
Multi-Agent Alternate Q-Learning
Kefan Su

School of Computer Science,

Peking University

China

sukefan@pku.edu.cn

Siyuan Zhou

HKUST

China

elegyhunter@gmail.com

Jiechuan Jiang

School of Computer Science,

Peking University

China

jiechuan.jiang@pku.edu.cn

Chuang Gan

MIT-IBM Watson AI Lab

US

ganchuang@csail.mit.edu

Xiangjun Wang

inspir.ai

China

xj@inspirai.com

Zongqing Lu
†

Peking University

China

zongqing.lu@pku.edu.cn

ABSTRACT
Decentralized learning has shown great promise for cooperative

multi-agent reinforcement learning (MARL). However, non-stationarity

remains a significant challenge in fully decentralized learning. In

the paper, we tackle the non-stationarity problem in the simplest

and fundamental way and propose multi-agent alternate Q-learning
(MA2QL), where agents take turns updating their Q-functions by

Q-learning. MA2QL is a minimalist approach to fully decentralized

cooperative MARL but is theoretically grounded. We prove that

when each agent guarantees Y-convergence at each turn, their joint

policy converges to a Nash equilibrium. In practice, MA2QL only

requires minimal changes to independent Q-learning (IQL). We em-

pirically evaluate MA2QL on a variety of cooperative multi-agent

tasks. Results show MA2QL consistently outperforms IQL, which

verifies the effectiveness of MA2QL, despite such minimal changes.

KEYWORDS
Reinforcement learning; Fully decentralized learning; Q-learning

ACM Reference Format:
Kefan Su, Siyuan Zhou, Jiechuan Jiang, Chuang Gan, Xiangjun Wang,

and Zongqing Lu. 2024. Multi-Agent Alternate Q-Learning. In Proc. of the
23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

1 INTRODUCTION
Cooperative multi-agent reinforcement learning (MARL) is a well-

abstracted model for a broad range of real applications, including

logistics [10], traffic signal control [33], power dispatch [30], and in-

ventorymanagement [4]. In cooperativeMARL, centralized training

with decentralized execution (CTDE) is a popular learning para-

digm, where the information of all agents can be gathered and used

in training. Many CTDE methods [5, 11, 13, 20, 23, 24, 29, 31, 38]

have been proposed and shown great potential to solve cooperative

multi-agent tasks.

†
Corresponding author

This work is licensed under a Creative Commons Attribution

International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org).

Another paradigm is decentralized learning, where each agent

learns its policy based on only local information. Decentralized

learning is less investigated but desirable in many scenarios where

the information of other agents is not available, and for better ro-

bustness, scalability, and security [36]. However, fully decentralized
learning of agent policies (i.e., without communication) is still an

open challenge in cooperative MARL.

The most straightforward way for fully decentralized learning

is directly applying independent learning at each agent [27], which

however induces the well-known non-stationarity problem for

all agents [36] and may lead to learning instability and a non-

convergent joint policy, though the performance varies as shown

in empirical studies [3, 18, 20, 34].

In the paper, we directly tackle the non-stationarity problem

in the simplest and fundamental way, i.e., keeping the policies of
other agents fixed while one agent is learning. Following this prin-

ciple, we propose multi-agent alternate Q-learning (MA2QL), a
minimalist approach to fully decentralized cooperative multi-agent

reinforcement learning, where agents take turns to update their poli-

cies by Q-learning. MA2QL is theoretically grounded and we prove

that when each agent guarantees Y-convergence at each turn, their

joint policy converges to a Nash equilibrium. In practice, MA2QL

only requires minimal changes to independent Q-learning (IQL)

[26, 27] and also independent DDPG [12] for continuous action, i.e.,
simply swapping the order of two lines of codes as follows.

IQL

1: repeat
2: all agents interact in the environment

3: for 𝑖 ← 1, 𝑛 do
4: agent 𝑖 updates by Q-learning

5: end for
6: until terminate

MA2QL

1: repeat
2: for 𝑖 ← 1, 𝑛 do
3: all agents interact in the environment

4: agent 𝑖 updates by Q-learning

5: end for
6: until terminate

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1791

https://orcid.org/0009-0007-5037-2549
https://orcid.org/0000-0002-2218-3923
https://orcid.org/0000-0002-6076-5000
https://orcid.org/0000-0003-4031-5886
https://orcid.org/0000-0002-2049-5720
https://orcid.org/0000-0003-3967-2704
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

We evaluate MA2QL on a didactic game to empirically verify

its convergence, and multi-agent particle environments [13], multi-

agent MuJoCo [19], and StarCraft multi-agent challenge [21] to ver-

ify its performance with discrete and continuous action spaces, and

fully and partially observable environments. We find that MA2QL

consistently outperforms IQL, despite such minimal changes. This

empirically verifies the effectiveness of alternate learning. The su-

periority of MA2QL over IQL suggests that simpler approaches

may have been left underexplored for fully decentralized cooper-

ative multi-agent reinforcement learning. We envision this work

could provide some insights to further studies of fully decentralized

learning.

2 BACKGROUND
2.1 Preliminaries
Dec-POMDP. Decentralized partially observable Markov decision

process (Dec-POMDP) is a general model for cooperative MARL.

A Dec-POMDP is a tuple𝑀 = {𝑆,𝐴, 𝑃, 𝑌 ,𝑂, 𝐼, 𝑛, 𝑟, 𝛾}. 𝑆 is the state
space, 𝑛 is the number of agents, 𝛾 ∈ [0, 1) is the discount factor,
and 𝐼 = {1, 2 · · ·𝑛} is the set of all agents. 𝐴 = 𝐴1 ×𝐴2 × · · · ×𝐴𝑛
represents the joint action space where 𝐴𝑖 is the individual action

space for agent 𝑖 . 𝑃 (𝑠′ |𝑠, 𝒂) : 𝑆 × 𝐴 × 𝑆 → [0, 1] is the transition
function, and 𝑟 (𝑠, 𝒂) : 𝑆 ×𝐴→ R is the reward function of state 𝑠

and joint action 𝒂.𝑌 is the observation space, and𝑂 (𝑠, 𝑖) : 𝑆×𝐼 → 𝑌

is a mapping from state to observation for each agent. The objective

of Dec-POMDP is to maximize 𝐽 (𝝅) = E𝝅
[∑∞

𝑡=0 𝛾
𝑡𝑟 (𝑠𝑡 , 𝒂𝑡)

]
, and

thus we need to find the optimal joint policy 𝝅∗ = argmax𝝅 𝐽 (𝝅).
To settle the partial observable problem, history 𝜏𝑖 ∈ T𝑖 : (𝑌 ×𝐴𝑖)∗
is often used to replace observation 𝑜𝑖 ∈ 𝑌 . Each agent 𝑖 has an

individual policy 𝜋𝑖 (𝑎𝑖 |𝜏𝑖) and the joint policy 𝝅 is the product

of each 𝜋𝑖 . Though the individual policy is learned as 𝜋𝑖 (𝑎𝑖 |𝜏𝑖)
in practice, as Dec-POMDP is undecidable [14] and the analysis

in partially observable environments is much harder, we will use

𝜋𝑖 (𝑎𝑖 |𝑠) in analysis and proofs for simplicity.

