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ABSTRACT
Even though Google Research Football (GRF) was initially bench-
marked and studied as a single-agent environment in its original
paper [19], recent years have witnessed an increasing focus on
its multi-agent nature by researchers utilizing it as a testbed for
Multi-Agent Reinforcement Learning (MARL), especially in the
cooperative scenarios. However, the absence of standardized en-
vironment settings and uni�ed evaluation metrics for multi-agent
scenarios hampers the consistent understanding of various studies.
Furthermore, the challenging 5 vs 5 and 11 vs 11 full-game scenarios
have received limited thorough examination due to their substantial
training complexities. To address these gaps, this paper extends the
original environment by not only standardizing the environment
settings and benchmarking cooperative learning algorithms across
di�erent scenarios, including the most challenging full-game sce-
narios, but also by discussing approaches to enhance football AI
from diverse perspectives and introducing related research tools
for learning beyond multi-agent cooperation. Speci�cally, we pro-
vide a distributed and asynchronous population-based self-play
framework with diverse pre-trained policies for faster training, two
football-speci�c analytical tools for deeper investigation, and an
online leaderboard for broader evaluation. The overall expectation
of this work is to advance the study of Multi-Agent Reinforcement
Learning both on and with Google Research Football environment,
with the ultimate goal of deploying these technologies to real-world
applications, such as sports analysis.
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1 INTRODUCTION
Soccer is universally enjoyed, and so are soccer games. They have
been proven to be valuable for exploring multi-agent reinforcement
learning through research conducted in various environments, in-
cluding Markov Soccer Game[24], the RoboCup Soccer Simulator
[17], Google Research Football (GRF) [19], rSoccer [29], DeepMind
MuJoCo Multi-Agent Soccer Environment [26]. Among them, GRF
stands out due to its ability to emulate realistic scenarios (Figure
1) like FIFA and Real Football with not only cooperation between
teammates but also competition against opponent teams. As for the
interface, it allows algorithms to control all players on the� eld with
high-level actions rather than low-level dynamics. Consequently,
GRF presents an appealing platform for studying both cooperative
and competitive multi-agent reinforcement learning at a strategic
level. The abundant real-world and virtual-game match data also
o�er a great opportunity to study how to learn from multi-agent
demonstrations. Meanwhile, modern sports have an emerging need
for smarter analyses, which suggests a natural application for re-
lated studies. Indeed, similar strategic reasoning with multi-agent
systems is ubiquitous. Therefore, we believe that the GRF envi-
ronment could be yet another catalyst to accelerate the study and
deployment of MARL.

However, even though the GRF simulator provides support for
both single-agent andmulti-agent settings, its original paper merely
benchmarks single-agent scenarios [19]. In this setting, only one
player is controlled at a time, and the player to be controlled is
determined by an underlying heuristic. The highlight moment for
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(a) 3 vs 1 (b) counterattack (c) 11 vs 11

Figure 1: Snapshots of di�erent Google Research Football
scenarios

the single-agent setting studies was the 2020 Kaggle competition,
Google Research Football with Manchester City F.C. [3]. This com-
petition attracted more than 1,000 teams to compete online. Top-
performing teams such asWekick, Salty�sh and liveinparis made a
substantial impact on subsequent studies of multi-agent scenarios
through their ideas, code, and datasets.

In recent years, more researchers have turned their attention
towards the multi-agent nature of GRF, considering it a testbed for
their MARL algorithms [22, 54, 56, 59]. Inspired by the Kaggle Com-
petition, IEEE Conference on Games Football AI Competition [32] was
held in 2022, which focused on multi-agent scenarios. Such growing
popularity of GRF may also be attributed to the extensive explo-
ration and saturation of many other multi-agent environments,
which are no longer suitable for further academic research [6].
For example, the well-known MARL benchmark, StarCraft Multi-
Agent Challenge (SMAC), has been extensively investigated and
reported to achieve near-optimal performance in numerous studies
[35, 54, 56]. Some criticism has also been directed towards SMAC
due to its lack of stochasticity [6]. On the contrary, GRF has strong
stochasticity, as discussed in its original work [19]. Consequently,
the MARL community has expressed a need for more challeng-
ing testbeds, and Google Research Football emerges as a desirable
choice.

However, most previous studies evaluate their algorithms on var-
ious sets of simpli�ed cooperative soccer tasks known as academy
scenarios with only 1 to 5 agents [8, 10, 22, 31, 37, 40, 41, 56, 60].
Some researchers even develop customized simple tasks for eval-
uation purposes [22, 25, 53]. Due to the considerable variations
in scenario settings and evaluation metrics employed by di�erent
studies, it becomes challenging to comprehensively understand and
compare performance across works.

