fig.5(c-d) and Fig.5(e-f), respectively, for both the policies at 𝑁 =

10000 and 𝛼 = 20. In both environments, since the unsafe regions

are based on the horizontal positions of the car (in safe mountain

car) and the cart (in safe cartpole), which is a one-dimensional

scalar value, the barrier regions are a line segment. We obtain the

two ends of the line segment as the minimum and maximum values

from the barrier region CB𝜙 set. For the unsafe policy case in Fig.7a

and Fig.7c, the barrier regions cover the whole possible range of

the horizontal position, which also include the unsafe regions (in

red color). Thus, we observe a high overlapping region (OR) value

of 11218, resulting in a low safety probability value of 0.303 from

Table1 for the safe mountain car environment. Similarly, in safe

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1751



(a) Safe Mcar: Unsafe policy (b) Safe Mcar: Safe policy (c) Safe Cpole: Unsafe policy (d) Safe Cpole: Safe policy

Figure 7: (a) and (b) show a graphical representation of the barrier regions of the unsafe and safe policies for the safemountain car environment.
(c) and (d) show the barrier regions of the unsafe and safe policies for the safe cartpole environment. The green region denotes the barrier
region with trajectory samples inside it, and the red region denotes the unsafe region.

cartpole environment, we observe a high OR value of 16287 and a

low safety probability value of 0.141.

However, for the safe policies, as shown in Fig.7b for the safe

mountain car environment, the barrier region only slightly overlaps

with the unsafe region. In the safe cartpole environment in Fig.7d,

one end of the barrier region is at the boundary of the unsafe region

at the bottom, and the other end slightly overlaps with the unsafe

region at the top. Thus, we get a low OR value of 783 and a high

safety probability value of 0.987 for the safe cartpole environment.

Similarly, in the safe mountain car, we observe a comparatively low

OR value of 9433 and a high safety probability value of 0.824.

5.4 Ablation
We also performed an ablation study in the safe navigation environ-

ment to analyze the impact on the safety probability values (1−𝜖) as
we remove more trajectories that violate the safety constraints (𝑘)

from a smaller value to the actual number of violating trajectories.

Note that the actual number of trajectories that violate the safety

constraint is fixed for a given number of trajectory samples (𝑁 ) and

safety threshold (𝛼). We also highlight that the probability values

computed with 𝑘 being smaller than the actual number of violating

trajectories are incorrect and do not represent the true probabilistic

guarantee. In this experiment, we set the total number of trajectory

samples 𝑁 = 10000 and a high confidence level (1 − 𝛽) = 0.99999.

We evaluated for varying safety thresholds 𝛼 = [15, 20, 25, 30] and
ran the experiment for five seeds, resulting in five different 10000

trajectory samples.

In the case of unsafe policy, as shown in Fig.8a, for a low number

of violating trajectories 𝑘 = 100, we get a high safety probability

value for all 𝛼 . 𝑘 = 100 is a small fraction of the total trajectory

samples, and given that the trajectory samples are from an unsafe

policy, there is a high likelihood that all 100 trajectories violate the

safety constraints for all 𝛼 values. Thus, we get the same safety

probability value for all 𝛼 at 𝑘 = 100. However, as we remove more

violating trajectories i.e., increasing the value of 𝑘 , the safety prob-

ability values for all 𝛼 drop and converge to corresponding fixed

values (true guarantees). For loosened constraint 𝛼 = 30 (purple

color), 𝑘 = 6000 is the maximum number of violating trajectories

because the safety probability value of around 0.72 does not change

beyond 6000. But, for a much tighter constraint 𝛼 = 15 (blue color),

the total number of violating trajectories goes up to 𝑘 = 8000, thus

resulting in a much lower safety probability of around 0.2.

(a) Unsafe policy (b) Safe policy

Figure 8: The figures show the probability of safe behavior for the
unsafe and safe policies in the safe navigation environment with
varying numbers of trajectories violating the safety constraint (𝑘)
for different safety thresholds (𝛼). The x-axis shows the number of
safety constraint violations (𝑘), and the y-axis shows the probability
of safe behavior (1 − 𝜖 ) .

However, for the safe policy in Fig.8b, we observe a more con-

sistent and high safety probability value for all 𝛼 . This is because

the trajectory samples are from the safe policy; even for a tighter

constraint (𝛼 = 15), the number of violating trajectories is 100 or

less, thus resulting in a high probability of safe behavior.

6 CONCLUSION
In this paper, we addressed the safety verification problem of a

given RL policy. Our key objective is to provide a probabilistic

guarantee of safe behavior for the policy, and for this purpose, we

developed a scenario optimization based Probably Approximate

Safety (PAS) verification algorithm. Unlike previous methods, our

sampling-based approach does not require any prior knowledge

about the system, e.g., the transition model or set of unsafe states.

Our approach is also scalable because the sampling process can

be easily parallelized. The extensive empirical evaluations on dif-

ferent RL domains demonstrate the validity and robustness of our

proposed method.
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