Dec-MARL. Although decentralized cooperative multi-agent re-

inforcement learning (Dec-MARL) has been previously investigated

[3, 37], the setting varies across these studies. In this paper, we con-

sider Dec-MARL as a fully decentralized solution to Dec-POMDP,

where each agent learns its policy/Q-function from its own action

individually without communication or parameter-sharing.
Therefore, in Dec-MARL, each agent 𝑖 actually learns in the environ-

mentwith transition function 𝑃𝑖 (𝑠′ |𝑠, 𝑎𝑖) = E𝑎−𝑖∼𝜋−𝑖 [𝑃 (𝑠′ |𝑠, 𝑎𝑖 , 𝑎−𝑖)]
and reward function 𝑟𝑖 (𝑠, 𝑎𝑖) = E𝑎−𝑖∼𝜋−𝑖 [𝑟 (𝑠, 𝑎𝑖 , 𝑎−𝑖)], where 𝜋−𝑖
and 𝑎−𝑖 respectively denote the joint policy and joint action of all

agents except for 𝑖 . As other agents are also learning (i.e., 𝜋−𝑖 is
changing), from the perspective of each individual agent, the en-

vironment is non-stationary. This is the non-stationarity problem,

the main challenge in Dec-MARL.

IQL. Independent Q-learning (IQL) is a straightforward method

for Dec-MARL, where each agent 𝑖 learns a Q-function 𝑄 (𝑠, 𝑎𝑖) by
Q-learning. However, as all agents learn simultaneously, there is

no theoretical guarantee on convergence due to non-stationarity,

to the best of our knowledge. In practice, IQL is often taken as

a simple baseline in favor of more elaborate MARL approaches,

such as value-based CTDE methods [20, 22]. However, much less

attention has been paid to IQL itself for Dec-MARL.

2.2 Multi-Agent Alternate Policy Iteration
To address the non-stationarity problem in Dec-MARL, a funda-

mental way is simply to make the environment stationary during

the learning of each agent. Following this principle, we let agents

learn by turns; in each turn, one agent performs policy iteration

while fixing the policies of other agents. This procedure is referred

to asmulti-agent alternate policy iteration. As illustrated in Figure 1,

multi-agent alternate policy iteration differs from policy iteration

in single-agent RL. In single-agent RL, policy iteration is performed

on the same MDP. However, here, for each agent, policy iteration at

a different round is performed on a different MDP. As 𝜋−𝑖 is fixed at
each turn, 𝑃𝑖 (𝑠′ |𝑠, 𝑎𝑖) and 𝑟𝑖 (𝑠, 𝑎𝑖) are stationary and we can easily

have the following lemma.

Lemma 1 (multi-agent alternate policy iteration). If all
agents take turns to perform policy iteration, their joint policy se-
quence {𝝅 } monotonically improves and converges to a Nash equilib-
rium.

Proof. In each turn, as the policies of other agents are fixed, the

agent 𝑖 has the following update rule for policy evaluation,

𝑄𝜋𝑖 (𝑠, 𝑎𝑖) ← 𝑟𝑖 (𝑠, 𝑎𝑖) + 𝛾E𝑠′∼𝑃𝑖 ,𝑎′𝑖∼𝜋𝑖 [𝑄𝜋𝑖 (𝑠
′, 𝑎′𝑖)] . (1)

We can have the convergence of policy evaluation in each turn by

the standard results [25]. Moreover, as 𝜋−𝑖 is fixed, it is straightfor-
ward to have

𝑄𝜋𝑖 (𝑠, 𝑎𝑖) = E𝑎−𝑖∼𝜋−𝑖 [𝑄𝝅 (𝑠, 𝑎, 𝑎𝑖)] . (2)

Then, the agent 𝑖 performs policy improvement by

𝜋new𝑖 (𝑠) = argmax

𝑎𝑖
E
𝜋old

−𝑖

[
𝑄𝝅old (𝑠, 𝑎𝑖 , 𝑎−𝑖)

]
. (3)

As the policies of other agents are fixed (i.e., 𝜋new−𝑖 = 𝜋old−𝑖), we have

𝑉𝝅old (𝑠) = E𝝅old [𝑄𝝅old (𝑠, 𝑎𝑖 , 𝑎−𝑖)]
= E

𝜋old

𝑖
E
𝜋old

−𝑖
[𝑄𝝅old (𝑠, 𝑎𝑖 , 𝑎−𝑖)]

≤ E𝜋new

𝑖
E
𝜋old

−𝑖
[𝑄𝝅old (𝑠, 𝑎𝑖 , 𝑎−𝑖)]

= E𝜋new

𝑖
E𝜋new

−𝑖
[𝑄𝝅old (𝑠, 𝑎𝑖 , 𝑎−𝑖)]

= E𝝅new [𝑄𝝅old (𝑠, 𝑎𝑖 , 𝑎−𝑖)]
= E𝝅new [𝑟 (𝑠, 𝑎𝑖 , 𝑎−𝑖) + 𝛾𝑉𝝅old (𝑠′)]
≤ · · · ≤ 𝑉𝝅new (𝑠),

(4)

where the first inequality is from (3). This proves that the policy

improvement of agent 𝑖 in each turn also improves the joint policy.

Thus, as agents perform policy iteration by turn, the joint policy

sequence {𝝅 } improves monotonically, and {𝝅 } will converge to
a Nash equilibrium since no agents can improve the joint policy

unilaterally at convergence. □

Lemma 1 is simple but useful, which is also reached implicitly

by Bertsekas [2]. Moreover, Lemma 1 immediately indicates an

approach with the convergence guarantee for Dec-MARL and also

tells us that if we find the optimal policy for agent 𝑖 in each round

𝑘 given the other agents’ policies 𝜋𝑘−𝑖 , then the joint policy will

obtain the largest improvement. This result can be formulated as

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1792

policy iteration of
agent in round

policy iteration of
agent in round

policy iteration of
agent in round

policy iteration of
agent in round

 unless has converged

Multi-Agent Alternate Policy Iteration

 Q-iterations of
agent in round

 Q-iterations of
agent in round

 Q-iterations of
agent in round

 Q-iterations of
agent in round

Multi-Agent Alternate Q-Iteration

Nash equilibrium

Nash equilibrium

Figure 1: Illustration of multi-agent alternate policy iteration (upper panel) and multi-agent alternate Q-iteration (lower panel) of three agents.
As essentially the MDP differs at different turns of each agent, policy iteration/Q-iteration of each agent iterates over different MDPs.

follows,

𝜋
∗,𝑘
𝑖

= argmax

𝜋𝑖
E
𝜋𝑘−𝑖

[
𝑄
𝜋𝑖 ,𝜋

𝑘
−𝑖
(𝑠, 𝑎𝑖 , 𝑎−𝑖)

]
𝑉
𝜋𝑖 ,𝜋

𝑘
−𝑖
(𝑠) ≤ 𝑉

𝜋
∗,𝑘
𝑖
,𝜋𝑘−𝑖
(𝑠) ∀𝜋𝑖 ,∀𝑠 .

(5)

We could obtain this 𝜋
∗,𝑘
𝑖

by policy iteration with many on-policy
iterations. However, such a method will face the issue of sample

inefficiency which may be amplified in MARL settings. We will

use Q-iteration to settle this problem as in Bertsekas [2]. However,

unlike existing work, we propose to truncate Q-iteration for fast

learning but with the same theoretical guarantee and additionally

focus on the empirical performance of such an approach.