In addition, the more challenging full-game scenarios with each
team of either 5 or 11 players are less touched because of their
di�culties originating from more players, larger spaces, and longer
horizons. only very recently, a few studies have ventured into tack-
ling these much more di�cult cooperative settings [13, 23, 54]. Yet,
they rely on either complex training or sophisticated reward de-
signs with no one presenting a simple and succinct enough solution
for easy follow-up or comparison.

Therefore, this paper aims to standardize the scenario settings
and provide benchmark results for cooperative scenarios with rep-
resentative algorithms but without any advanced techniques or
tricks. Furthermore, as pointed out in [46], over-�tting to a� xed
opponent does not give a generally strong football AI. Therefore, to
step towards future studies of cooperative and competitive MARL,
we introduce several ways of building strong Football AI and related

research tools. We also discuss the limitations of current studies
with corresponding potential research directions.

In summary, our major contributions can be outlined as follows:
(1) Standard Settings: We establish standardized settings for

both academy and full-game scenarios in the multi-agent
context of Google Research Football, following some best
practices.

(2) Benchmark and Analysis: We conduct an empirical compari-
son of representative MARL algorithms on the standardized
tasks, accompanied by a comprehensive analysis of various
algorithmic designs.

(3) Research Tools: To our knowledge, we are the� rst to release
a comprehensive set of research tools for GRF studies1. These
tools encompass an e�cient distributed population-based
self-play training framework, diverse pre-trained models,
two football analytical tools, and an online leaderboard.

Overall, we expect to boost studies of MARL on and with Google
Research Football environment. Hopefully, one day, related research
could go beyond virtual games and bring bene�ts to real-world
sports analysis and strategy reasoning.

The overall structure of our paper is as follows:
(1) The Past: Early works on GRF mainly study the single-agent

setting and the later research on the multi-agent scenarios
uses inconsistent environmental settings. In Section 1 and 2,
we discuss previous studies on GRF and argue the need for
a uni�ed evaluation.

(2) The Present: More recent studies have started to use GRF
as a testbed for cooperative MARL but a benchmark is still
lacking. In Section 3 and 4, we provide a fully reproducible
MARL benchmark for standardized cooperative tasks on GRF
with detailed experiments and analysis.

(3) The Future: We aim to go beyond cooperative tasks to com-
petitive tasks and learn sophisticated human-like strategies.
In Section 5 and 6, we provide related tools for future studies
and discuss limitations with potential research directions.

2 RELATEDWORK
The primary work related to our research is the original GRF paper
[19], which introduces the environment but only studies single-
agent scenarios, where only a single active player of a team is
controlled. Some works focus on solving competitive tasks in this
single-agent setting. For example, Liu et al. [27] beat the strongest
built-in AI with a novel PSRO [20] algorithm that combines both
behavior diversity and response diversity. Though such a competi-
tive task in a single-agent scenario is also multi-agent by de�nition,
our work mainly focuses on multi-agent scenarios, where multiple
players of a single team are controlled by agents, which renders
the cooperation between teammates important. Our research is
motivated by three key factors.

Firstly, we recognize the necessity of benchmarking multi-agent
cooperative learning due to its growing popularity, coupled with
the absence of standardized benchmarks. Several recently proposed
multi-agent reinforcement learning algorithms, such asMulti-Agent
PPO (MAPPO)[59], Multi-Agent Transformer (MAT) [56] and A2PO

1All our code, including experiment settings and research tools, are available at https:
//github.com/jidiai/GRF_MARL.git
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[54], all choose to validate their superior performance on GRFmulti-
agent tasks. The works on MARL communications [31, 41] and
behavioral diversity [22, 53] also utilize GRF multi-agent tasks as a
testbed. However, these studies often adopt di�erent experimental
settings, including varying sets of scenarios, environment con�gura-
tions, and evaluation metrics, making it challenging to compare and
interpret results consistently. Our work addresses these challenges
by� rst standardizing the test suite and subsequently benchmarking
representative algorithms on it.