3 METHOD
To address the problem of multi-agent alternate policy iteration,

we propose multi-agent alternate Q-iteration, which is sufficiently

truncated for fast learning but still has the same theoretical guaran-

tee. Further, based on multi-agent alternate Q-iteration, we derive

multi-agent alternate Q-learning, which makes the minimal change

to IQL to form a simple yet effective value-based decentralized

learning method for cooperative MARL.

3.1 Multi-Agent Alternate Q-Iteration
Instead of policy iteration, we let agents perform Q-iteration by

turns as depicted in Figure 1. LetM𝑘
𝑖
= {𝑃𝑘

𝑖
, 𝑟𝑘
𝑖
} denote the MDP

of agent 𝑖 in round 𝑘 , where we haveM𝑘
𝑖
≠M𝑘−1

𝑖
unless 𝜋−𝑖 has

converged, and 𝑄
𝑡,𝑘
𝑖
(𝑠, 𝑎𝑖) denote the Q-function of agent 𝑖 with 𝑡

updates in the round 𝑘 . We define the Q-iteration as follows,

𝑄
𝑡+1,𝑘
𝑖
(𝑠, 𝑎𝑖) ← 𝑟𝑘𝑖 (𝑠, 𝑎𝑖) + 𝛾E𝑠′∼𝑃𝑘

𝑖

[
max

𝑎′
𝑖

𝑄
𝑡,𝑘
𝑖
(𝑠′, 𝑎′𝑖)

]
. (6)

Then, the sequence {𝑄𝑡,𝑘
𝑖
} converges to 𝑄∗,𝑘

𝑖
with respect to the

MDPM𝑘
𝑖
= {𝑃𝑘

𝑖
, 𝑟𝑘
𝑖
}, and we have the following lemma and corol-

lary.

Lemma 2 (Y-convergent Q-iteration). By iteratively applying
Q-iteration (6) at each agent 𝑖 for each turn, for any Y > 0, we have𝑄𝑡,𝑘

𝑖
−𝑄∗,𝑘

𝑖

∞ ≤ Y, when 𝑡 ≥

log ((1 − 𝛾)Y) − log(2𝑅 + 2Y)
log𝛾

, (7)

where 𝑅 =
𝑟max

1−𝛾 and 𝑟max = max𝑠,𝒂 𝑟 (𝑠, 𝒂).

Proof. From the definition of 𝑄
𝑡,𝑘
𝑖

(6), we have𝑄𝑡+1,𝑘
𝑖

−𝑄𝑡,𝑘
𝑖

∞

=
𝛾E

𝑠′∼𝑃𝑘
𝑖
[max𝑎′

𝑖
𝑄
𝑡,𝑘
𝑖
(𝑠′, 𝑎′𝑖) −max𝑎′

𝑖
𝑄
𝑡−1,𝑘
𝑖

(𝑠′, 𝑎′𝑖)]

∞

≤ 𝛾
𝑄𝑡,𝑘
𝑖
−𝑄𝑡−1,𝑘

𝑖

∞ ≤ 𝛾

𝑡
𝑄1,𝑘
𝑖
−𝑄0,𝑘

𝑖

∞ .

(8)

Then for any integer𝑚 ≥ 1, we have𝑄𝑡+𝑚,𝑘
𝑖

−𝑄𝑡,𝑘
𝑖

∞

≤
𝑄𝑡+𝑚,𝑘
𝑖

−𝑄𝑡+𝑚−1,𝑘
𝑖

∞ + · · · +

𝑄𝑡+1,𝑘
𝑖

−𝑄𝑡,𝑘
𝑖

∞

≤ 𝛾𝑡 1 − 𝛾
𝑚

1 − 𝛾
𝑄1,𝑘
𝑖
−𝑄0,𝑘

𝑖

∞ .

(9)

Let𝑚 →∞, and we have𝑄∗,𝑘
𝑖
−𝑄𝑡,𝑘

𝑖

∞

≤ 𝛾𝑡

1 − 𝛾
𝑄1,𝑘
𝑖
−𝑄0,𝑘

𝑖

∞

≤ 𝛾𝑡

1 − 𝛾 max

𝑠,𝑎𝑖

��𝑟𝑘𝑖 (𝑠, 𝑎𝑖) + 𝛾E𝑠′∼𝑃𝑘
𝑖
[max𝑎′

𝑖
𝑄
0,𝑘
𝑖
(𝑠′, 𝑎′𝑖)] −𝑄

0,𝑘
𝑖
(𝑠, 𝑎𝑖)

��.
(10)

As all agents update by turns, we have 𝑄
0,𝑘
𝑖

= 𝑄
𝑡𝑘−1
𝑖

,𝑘−1
𝑖

, where

𝑡𝑘−1
𝑖

is the number of Q-iteration for agent 𝑖 in the 𝑘 − 1 round.

Therefore, we have𝑄0,𝑘
𝑖
−𝑄∗,𝑘−1

𝑖

∞ =

𝑄𝑡𝑘−1𝑖
,𝑘−1

𝑖−1 −𝑄∗,𝑘−1
𝑖

∞ ≤ Y. (11)

With this property, we have��𝑟𝑘𝑖 (𝑠, 𝑎𝑖) + 𝛾E𝑠′∼𝑃𝑘
𝑖
[max𝑎′

𝑖
𝑄
0,𝑘
𝑖
(𝑠′, 𝑎′𝑖)] −𝑄

0,𝑘
𝑖
(𝑠, 𝑎𝑖)

��
=
��𝑟𝑘𝑖 (𝑠, 𝑎𝑖) + 𝛾E𝑠′∼𝑃𝑘

𝑖
[max𝑎′

𝑖
𝑄
0,𝑘
𝑖
(𝑠′, 𝑎′𝑖)] −𝑄

∗,𝑘−1
𝑖

(𝑠, 𝑎𝑖)

+𝑄∗,𝑘−1
𝑖

(𝑠, 𝑎𝑖) −𝑄0,𝑘
𝑖
(𝑠, 𝑎𝑖)

��
≤
��𝑟𝑘𝑖 − 𝑟𝑘−1𝑖

�� + 𝛾 ��E
𝑠′∼𝑃𝑘

𝑖
[max𝑎′

𝑖
𝑄
0,𝑘
𝑖
(𝑠′, 𝑎′𝑖)]

− E
𝑠′∼𝑃𝑘−1

𝑖
[max𝑎′

𝑖
𝑄
∗,𝑘−1
𝑖

(𝑠′, 𝑎′𝑖)]
�� + ��𝑄∗,𝑘−1

𝑖
(𝑠, 𝑎𝑖) −𝑄0,𝑘

𝑖
(𝑠, 𝑎𝑖)

��
≤ 2𝑟max + (

2𝛾𝑟max

1 − 𝛾 + Y) + Y = 2𝑅 + 2Y, (12)

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1793

where the second term in the last inequality is from

∥𝑄∗,𝑘−1
𝑖

∥∞ ≤
𝑟max

1 − 𝛾 , ∥𝑄
0,𝑘
𝑖
∥∞ ≤ ∥𝑄∗,𝑘−1𝑖

∥∞ + Y,

and (11). Finally, by combining (10) and (12), we have𝑄∗,𝑘
𝑖
−𝑄𝑡,𝑘

𝑖

∞ ≤

𝛾𝑡

1 − 𝛾 (2𝑅 + 2Y) . (13)

We need ∥𝑄∗,𝑘
𝑖
−𝑄𝑡,𝑘

𝑖
∥∞ ≤ Y, which can be guaranteed by

𝑡 ≥ log ((1 − 𝛾)Y) − log(2𝑅 + 2Y)
log𝛾

.