Furthermore, we� nd the need formore attention to the full-game
scenarios. Currently, only a few studies have explored methods in
these challenging settings. TiKick [13] claims to be the� rst work
tackling the 11 vs 11 scenario, but it allows agents to use a default
built-in action, which delegates the control of players to the un-
derlying heuristic. Recently, TiZero [23] and Fictitious Cross-Play
(FXP) [57] both beat the strongest built-in AI in the 11 vs 11 setting
by respectively learning from a curriculum of self-play and setting
a counter-policy population. Meanwhile, Wang et al. [54] also out-
performed the toughest built-in AI in full games learning training
from scratch but with sophisticated reward designs and asynchro-
nous training. In addition, these papers focus mainly on their new
algorithms, providing limited analysis of GRF. In contrast, our work
extensively benchmarks and analyzes full-game scenarios using
only the o�cial SCORING and CHECKPOINT rewards provided
by the game, without employing any additional tricks.

Lastly, we realize the importance of sharing research tools to
facilitate further studies in cooperative and competitive learning
on GRF. Most related studies, such as [8, 22, 31, 41, 59], only release
codes limited to simple academy scenarios. Other papers like [13,
23] have only released evaluation scripts with trained models. In
contrast, we provide a comprehensive training, evaluation, and
analysis toolkit.

3 SCENARIOS
We carefully select scenarios that are suitable for multi-agent coop-
eration from the original set of GRF scenarios to form our bench-
mark suite (Table 1). We strive to make minimal modi�cations to
these scenarios while adhering to best practices. The selected are
those commonly used in previous MARL research work to examine
the performance of their proposed algorithm [13, 19, 27]. Mean-
while, they also cover di�erent levels of cooperation. For example,
3 vs. 1 with keeper, pass and shoot with keeper, and run pass and shoot
with keeper are three small-scale tasks focusing on short-horizon
o�ensive strategy learning and only involve a small group (3-4) of
players on the pitch. Whereas scenarios like corner, counterattack
easy, and counterattack hard, require controlling all players in a
team, though only a fraction of them may play a critical role. On
the other hand, full-game settings, such as 5 vs. 5 and 11 vs. 11,
emphasize more on long-horizon planning, and agents are required
to consider both o�ense and defense strategies. Academy scenarios
involving a single player are excluded. Additionally, the guidelines
governing our modi�cation to these tasks can be summarized as
follows:

(1) To save computational resources, we choose one di�culty
level for each scenario, as it mainly a�ects the reaction time
of the built-in AI rather than its strategy [19].

(2) Given the distinct action set of the goalkeeper (GK) compared
to other non-GK players, we delegate GK control to the built-
in AI in all scenarios. We utilize the default action set with
19 actions for all other players. We do not recommend using
alternative o�cial action sets, such as action set v2 and the
full action set adopted in the work [13] and [8] respectively.
These alternative sets include a built-in default action that
delegates action selection to the underlying heuristic, which
contradicts the purpose of using reinforcement learning to
learn complex controls.

(3) In academy scenarios primarily designed for studying at-
tacks, we end the episode immediately upon possession ex-
change. This approach alleviates the need for algorithms to
consider defensive strategies. For full-game scenarios, we
ensure fairness by forcing the two teams to exchange sides
at halftime.

During the evaluation phase, we use winning rate as the main
criterion, supplemented by football-speci�c statistics as auxiliary
metrics. The winning rate, being the essential objective of any
game, serves as a well-normalized and commonly utilized measure,
consistent with prior research� ndings. Moreover, football-speci�c
metrics such as ball possession and passing o�er preliminary in-
sights into team dynamics, facilitating more profound behavioral
analysis (as demonstrated in Section 5.1.3).

Table 1: Scenario name and line-up illustration for each
benchmark scenario (red triangle: left-team player; blue tri-
angle: right-team player; •: ball).

3 vs 1 with
keeper (3v1)

pass and shoot
(pass)

run pass and
shoot (run) 5 vs 5

corner counterattack-
easy (ct-e)

counterattack-
hard (ct-h) 11 vs 11

4 MULTI-AGENT COOPERATIVE LEARNING
BENCHMARK

4.1 Problem Formulation
The multi-agent Google Research Football scenarios can be for-
mulated as a Markov game ⌧ with # agents. The game is de�ned
by a set of elements h# ,S, {A8 }82{1,...,# } , % ,{'8 }82{1,...,# } ,Wi. S
is the set of game states shared by all agents, A8 is the set of ac-
tions of agent 8 and we denote A := A1 ⇥ ... ⇥ A# as the joint
action. % : S ⇥ A ! S is the transition probability function.
'8 : S ⇥A ⇥ S! R is the reward function for agent 8 . W 2 [0, 1]
is the discount factor that represents the decaying rate. The game
also can be viewed from two perspectives:

• Single-agent setting: a naive solution to game ⌧ is to trans-
form the problem into a Markov Decision Process (MDP)
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de�ned by a tuple of elements hS,A, %,', Wi. S = {S},A =
{A1 ⇥ ... ⇥A# } are joint state and action of # agents and
can be seen as the state and action of a single integrated
agent. The goal of the integrated agent is to solve the MDP,
that is to� nd the optimal joint policy function 0 : S! A

such that the discounted cumulative reward is maximized:

EBC+1⇠% ( · |BC ,aC ) ;aC⇠0 ( · |BC )

 ’
C�0

WC'(BC , aC , BC+1)
����B0

!