□

With Lemma 2, we can immediately obtain the following corol-

lary.

Corollary 1. For any Y > 0, if we take sufficient Q-iteration 𝑡𝑘
𝑖
,

i.e., 𝑄𝑘
𝑖
= 𝑄

𝑡𝑘
𝑖
,𝑘

𝑖
, then we have𝑄𝑘𝑖 −𝑄∗,𝑘𝑖

∞ ≤ Y ∀𝑘, 𝑖 .

With Lemma 1, Lemma 2, and Corollary 1, we have the following

theorem.

Theorem 1 (multi-agent alternate Q-iteration). Suppose
that 𝑄∗

𝑖
(𝑠, ·) has the unique maximum for all states and all agents. If

all agents in turn take Q-iteration to ∥𝑄𝑘
𝑖
−𝑄∗,𝑘

𝑖
∥∞ ≤ Y, then their

joint policy sequence {𝝅𝑘 } converges to a Nash equilibrium, where
𝜋𝑘
𝑖
(𝑠) = argmax𝑎𝑖 𝑄

𝑘
𝑖
(𝑠, 𝑎𝑖).

Proof. First, from Lemma 1, we know 𝑄
∗,𝑘
𝑖

also induces a joint

policy improvement, thus 𝑄
∗,𝑘
𝑖

converges to 𝑄∗
𝑖
. Let

𝜋∗𝑖 (𝑠) = argmax

𝑎𝑖
𝑄∗𝑖 (𝑠, 𝑎𝑖),

then 𝝅∗ is the joint policy of a Nash equilibrium.

Then, we define Δ as

Δ = min

𝑠,𝑖
max

𝑎𝑖≠𝜋
∗
𝑖
(𝑠)
|𝑄∗𝑖 (𝑠, 𝜋

∗
𝑖 (𝑠)) −𝑄

∗
𝑖 (𝑠, 𝑎𝑖) |. (14)

From the assumption we know that Δ > 0. We take Y = Δ
6
, and

from Lemma 2, we know there exists 𝑘0 such that𝑄∗𝑖 −𝑄∗,𝑘𝑖
∞ ≤ Y ∀𝑘 ≥ 𝑘0 . (15)

For 𝑘 ≥ 𝑘0 and any action 𝑎𝑖 ≠ 𝜋
∗
𝑖
(𝑠), we have

𝑄𝑘𝑖 (𝑠, 𝜋
∗
𝑖 (𝑠)) −𝑄

𝑘
𝑖 (𝑠, 𝑎𝑖)

= 𝑄𝑘𝑖 (𝑠, 𝜋
∗
𝑖 (𝑠)) −𝑄

∗,𝑘
𝑖
(𝑠, 𝜋∗𝑖 (𝑠)) +𝑄

∗,𝑘
𝑖
(𝑠, 𝜋∗𝑖 (𝑠)) −𝑄

∗
𝑖 (𝑠, 𝜋

∗
𝑖 (𝑠))

+𝑄∗𝑖 (𝑠, 𝜋
∗
𝑖 (𝑠)) −𝑄

∗
𝑖 (𝑠, 𝑎𝑖) +𝑄

∗
𝑖 (𝑠, 𝑎𝑖) −𝑄

∗,𝑘
𝑖
(𝑠, 𝑎𝑖)

+𝑄∗,𝑘
𝑖
(𝑠, 𝑎𝑖) −𝑄𝑘𝑖 (𝑠, 𝑎𝑖)

≥ 𝑄∗𝑖 (𝑠, 𝜋
∗
𝑖 (𝑠)) −𝑄

∗
𝑖 (𝑠, 𝑎𝑖) − |𝑄

𝑘
𝑖 (𝑠, 𝑎𝑖) −𝑄

∗,𝑘
𝑖
(𝑠, 𝑎𝑖) |

− |𝑄∗,𝑘
𝑖
(𝑠, 𝑎𝑖) −𝑄∗𝑖 (𝑠, 𝑎𝑖) | − |𝑄

∗
𝑖 (𝑠, 𝜋

∗
𝑖 (𝑠)) −𝑄

∗,𝑘
𝑖
(𝑠, 𝜋∗𝑖 (𝑠)) |

− |𝑄∗,𝑘
𝑖
(𝑠, 𝜋∗𝑖 (𝑠)) −𝑄

𝑘
𝑖 (𝑠, 𝜋

∗
𝑖 (𝑠)) |

= Δ − 4Y = Δ/3 > 0,

(16)

which means

𝜋𝑘𝑖 (𝑠) = argmax

𝑎𝑖
𝑄𝑘𝑖 (𝑠, 𝑎𝑖) = argmax

𝑎𝑖
𝑄∗𝑖 (𝑠, 𝑎𝑖) = 𝜋

∗
𝑖 (𝑠) .

Thus, 𝑄𝑘
𝑖
of each agent 𝑖 induces 𝜋∗

𝑖
and all together induce 𝝅∗,

which the joint policy of a Nash equilibrium. □

Theorem 1 assumes that for each agent, 𝑄∗
𝑖
has the unique max-

imum over actions for all states. Although this may not hold in

general, in practice we can easily settle this by introducing a positive

random noise to the reward function. Suppose the random noise

is bounded by 𝛿 , then we can easily derive that the performance

drop of optimizing environmental reward plus noise is bounded by

𝛿/(1 − 𝛾). As we can make 𝛿 arbitrarily small, the bound is tight.

Moreover, as there might be many Nash equilibria, Theorem 1 does

not guarantee the converged joint policy is optimal.

3.2 Multi-Agent Alternate Q-Learning
FromTheorem 1, we know that if each agent 𝑖 guarantees Y-convergence

to𝑄
∗,𝑘
𝑖

in each round 𝑘 , multi-agent alternate Q-iteration also guar-

antees a Nash equilibrium of the joint policy. This immediately

suggests a simple, practical fully decentralized learning method,

namely multi-agent alternate Q-learning (MA2QL).

For learning Q-table or Q-network, MA2QL makes minimal

changes to IQL.

• For learning Q-tables, all agents in turn update their Q-tables.

At a round 𝑘 of an agent 𝑖 , all agents interact in the environ-

ment, and the agent 𝑖 updates its Q-table a few times using

the collected transitions ⟨𝑠, 𝑎𝑖 , 𝑟 , 𝑠′⟩.
• For learning Q-networks, all agents in turn update their

Q-networks. At a round of an agent 𝑖 , all agents interact

in the environment, and each agent 𝑗 stores the collected

transitions

〈
𝑠, 𝑎 𝑗 , 𝑟 , 𝑠

′〉
into its replay buffer, and the agent 𝑖

updates its Q-network using sampled mini-batches from its

replay buffer.

There is a slight difference between learning Q-table and Q-

network. Strictly following multi-agent alternate Q-iteration, Q-

table is updated by transitions sampled from the current MDP. On

the other hand, Q-network is updated bymini-batches sampled from

the replay buffer. If the replay buffer only contains the experiences

sampled from the current MDP, learning Q-network also strictly

follows multi-agent alternate Q-iteration. However, in practice, we

slightly deviate from that and allow the replay buffer to contain

transitions of past MDPs, following IQL [18, 20, 24] for sample

efficiency, the convergence may not be theoretically guaranteed

though.