BC , BC+1 2 S, aC 2 A
• Fully cooperative setting: this setting can be regarded as a
multi-player extension to theMDPwhere agents are assumed
to be homogeneous and interchangeable. Agents also share
the same reward function: ' = '8 = '1 = ... = '# . The game
proceeds as follows: at each time step C , the environment has
a state BC , each agent executes its action 08C simultaneously
with all other agents, giving the joint action �C = 01C , ..., 0

#
C .

The environment transit to the next state BC+1 ⇠ % (·|BC ,�C ).
Then, the environment determines an immediate reward
'8 (BC ,�C , BC+1) for each agent. The goal of each agent 8 is
to solve the game by� nding an individual optimal policy
c8 2 ⇧8 : S ! A8 such that the discounted cumulative
reward is maximised:

EBC+1⇠% ( · |BC ,01:#C ) ;08C⇠c8 ( · |BC )

 ’
C�0

WC'8C (BC ,01:#C , BC+1)
����B0

!

BC , BC+1 2 S,08C 2 A8 , 8 = 1, ...,#
In this setting, the optimal policy of each agent is in�uenced
by not only its own policy but also the policies of the other
agents in the game. This is one of the fundamental di�erences
between single-agent RL and multi-agent RL [58].

4.2 Algorithms
We benchmark a variety of representative MARL algorithms across
our chosen scenarios, comprising both classic and cutting-edge
approaches within their respective categories. Our categorization
and selection process align with established MARL benchmarks
[34, 35], with further details provided in Table 2 and Appendix B.4.1.
Since the GRF environment requires discrete action controls, hence
algorithms tailored for continuous-action space such as MADDPG
[28] and FACMAC [36] are not part of our benchmark.

4.3 Experiment Settings
4.3.1 Feature Engineering. We compare two feature encoders in
our experiments: the Simple and the Complex. The Simple features
refer to the simple-115 features provided by the original GRF pa-
per [19], which encodes the location and motion information of
all players and the ball. To enrich the feature representation, we
also design Complex features which include additional information
such as the relative position, the closest teammate, and the closest
opponent. The detailed design can be found in Table 5.

4.3.2 Reward Shaping. We study two reward functions in our ex-
periments: the Sparse and the Dense, which are based on the o�cial
SCORING and CHECKPOINT rewards introduced in the original
GRF paper [19]. Both of them are simple and have been used in

Table 2: Overview of algorithms selected for our benchmark.
Agent Update Scheme [54] refers to simultaneous and se-
quential update of agents within a single optimization step.
Cen and Dec refer to centralized and decentralized operation
modes respectively.

Algorithm Value/Policy
Based

Update
Scheme

Training
Mode

Execution
Mode

QMIX [39] Value Simultaneous Cen Dec
QPLEX [52] Value Simultaneous Cen Dec
IPPO [5] Policy Simultaneous Dec Dec

MAPPO [59] Policy Simultaneous Cen Dec
HAPPO [18] Policy Sequential Cen Dec
A2PO [54] Policy Sequential Cen Dec
MAT [56] Policy Simultaneous Cen Cen

previous works. The SCORING rewards with +1when we score and
penalizes with �1 when we lose a score, while the CHECKPOINT
gives positive feedback whenever our player moves the ball to a
checkpoint that is closer to the opponent’s goal. SCORING reward
can be hard to obtain but CHECKPOINTS reward is easily attainable.
Our Sparse reward refers to using only the SCORING and Dense
reward refers to the sum of both SCORING and CHECKPOINT.

4.3.3 Parameter Sharing. Parameter sharing is also considered in
our experiments. With parameter-sharing, all agents share a single
copy of network parameters. Without parameter sharing, each
agent needs to maintain its own network parameters. Parameter
sharing has been shown to provide more e�cient learning [35] but
may cause high resemblance between behaviors of individual agents
[22]. To alleviate such an issue, we also include in the Complex
features a one-hot vector demonstrating the agent’s identity.

For each scenario, we simulate the same number of environment
steps and compare the win rates of di�erent algorithms. Additional
experiment settings can be found in Appendix B.

4.4 Academy Scenarios
We� rst benchmark performance on relatively simpler academy
scenarios and study di�erent settings, including reward shaping,
feature engineering, and parameter-sharing. Then we tackle the
full-game scenarios in section 4.5 following experience drawn from
the study of academy scenarios.

4.4.1 Policy-Based vs Value-Based Algorithms. The� nal perfor-
mance of all algorithms on academy scenarios is presented in Table
3 and the training curves are illustrated in Figure 2. In these scenar-
ios, policy-basedmethods tend to exhibit overall better performance
compared to value-based methods, particularly in run & pass, corner,
and counterattack. This discrepancy might be attributed to the curse
of dimensionality in state and action spaces, due to the combina-
torial nature of multi-agent systems which has been shown to be
challenging for value-based algorithms [58].

In Figure 2, we also� nd that di�erent policy-based methods
could achieve similar performance in small-scale scenarios. For
example, in 3 versus 1 with keeper and pass and shoot with keeper,
all policy-based algorithms achieve the 85% test win rate within
10M environment steps. In run pass and shoot with keeper scenario,
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the performance becomes slightly worse possibly due to higher
defensive pressure exerted by the closer opponent (see the line-up
in Table 1). In scenarios with a larger number of players (corner,
counterattack-easy & hard), most policy-based algorithms still man-
age to achieve a win rate of over 75% in counterattack tasks within
13M environment steps but struggle to beat the built-in AI in corner
tasks. By looking at the line-up in Table 1, we can� nd that the
counterattack tasks allocate only four players to the front-court for
participation in o�ensive maneuvers, with the remaining players
situated in the back-court, distanced from the ball. This con�gura-
tion simpli�es the task complexity, as the MARL learning algorithm
can center its attention on the o�ensive players. Whereas in cor-
ner tasks, all players are grouped together, requiring the policy
to coordinate their actions, which could pose a relatively greater
challenge in learning. Overall, the Multi-Agent Transformer (MAT)
performs the best in complex scenarios with a larger number of
players. This is probably due to the stronger ability of transformers
to learn contextual relationships between input data.

Table 3: Final performances of all algorithms on academy
scenarios. The�nal performance is recorded as themaximum
mean win rate(standard deviation) scaled by 100. The�rst
column lists all the scenarios with their abbreviations as
described in Table 1.

SCEN IPPO MAPPO HAPPO A2PO MAT QMIX QPLEX
pass 93.7(0.9) 92.9(2.6) 94.0(3.6) 93.2(1.2) 96.6(0.8) 95.6(5.8) 88.1(8.2)
run 73.7(13) 66.0(6.3) 70.4(7.2) 79.9(6.0) 81.1(5.7) 58.1(24) 68.8(14)
3v1 91.7(3.1) 90.0(3.2) 91.4(3.9) 87.6(1.4) 88.5(2.0) 86.9(8.2) 81.9(6.7)
corner 50.4(10) 50.5(7.2) 47.9(9.9) 59.7(6.2) 71.0(8.1) 20.0(19) 28.8(17)
ct-e 85.7(6.6) 88.9(6.6) 78.0(14.8) 80.9(7.3) 89.3(5.8) 57.5(19) 43.3(27)
ct-h 71.6(4.9) 81.3(9.6) 75.2(11) 80.7(4.2) 87.0(6.0) 56.3(18) 33.8(26)
5v5 99.1(0.6) 96.0(1.8) 98.0(1.3) 95.0(2.9) 99.3(1.2) 0.0(0.0) 0.0(0.0)
11v11 52.7(2.4) 45.4(2.7) 52.1(4.8) 50.1(3.6) 59.7(3.6) 0.0(0.0) 0.0(0.0)

4.4.2 An Analysis on Di�erent Algorithm Se�ings: Rewards, Feature
Encoders, and Parameter Sharing. To con�rm the e�cacy of our
approaches in tackling more demanding full-game scenarios, we
conducted additional ablation studies focusing on academy sce-
narios, the results of which are depicted in Figure 3. Notably, the
presented results are averaged across all policy-based algorithms,
excluding the two value-based algorithms due to their current in-
ability to e�ectively handle challenging scenarios, as validated in
Section 4.4.1. Further details on individual algorithm results and
their consistency analysis are provided in the Appendix B.5.