MA2QL and IQL can be simply summarized and highlighted as

MA2QL agents take turns to update Q-functions by Q-learning,
whereas IQL agents simultaneously update Q-functions by
Q-learning.

4 RELATEDWORK
CTDE. The most popular learning paradigm in cooperative MARL

is centralized training with decentralized execution (CTDE), includ-

ing value decomposition and multi-agent actor-critic. For value

decomposition [20, 22, 24, 29], a joint Q-function is learned in a

centralized manner and factorized into local Q-functions to enable

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1794

0 100 200 300 400 500

steps

0

50

100

150

m
ea

n
ep

is
o

d
e

re
w

ar
d

s
Stochastic Game

OPTIMAL

MA2QL-DP t=1

MA2QL-DP t=5

MA2QL-DP t=10

MA2QL-DP t=50

(a) Q-iteration

0 500 1000 1500 2000

steps

0

50

100

150

m
ea

n
ep

is
o

d
e

re
w

ar
d

s

Stochastic Game

OPTIMAL

MA2QL

IQL

(b) MA2QL

0 100 200 300 400 500

steps

0

50

100

150

m
ea

n
ep

is
o

d
e

re
w

ar
d

s

Stochastic Game

1-Updates

10-Updates

50-Updates

(c) Q-table updates

0 100 200 300 400 500

steps

0

50

100

150

m
ea

n
ep

is
o

d
e

re
w

ar
d

s

Stochastic Game

500-Samples

1000-Samples

2000-Samples

5000-Samples

(d) samples

Figure 2: Empirical studies of MA2QL on the didactic game: (a) different numbers of Q-iterations performed by dynamic programming at
each turn; (b) learning curve of MA2QL compared with IQL and the global optimum; (c) different numbers of Q-table updates at each turn; (d)
different numbers of sampled transitions at each turn, where x-axis is learning steps.

decentralized execution. For multi-agent actor-critic, a centralized

critic, Q-function or V-function, is learned to provide gradients

for local policies [5, 13, 34]. Moreover, some studies [19, 23, 32]

combine value decomposition and multi-agent actor-critic to take

advantage of both, while others rely on maximum-entropy RL to

naturally bridge the joint Q-function and local policies [6, 31, 38].

Decentralized learning. Another learning paradigm in cooper-

ative MARL is decentralized learning, where the simplest way is

for each agent to learn independently, e.g., independent Q-learning
(IQL) or independent actor-critic (IAC). These methods are usually

taken as simple baselines for CTDE methods. For example, IQL is

taken as a baseline in value decomposition methods [20, 24], while

IAC is taken as a baseline in multi-agent actor-critic [5, 34]. Some

studies consider decentralized learning with communication [9, 37],

but they are not fully decentralized methods. More recently, IAC

(i.e., independent PPO) has been empirically investigated and found

remarkably effective in several cooperative MARL tasks [3, 34], in-

cluding multi-agent particle environments (MPE) [13] and StarCraft

multi-agent challenge (SMAC). However, as actor-critic methods

follow the principle different from Q-learning, we will not focus on

IAC for comparison in the experiment. On the other hand, IQL has

also been thoroughly benchmarked and its performance is close to

CTDE methods in a few tasks [18]. This sheds some light on the

potential of value-based decentralized methods. Although there

are some Q-learning variants, i.e., hysteretic Q-learning [15] and
lenient Q-learning [17], for fully decentralized learning, they are

heuristic and their empirical performance is even worse than IQL

[8, 35]. MA2QL may be built on top of these Q-learning variants,

e.g., the concurrent work [7, 8], which however requires a thorough

study and is beyond the scope of this paper.

5 EXPERIMENTS
In this section, we empirically study MA2QL on a set of cooperative

multi-agent tasks, including a didactic game, multi-agent particle

environments (MPE) [13], multi-agent MuJoCo [19], and StarCraft

multi-agent challenge (SMAC) [21], to investigate the following

questions.

1. Does MA2QL converge and what does it converge to empirically,
compared with the optimal solution and IQL? How do the
number of Q-function updates, environmental stochasticity,
and update order affect the convergence?

2. As MA2QL only makes the minimal changes to IQL, is MA2QL
indeed better than IQL in both discrete and continuous action
spaces, and in more complex tasks?

In all the experiments, the training ofMA2QL and IQL is based on

the same number of environmental steps (i.e., the same number of

samples). Moreover, as the essential difference betweenMA2QL and

IQL is that MA2QL agents take turns to update Q-function while

IQL agents update Q-function simultaneously, for a fair comparison,

the total number of Q-function updates for each agent in MA2QL

is set to be the same with that in IQL. For example, in a setting of

𝑛 agents, if IQL agents update Q-function𝑚 steps (e.g., gradient
steps) every environmental step, then each MA2QL agent updates

its Q-function 𝑛 ×𝑚 steps each environmental step during its turn.

For a training process of 𝑇 environmental steps, the number of

updates for each IQL agent is 𝑇 ×𝑚, while for each MA2QL agent

it is also
𝑇
𝑛 × 𝑛 ×𝑚. For learning Q-networks, the size of the replay

buffer is also the same for IQL and MA2QL. Moreover, we do not use
parameter-sharing, which should not be allowed in decentralized

settings [28] as a centralized entity is required to collect all the

parameters. Detailed experimental settings, hyperparameters, and

additional results are available in Supplementary (available at https:

//arxiv.org/abs/2209.08244). All results are presented using themean

and standard deviation of five random seeds.

5.1 A Didactic Game
The didactic game is a cooperative stochastic game, which is ran-

domly generated for the reward function and transition probabilities

with 30 states, 3 agents, and 5 actions for each agent. Each episode

in the game contains 30 timesteps. For comparison, we use dynamic

programming to find the global optimal solution, denoted as OP-

TIMAL. For MA2QL and IQL, each agent independently learns a

30 × 5 Q-table.
First, we investigate how the number of Q-iterations empirically

affects the convergence of multi-agent alternate Q-iteration, where

Q-iteration is performed by dynamic programming (full sweep over

the state set) and denoted as MA2QL-DP. As shown in Figure 2(a),

we can see that different numbers of Q-iterations (i.e., 𝑡 = 1, 5, 10, 50)

that each agent takes at each turn do not affect the convergence in

the didactic game, even when 𝑡 = 1. This indicates Y-convergence of

Q-iteration can be easily satisfied with as few as one iteration. Next,

we compare the performance of MA2QL and IQL. As illustrated in

Figure 2(b), IQL converges slowly (about 2000 steps), while MA2QL

converges much faster (less than 100 steps) to a better return and

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1795

https://arxiv.org/abs/2209.08244
https://arxiv.org/abs/2209.08244

0 100 200 300 400 500

step

0

50

100

150

m
ea

n
ep

is
o

d
e

re
w

ar
d

s

Stochastic Game

OPTIMAL

MA2QL p trans=0

IQL p trans=0

0 100 200 300 400 500

step

0

50

100

150

m
ea

n
ep

is
o

d
e

re
w

ar
d

s

Stochastic Game

OPTIMAL

MA2QL p trans=0.2

IQL p trans=0.2

0 100 200 300 400 500

step

0

50

100

150

m
ea

n
ep

is
o

d
e

re
w

ar
d

s

Stochastic Game

OPTIMAL

MA2QL p trans=0.5

IQL p trans=0.5

0 100 200 300 400 500

step

0

50

100

150

m
ea

n
ep

is
o

d
e

re
w

ar
d

s

Stochastic Game

OPTIMAL

MA2QL p trans=0.8

IQL p trans=0.8

Figure 3: Learning curves of MA2QL compared with IQL in the didactic game under different stochasticity levels, where p_trans is the probability
that a state transitions to the next state uniformly at random and hence larger p_transmeans a higher level of stochasticity. MA2QL outperforms
IQL in all stochasticity levels.

0 100 200 300 400 500

step

0

50

100

150

m
ea

n
ep

is
o

d
e

re
w

ar
d

s

Stochastic Game

OPTIMAL

MA2QL decay=100K

IQL decay=100K

0 100 200 300 400 500

step

0

50

100

150

Stochastic Game

OPTIMAL

MA2QL decay=500K

IQL decay=500K

0 100 200 300 400 500

step

0

50

100

150

Stochastic Game

OPTIMAL

MA2QL decay=1M

IQL decay=1M

0 100 200 300 400 500

step

0

50

100

150

Stochastic Game

OPTIMAL

MA2QL const ε=0.5

IQL const ε=0.5

0 100 200 300 400 500

step

0

50

100

150

Stochastic Game

OPTIMAL

MA2QL const ε=1

IQL const ε=1

Figure 4: Learning curves of MA2QL compared with IQL in the didactic game under different exploration schemes, where decay_1M means 𝜖
decays from 1 to 0.02 over 106 environment steps, similarly for others. MA2QL outperforms IQL under all exploration schemes.

also approximates OPTIMAL. Once again, MA2QL and IQL use the

same number of samples and Q-table updates for each agent. One

may notice that the performance of MA2QL is better than MA2QL-

DP. This may be attributed to sampling and exploration of MA2QL,

which induces a better Nash equilibrium. Then, we investigate

MA2QL in terms of the number of Q-table updates at each turn,

which resembles the number of Q-iterations by learning on samples.

Specifically, denoting𝐾 as the number of Q-table updates, to update

an agent, we repeat 𝐾 times of the process of sampling experiences

and updating Q-table. This means with a larger𝐾 , agents take turns

less frequently. As shown in Figure 2(c), with larger 𝐾 , the learning

curve is more stair-like, which means in this game a small number

𝐾 is enough for convergence at each turn. Thus, with larger 𝐾 ,

the learning curve converges more slowly. Last, we investigate

how the number of collected transitions at each turn impacts the

performance of MA2QL. As depicted in Figure 2(d), the performance

of MA2QL is better with more samples. This is because the update

of Q-learning using more samples is more like to induce a full

iteration of Q-table.

Exploration.We further investigate the performance of MA2QL

under different exploration schemes, including different decaying

rates and constant 𝜖 . We use decay_1M to denote the scheme 𝜖

decays from 1 to 0.02 over 10
6
environment steps and const_𝜖 = 0.5

to denote the scheme 𝜖 maintains 0.5 in training, similarly for others.

As illustrated in Figure 4, MA2QL again outperforms IQL in all these

exploration schemes. It can be found that IQL’s performances are

more unstable under different exploration schemes. These results

show the robustness of MA2QL under various exploration schemes,

even when 𝜖 = 1. The reason can be attributed to the convergence

guarantee of MA2QL.

Stochasticity. We investigate MA2QL under different stochas-

ticity levels of the environment. We control the stochasticity level

by introducing p_trans. For any transition, a state has the proba-

bility of p_trans to transition to next state uniformly at random,

otherwise follows the original transition probability. Thus, larger

0 100 200 300 400 500

step

0

50

100

150

m
ea

n
ep

is
o

d
e

re
w

ar
d

s

Stochastic Game

OPTIMAL

MA2QL

IQL

MA2QL fixed order 021

MA2QL random order

Figure 5: Learning curves of MA2QL under different update orders,
including two pre-defined orders (there are three agents in the didac-
tic game, so there are essentially two different pre-defined orders: [0,
1, 2] (MA2QL) and [0, 2, 1]) and random order at each turn. MA2QL
outperforms IQL under all update orders.

p_trans means higher level of stochasticity. As illustrated in Fig-

ure 3, MA2QL outperforms IQL in all stochasticity levels.

Update Order. Our theoretical result holds on any update order

of agents, which means the order does not affect the convergence

theoretically. Here we investigate the empirical performance of

MA2QL under different pre-defined orders and the random order

at each round. As there are three agents in this environment, there

are essentially two different pre-defined orders. Suppose that three

agents are indexed from 0 to 2. The alternating update orders [0, 1,

2], [1, 2, 0], and [2, 0, 1] are the same, while [0, 2, 1], [1, 0, 2], and

[2, 1, 0] are the same. As illustrated in Figure 5, the performance

of MA2QL is almost the same under the two orders (MA2QL is the

order of [0, 1, 2]), which shows the robustness of MA2QL under

different pre-defined orders. As for the random order at each round,

the performance drops but is still better than IQL. One possible

reason is that agents are not evenly updated due to the random

order at each round, which may consequently induce a worse Nash

equilibrium.

In the didactic game, we show that MA2QL consistently outper-

forms IQL under various settings. In the following experiments, for

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1796

a fair comparison, the hyperparameters of IQL are well-tuned and

we directly build MA2QL on top of IQL. As for the update order of

MA2QL agents, we use a randomly determined order throughout

the training process.

5.2 MPE
MPE is a popular environment in cooperative MARL. We consider

three partially observable tasks: 5-agent simple spread, 5-agent line

control, and 7-agent circle control [1], where the action space is set

to discrete. Moreover, we use the sparse reward setting for these

tasks, thus they are more difficult than the original ones. More

details are available in Supplementary. For both IQL and MA2QL,

Q-network is learned by DQN [16].

Figure 6: Learning curves of MA2QL compared with IQL in 5-agent
simple spread, 5-agent line control, and 7-agent circle control inMPE,
where x-axis is environment steps. All tasks are partially observable.

Figure 6 shows the learning curve of MA2QL compared with

IQL in these three MPE tasks. In simple spread and circle control, at

the early training stage, IQL learns faster and better than MA2QL,

but eventually MA2QL converges to a better joint policy than IQL.

The converged performance of IQL is always worse than MA2QL,

similar to that in the didactic game. Moreover, unlike the didactic

game, simultaneous learning of IQL may also make the learning

unstable even at the late training stage as in line control and circle

control, where the episode rewards may decrease. On the other

hand, learning by turns gradually improves the performance and

converges to a better joint policy than IQL.

As MA2QL and IQL both use replay buffer that contains old

experiences, why does MA2QL outperform IQL? The reason is

their experiences are generated in different manners. In Q-learning,

for each agent 𝑖 , the ideal target is

𝑦𝑖 = 𝑟
𝝅
𝑖 (𝑠, 𝑎𝑖) + 𝛾E𝑠′∼𝑃𝝅

𝑖
(· |𝑠,𝑎𝑖) [max

𝑎′
𝑖

𝑄𝑖 (𝑠′, 𝑎′𝑖)]

and the practical target is

𝑦𝑖 = 𝑟
𝝅D

𝑖
(𝑠, 𝑎𝑖) + 𝛾E𝑠′∼𝑃𝝅

D

𝑖
(· |𝑠,𝑎𝑖) [max

𝑎′
𝑖

𝑄𝑖 (𝑠′, 𝑎′𝑖)],

where 𝝅D is the average joint policy for the experiences in the

replay buffer. We can easily obtain a bound for the target that

|𝑦𝑖 − 𝑦𝑖 | ≤
2 − 𝛾
1 − 𝛾 𝑟max𝐷TV

(
𝜋−𝑖 (·|𝑠)∥𝜋−𝑖

D
(·|𝑠)

)
where 𝑟max = max

𝑠,𝒂
𝑟 (𝑠, 𝒂).