Across all six academy scenarios, dense reward (both SCORING
and CHECKPOINTS) shows better and more stable performance
than sparse reward (only SCORING). A possible reason might be
that the additional CHECKPOINTS reward, which e�ectively guides
the player toward the opponent’s goal, substantially reduces ex-
ploratory actions. In terms of selecting appropriate feature encoders,
complex features o�er more e�cient learning than simple ones.
This has demonstrated the importance of domain knowledge inte-
gration when solving a complex task. We also observe from Figure
3 that training without parameter-sharing gives slightly better re-
sults in some scenarios but worse performance on counterattack

Figure 2: Average win rates on six academy scenarios: 3 vs
1 with keeper, pass and shot with keeper, run pass and shoot
with keeper, corner, countera�ack easy and countera�ack
hard. Results are averaged over� ve random seeds and the
shaded area represents the standard deviation of the testing
win rate.

tasks. However, the time consumption of non-parameter-sharing is
considerably higher, making it less suitable for large-scale training.

4.5 Full-Game Scenarios
We leverage the insights gained from the benchmark in academy
scenarios to address the challenges posed by full-game scenarios.
Our approach involves utilizing dense rewards, the default feature
encoder, and parameter-sharing. The corresponding performances
are documented in Table 3, while the sample e�ciency curves are
illustrated in Figure 4. In particular, we observe that value-based
methods fail to learn meaningful behaviors within a reasonable
number of environmental steps. This observation aligns with our
previous� ndings on academy scenarios, empirically indicating
that these value-based methods encounter di�culties in complex
multi-agent environments without specialized treatment. Various
policy-based algorithms still exhibit similar performance after care-
ful hyper-parameter tuning, with MAT slightly outperforming the
others, potentially attributed to its fully centralized advantage. Al-
though the 5 vs 5 scenario has been largely addressed, the 11 vs 11
scenario remains challenging. Aside from the win rate, given the
substantial training time (12 hours for an experiment on the 11 vs
11 scenario with a 128 CPU and 2 A100 GPU server), it becomes
crucial to develop algorithms with improved sample e�ciency, as
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Figure 3: Comparisons under di�erent experiment settings.
(a), (b) & (c): win rate in each scenario averaged over all policy-
based algorithms with dense/sparse rewards; with com-
plex/simple feature encoders, and with/without parameter-
sharing. (d): Time cost in each scenario averaged over all
policy-based algorithmswith/without parameter-sharing. Er-
ror bars show the standard deviation. 3v1: 3 vs 1 with keeper;
pass: pass and shoot with keeper; run: run pass and shoot with
keeper; ct-easy: countera�ack-easy; ct-hard: countera�ack-
hard.

we need to repeatedly compute the best response to the current
opponent mixture in self-play.

Additionally, we delve into the behaviors learned by these al-
gorithms in full-game scenarios and discover that all algorithms
learn similar strategies. In both 5-vs-5 and 11-vs-11 tasks, these
policies e�ectively exploit the weaknesses of the built-in AI and
display sophisticated dribbling and shooting skills. During attacks,
teammates usually serve as distractions for opponent defenders,
while a single key player exploits the weak point of the defense
and performs the shot. In defense, all our defenders frequently co-
ordinate their movement forward to force opponent attackers into
an o�side position. A visualization of these behaviors on the 11 vs
11 scenario is given in Figure 5. Despite beating the strongest
built-in AI, this strategy is far from being robust. Simply train-
ing policies against� xed opponents only leads to over�tting to a
speci�c playing style, which limits the policies’ adaptability and
versatility. This problem inspires us to explore the methods in the
following section of building stronger football AI.

5 BUILDING STRONGER FOOTBALL AI
In Section 4.5, it is evident that the policy trained solely on the
benchmark scenarios lacks su�cient intelligence and robustness.
In the following, we will focus mainly on our ready-to-use training
framework and online ranking system. The former could help with
building a stronger AI with faster speed and less e�ort, while the
latter could help with building a more robust one by organizing
matches against other unknown strategies from the community.

Figure 4: Performance of baseline algorithm in 5 vs 5 (Left)
and 11 vs 11 (Right) full-game scenarios. Results are averaged
over� ve and three random seeds. Each 5 vs 5 experiment
(1e8 steps) takes approximately 8 hours to complete and an
experiment of 11 vs 11 (1e8 steps) takes around 12 hours on
a 200 CPU and 2⇥A100 GPU server).

(a) O�ensive strategy

Offside !

(b) Defensive strategy

Figure 5: Visualisation for team strategy in 11-vs-11 full-
game. (red triangle: left-team player; blue triangle: right-
team player; •: ball;!: left-team player’s movement;!:
right-team player’s movement;!: ball’s movement; k : o�-
side line.) More visualization of behavior analysis can be
found in Appendix B.8.