We can then give an explanation from the aspect of the divergence

between 𝝅 and 𝝅D. MA2QL obtains experiences with only one

agent learning, so the variation for the joint policy is smaller than

that of IQL. Thus, in general, the divergence between 𝝅 and 𝝅D is

smaller for MA2QL, which is beneficial to the learning.

5.3 Multi-Agent MuJoCo
Multi-agent MuJoCo has become a popular environment in cooper-

ative MARL for continuous action space. We choose three robotic

control tasks: 2 × 3 HalfCheetah, 3 × 1 Hopper, and 3 × 2Walker2d.

To investigate continuous action space in both partially and fully

observable environments, we configure 2× 3 HalfCheetah and 3× 1
Hopper as fully observable, and 3 × 2 Walker2d as partially observ-

able. More details and results on multi-agent MuJoCo are available

in Supplementary. For both IQL and MA2QL, we use DDPG [12] as

the alternative to DQN to learn a Q-network and a deterministic

policy for each agent to handle continuous action space. Here we

abuse the notation a little and still denote them as IQL and MA2QL

respectively.

Figure 7: Learning curves of MA2QL compared with IQL in 2 × 3

HalfCheetah (fully observable), 3 × 1 Hopper (fully observable), and
3 × 2 (partially observable) Walker2d in multi-agent MuJoCo, where
x-axis is environment steps.

In comparison to discrete action space, training multiple cooper-

ative agents in continuous action space still remains challenging

due to the difficulty of exploration and coordination in continuous

action space. Thus, the evaluation on these multi-agent MuJoCo

tasks can better demonstrate the effectiveness of decentralized co-

operative MARL methods. As illustrated in Figure 7, in all the tasks,

we find that MA2QL consistently and significantly outperforms IQL

while IQL struggles.We believe the reason is that the robotic control

tasks are much more dynamic than MPE and the non-stationarity

induced by simultaneous learning of IQL may be amplified, which

makes it hard for agents to learn effective and cooperative policies.

On the other hand, alternate learning of MA2QL can deal with the

non-stationarity and sufficiently stabilize the environment during

the learning process, especially in HalfCheetah and Hopper, where

MA2QL stably converges to much better performance than IQL.

According to these experiments, we can verify the superiority of

MA2QL over IQL in the continuous action space.

5.4 SMAC
SMAC is a popular partially observable environment for bench-

marking cooperative MARL algorithms. SMAC has a much larger

exploration space, where agents are much easy to get stuck in

sub-optimal policies especially in the decentralized setting. We

test our method on three representative maps for three difficul-

ties: 3s_vs_4z (easy), 5m_vs_6m (hard), and corridor (super hard),
where harder map has more agents. Results on more maps are avail-

able in Supplementary. It is worth noting that we do not use any

global state in the decentralized training and each agent learns on

its own trajectory.

The results are shown in Figure 9. On the map 3s_vs_4z, IQL
and MA2QL both converge to the winning rate of 100%. However,

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1797

800

en

E 600

ro

Cl) 400
"'C
0
en

■-

a.

w
200

0

0.0

-• IQL

0.5 1.0

-• MA2QL, K=4000

Hopper

1.5

steps
2.0

-• MA2QL, K=8000

2.5 3.0
1e6

-• MA2QL, K=40000

(a) effect of 𝐾 (b) learning rate (c) batch size

Figure 8: The effect of hyperparameters: (a) learning curves of MA2QL with different 𝐾 in 3 × 1 Hopper, compared with IQL; (b) learning curves
of MA2QL compared with IQL with different learning rates in simple spread in MPE; (c) learning curves of MA2QL compared with IQL with
different batch sizes in 3 × 2 HalfCheetah in multi-agent MuJoCo. It is shown that the gain of MA2QL over IQL is robust to hyperparameters.

Figure 9: Learning curves of MA2QL compared with IQL on 3s_vs_4z
(easy), 5m_vs_6m (hard) and corridor (super hard) in SMAC, where
x-axis is environment steps. All tasks are partially observable.

on the hard and super hard map 5m_vs_6m and corridor, MA2QL

achieves stronger than IQL. It is worth noting that the recent study

[18] shows that IQL performs well in SMAC, even close to CTDE

methods like QMIX [20]. Here, we show that MA2QL can still out-

perform IQL in three maps with various difficulties, which indicates

that MA2QL can also tackle the non-stationarity problem and bring

performance gain in more complex tasks.

5.5 Hyperparameters and Scalability

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

200

400

600

800

1000

1200

Ep
is

od
e R

ew
ar

ds

MA2QL
IQL

17 agents

(a) 15-agent simple spread

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

200

400

600

800

1000

1200

Ep
is

od
e R

ew
ar

ds

MA2QL
IQL

17 agents

(b) 17 × 1 Humanoid

Figure 10: Learning curves of MA2QL compared with IQL in (a) 15-
agent simple spread inMPE and in (b) 17×1Humanoid inmulti-agent
MuJoCo. MA2QL still outperforms IQL in these many-agent tasks,
which indicates the good scalability of MA2QL.

We further investigate the influence of the hyperparameters on

MA2QL and the scalability of MA2QL. First, we study the effect of

𝐾 (the number of Q-network updates at each turn) in the robotic

control task: 3-agent Hopper. We consider 𝐾 = [4000, 8000, 40000].
As shown in Figure 8(a), when 𝐾 is small, it outperforms IQL but

still gets stuck in sub-optimal policies. On the contrary, if 𝐾 is large,

different 𝐾 affects the efficiency of the learning, but not the final

performance.

As discussed before, the hyperparameters are the same for IQL

and MA2QL, which are well-tuned for IQL. To further study their

effect on MA2QL, we conduct additional experiments in simple

spread with different learning rates and in HalfCheetah with dif-

ferent batch sizes. As shown in Figure 8(b) and Figure 8(c), under

these hyperparameters, the performance of IQL and MA2QL varies,

but MA2QL consistently outperforms IQL, which can be evidence

of the gain of MA2QL over IQL is robust to the hyperparameters

of IQL. The default learning rate in MPE is 0.0005 and the default

batch size in multi-agent MuJoCo is 100.

As for scalability, we additionally evaluate MA2QL in 15-agent

simple spread in MPE and 17× 1 Humanoid in multi-agent MuJoCo.

As illustrated in Figure 10, MA2QL brings large performance gains

over IQL in both tasks. More agents mean the environments become

more complex and unstable for decentralized learning. IQL is easy

to get stuck by the non-stationarity problem while MA2QL can

handle it well. These results indicate the good scalability of MA2QL

comparing with IQL.

6 CLOSING REMARKS
In the paper, we propose MA2QL, a simple yet effective value-

based fully decentralized cooperative MARL algorithm. MA2QL is

theoretically grounded and requires minimal changes to indepen-

dent Q-learning. We prove the Y-convergence property of MA2QL.