We will also brie�y introduce several accompanying tools, such
as diverse pre-trained policies (Appendix C.2 and C.3), a match-
decomposition data structure (Appendix C.4) for better analysis
and a single-step visual debugger (Appendix C.5) for easier investi-
gation.

5.1 Population-based Self-Play Framework,
Pre-Trained Policies and Analytical Tools

One approach to achieving a stronger and less exploitable policy is
to utilize more advanced self-play algorithms. To ease the e�orts
of other researchers, we release our distributed and asynchronous
population-based training framework, which implements Policy
Space Response Oracle (PSRO) [20] and League Training [15]. So far
as we know, it is the� rst publicly available training framework that
not only beats the hardest built-in AI on full-game scenarios with
only one round of best-response computation but also continues to
improve policies with population-based self-play. In this section,
we only include key results and leave the information regarding the
architecture, tutorial, and training procedure details in Appendix
C.1 and C.2.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1777



5.1.1 Asynchronous Implementation. Traditionally, most works
benchmark algorithms in a synchronous mode to evaluate sam-
ple complexity. Namely, the algorithm updates the model after a
certain amount of rollout steps. However, in practical large-scale
environments such as those in [15, 46], data collection can be very
time-consuming. This leads to two bottlenecks: rollouts within a
single batch must wait for one another, and trainers must wait for
the entire batch of rollouts to complete. To address these challenges,
we� rst implement an asynchronous approach that o�ers improved
e�ciency during run-time. In the asynchronous mode, rollout and
training processes run in parallel, nearly independently, with sim-
ple coordination facilitated by a producer-consumer queue. This
allows for more e�cient utilization of computational resources.
Importantly, in the asynchronous mode, samples are allowed to be
reused. This means that not only does the waiting time for data
decrease, but sample e�ciency also increases. By reusing samples,
we minimize redundant computations and maximize the utiliza-
tion of collected data. Figure 6 demonstrates the superiority of the
asynchronous implementation in 11 vs 11 regarding both learning
speed and sample e�ciency. Such a speed-up is essential in self-play
pipelines, where repeated best-response computations are required.

Figure 6: Average win rate with respect to time cost (left) and
environment steps (right) under sync/async settings in the
11 vs 11 full-game (with standard deviation). The results are
averaged over policy-based algorithms.

5.1.2 Population-based Self-Play Training. Next, we outline the
application of population-based self-play training to enhance the
performance of football AI, focusing on the speci�c example of
the Policy-Space Response Oracle (PSRO) algorithm [20] (Detailed
algorithm can be found in Algorithm 1). Figure 7a and Figure 7b
provide visual representations of the policy evolution in a 5 vs 5
PSRO trial, showcasing the progression of payo�s and Elo scores.
The experiment begins with a simple population consisting solely
of the built-in AI. At each generation, a new best response policy is
trained against a policy combination and added to the population.
We can observe the non-transitivity of the game by analyzing the
payo� tables in Figure 7a. For example, in Gen 1, the best-response
policy beats the built-in AI, and in Gen 2, the new best-response
policy surpasses Gen 1 but is subsequently defeated by the built-in
AI. This non-transitivity implies the complex nature of the game
and the di�culty of achieving consistent superiority. However, as
the training progresses, the algorithm gradually overcomes the
non-transitivity and achieves dominance over every policy in the
population after Gen 11. The resulting strategy from this PSRO

experiment exhibits a similar gameplay style to one of our released
pre-trained policies, Group Defense (Details found in Appendix
C.3).

Furthermore, it’s worth noting that our codebase also supports
other population-based self-play pipelines, such as the League Train-
ing algorithm (Details can be found in Appendix C.1.6). These
population-based self-play pipelines allow for experimentationwith
di�erent training methodologies and the exploration of diverse AI
strategies. For more details on the framework and related self-play
procedure, please refer to Appendix C.1.

(a) The goal di�erence table on 5 vs 5
full-game

(b) The Elo scores of all poli-
cies in the� nal population

Figure 7: (a) The goal di�erence table between built-in AI
and best response policies trained at each generation in a 5
vs 5 PSRO trial. "Gen" is the abbreviation for "generation".
The goal di�erence is calculated by subtracting the score
of the column policy from the score of the row policy. A
positive goal di�erence often represents a higher possibility
of winning the game than losing. The training starts with
only built-in AI in the population. (b) the Elo scores of all
policies in the� nal population. The policies become stronger
as the generation increases in terms of Elo scores.

5.1.3 Diverse Pre-Trained Policies. Utilizing the population-based
training framework discussed above, we have obtained policies
with diverse playing styles. We simulate matches between them,
count the match statistics, and evaluate their performances in vari-
ous dimensions, shown as the radar plots in Figure 8. We release
these pre-trained models, which can be potentially used for imita-
tion learning, policy initialization, or o�ine evaluation in future
research. For more details on the pre-trained models and related
training procedures, please refer to Appendix C.2 and C.3.

5.1.4 Analytical Tools. Given the complexity of the GRF environ-
ment, we have also designed two analytic tools to boost training
and help better understand policies beyond win rates. There have
been previous attempts at automatic event detection [51] and be-
havior analysis software [30] in real football matches. However,
to the best of our knowledge, no such attempts have been made
publicly to the game of GRF and the default game replay tools are
inconvenient to use for in-depth analysis. In particular, we�rst
design a data structure for better match decomposition and event
detection (Figure 20 in Appendix C.4). This data structure helps
with computing complex statistics like assists, which is essential for
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Figure 8: We use radar plots to depict diverse styles of pre-
trained policies in 5 vs 5 scenarios. The performance is evalu-
ated by simulatingmatches andmeasured in football-speci�c
metrics with normalization.

credit assignments during training [2]. Then, we provide a visual
debugger that could replay a match frame by frame, which asso-
ciates the 3D view with a 2D minimap indicating both locations and
speeds (Figure 21 in Appendix C.5). The current-step environmental
information and statistics are also presented for convenience. More
details are covered in Appendix C.4 and C.5.

5.2 Online Ranking
A publicly accessible online ranking is widely recognized as having
signi�cant bene�ts for related research, such as various compe-
titions held on Kaggle [14, 47]. In light of this, we introduce the
Google Research Football Online Ranking targeting speci�cally at
GRF 5 vs 5 and 11 vs 11 multi-agent full-game scenarios [16] on an
online evaluation platform called JIDI [48].

As illustrated in Figure 9, JIDI automatically simulates football
matches between agents submitted by users and continuously up-
dates the live ranking based on match results. This online rank-
ing system allows agents to compete against unseen opponents,
who are not available during training. This is crucial for studying
generalization ability, which is an important aspect of algorithms
emphasized by many works [1, 6, 9, 21]. Importantly, users are
allowed to download the replay of these simulated matches so as
to analyze the weakness of their strategies and thus, algorithms.
Tikick [13] incorporate the online ranking as a vital component of
their research.

Moreover, this ranking system serves as the o�cial platform
for the IEEE Conference on Games Football AI Competition in both
2022 [32] and 2023 [33]. Within the competition period, we often
hold multiple competition rounds and apply the Swiss-system tour-
nament evaluation mechanism [4] to obtain the Elo rate of each
submission. The scores for each competition round will be accumu-
lated by weights and ranked when the competition ends. Table 4
presents the current statistics on the number of users, agents, and

matches. More details regarding the online ranking can be found in
Appendix C.6.We strongly encourage interested researchers
to actively participate in this ranking system and contribute
to its growth.

Figure 9: JIDI online Ranking System. When a user submits
his customized decision-making agent to the agent storage,
the back-end evaluation process executes parallel evaluation
tasks distributedly on computing nodes. The evaluation re-
sults are updated to the user’s score and the online ranking is
updated accordingly. Users can view replays of theirmatches.

Table 4: The numbers of users, agents, and matches on JIDI
Online Ranking System so far.

Scenarios
Number of

Users
Number of
Agents

Number of
Matches

5 vs 5 109 372 24520
11 vs 11 119 486 23562

6 LIMITATIONS AND FUTURE DIRECTIONS
This paper provides a cooperative MARL benchmark and a set of
useful research tools for future studies on the Google Research
Football Environment. Nonetheless, several limitations inherent in
this work reveal potential future direction:

(1) This work adheres to the basic settings in the original GRF
paper [19], such as the setup of scenarios and reward func-
tions, with few extensions. It would be interesting to study
beyond these settings. For example, the existing paradigm
allows players to observe nearly all the pitch. Instead, we
can study the more partially observable but realistic cases
by limiting players’ vision.

(2) While our work establishes a benchmark for cooperative
learning, an equivalent benchmark for competitive scenarios
is absent. In the future, we need to� rst address the repro-
ducibility of complex self-play training pipelines. This often
involves the identi�cation of randomness in each phase and
the optimization for e�ciency as these pipelines typically
require a tremendous amount of computational resources.

(3) Compared to real-life football tactics, our trained policies are
still immature and the connections between virtual games
and real football matches are still lacking. Bridging the gap is
an interesting future direction, including learning from real-
world football data to make our agent akin to human[49] and
evaluating real players’ actions in speci�c situations [38].
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