Empirically, we verify the effectiveness of MA2QL in a variety of

cooperative multi-agent tasks, including a cooperative stochastic

game, MPE, multi-agent MuJoco, and SMAC. The results show that,

in spite of such minimal changes, MA2QL outperforms IQL consis-

tently across these tasks. In practice, MA2QL can be easily realized

by letting agents follow a pre-defined schedule for learning. How-

ever, such a schedule is convenient. One limitation of MA2QL is

it only guarantees the convergence of Nash equilibrium in tabular

cases. As there are usually multiple Nash equilibria, the converged

performance of MA2QL may not be optimal as shown in the sto-

chastic game. Nevertheless, learning the optimal joint policy in

fully decentralized settings is still an open problem.

ACKNOWLEDGMENTS
This work was supported by NSFC under grant 62250068.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1798

REFERENCES
[1] Akshat Agarwal, Sumit Kumar, Katia Sycara, and Michael Lewis. 2020. Learn-

ing Transferable Cooperative Behavior in Multi-Agent Teams. In International
Conference on Autonomous Agents and Multiagent Systems (AAMAS).

[2] Dimitri Bertsekas. 2020. Multiagent value iteration algorithms in dynamic pro-

gramming and reinforcement learning. Results in Control and Optimization 1

(2020), 100003.

[3] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviy-

chuk, Philip HS Torr, Mingfei Sun, and Shimon Whiteson. 2020. Is independent

learning all you need in the starcraft multi-agent challenge? arXiv preprint
arXiv:2011.09533 (2020).

[4] Mingxiao Feng, Guozi Liu, Li Zhao, Lei Song, Jiang Bian, Tao Qin, Wengang

Zhou, Houqiang Li, and Tie-Yan Liu. 2022. Multi-Agent Reinforcement Learning

with Shared Resource in Inventory Management.

[5] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and

Shimon Whiteson. 2018. Counterfactual multi-agent policy gradients. In AAAI
Conference on Artificial Intelligence (AAAI).

[6] Shariq Iqbal and Fei Sha. 2019. Actor-attention-critic for multi-agent reinforce-

ment learning. In International Conference on Machine Learning (ICML).
[7] Jiechuan Jiang and Zongqing Lu. 2022. Best Possible Q-Learning.

[8] Jiechuan Jiang and Zongqing Lu. 2022. I2Q: A Fully Decentralized Q-Learning

Algorithm. In Advances in Neural Information Processing Systems (NeurIPS).
[9] Wenhao Li, Bo Jin, Xiangfeng Wang, Junchi Yan, and Hongyuan Zha. 2020. F2a2:

Flexible fully-decentralized approximate actor-critic for cooperative multi-agent

reinforcement learning. arXiv preprint arXiv:2004.11145 (2020).
[10] Xihan Li, Jia Zhang, Jiang Bian, Yunhai Tong, and Tie-Yan Liu. 2019. A Coopera-

tive Multi-Agent Reinforcement Learning Framework for Resource Balancing in

Complex Logistics Network. In International Conference on Autonomous Agents
and Multiagent Systems (AAMAS).

[11] Yueheng Li, Guangming Xie, and Zongqing Lu. 2022. Difference Advantage

Estimation for Multi-Agent Policy Gradients. In International Conference on
Machine Learning (ICML).

[12] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and DaanWierstra. 2016. Continuous control with deep

reinforcement learning. In International Conference on Learning Representations
(ICLR).

[13] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.

2017. Multi-agent actor-critic for mixed cooperative-competitive environments.

In Advances in Neural Information Processing Systems (NeurIPS).
[14] Omid Madani, Steve Hanks, and Anne Condon. 1999. On the undecidability of

probabilistic planning and infinite-horizon partially observable Markov decision

problems. In AAAI/IAAI.
[15] Laëtitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. 2007. Hysteretic

q-learning: an algorithm for decentralized reinforcement learning in cooperative

multi-agent teams. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS).

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep

reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).
[17] Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani. 2018. Le-

nient multi-agent deep reinforcement learning. In International Conference on
Autonomous Agents and MultiAgent Systems.

[18] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht.

2021. Benchmarking multi-agent deep reinforcement learning algorithms in

cooperative tasks. InAdvances in Neural Information Processing Systems (NeurIPS).
[19] Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kami-

enny, Philip Torr, Wendelin Böhmer, and Shimon Whiteson. 2021. Facmac: Fac-

tored multi-agent centralised policy gradients. In Advances in Neural Information
Processing Systems (NeurIPS).

[20] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob

Foerster, and Shimon Whiteson. 2018. Qmix: Monotonic value function factori-

sation for deep multi-agent reinforcement learning. In International Conference
on Machine Learning (ICML).

[21] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Far-

quhar, Nantas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob

Foerster, and Shimon Whiteson. 2019. The StarCraft Multi-Agent Challenge. In

International Conference on Autonomous Agents andMultiagent Systems (AAMAS).
[22] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung

Yi. 2019. Qtran: Learning to factorize with transformation for cooperative multi-

agent reinforcement learning. In International Conference on Machine Learning
(ICML).

[23] Kefan Su and Zongqing Lu. 2022. Divergence-Regularized Multi-Agent Actor-

Critic. In International Conference on Machine Learning (ICML).
[24] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Viní-

cius Flores Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z

Leibo, Karl Tuyls, et al. 2018. Value-Decomposition Networks For Cooperative

Multi-Agent Learning Based On Team Reward. In International Conference on
Autonomous Agents and Multiagent Systems (AAMAS).

[25] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-

duction.

[26] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus,

Juhan Aru, Jaan Aru, and Raul Vicente. 2015. Multiagent Cooperation and

Competition with Deep Reinforcement Learning. arXiv preprint arXiv:1511.08779
(2015).

[27] Ming Tan. 1993. Multi-agent reinforcement learning: independent versus coop-

erative agents. In International Conference on Machine Learning (ICML).
[28] Justin K Terry, Nathaniel Grammel, Ananth Hari, Luis Santos, and Benjamin

Black. 2020. Revisiting parameter sharing in multi-agent deep reinforcement

learning. arXiv preprint arXiv:2005.13625 (2020).
[29] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. 2021.

QPLEX: Duplex dueling multi-agent q-learning. In International Conference on
Learning Representations (ICLR).

[30] Jianhong Wang, Wangkun Xu, Yunjie Gu, Wenbin Song, and Tim C Green. 2021.

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distri-

bution Networks. InAdvances in Neural Information Processing Systems (NeurIPS).
[31] Jiangxing Wang, Deheng Ye, and Zongqing Lu. 2022. More Centralized Train-

ing, Still Decentralized Execution: Multi-Agent Conditional Policy Factorization.

arXiv preprint arXiv:2209.12681 (2022).
[32] Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang.

2020. Off-Policy Multi-Agent Decomposed Policy Gradients. In International
Conference on Learning Representations (ICLR).

[33] Bingyu Xu, Yaowei Wang, Zhaozhi Wang, Huizhu Jia, and Zongqing Lu. 2021.

Hierarchically and Cooperatively Learning Traffic Signal Control. In AAAI Con-
ference on Artificial Intelligence (AAAI).

[34] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.

2021. The surprising effectiveness of mappo in cooperative, multi-agent games.

arXiv preprint arXiv:2103.01955 (2021).
[35] Haifeng Zhang, Weizhe Chen, Zeren Huang, Minne Li, Yaodong Yang, Weinan

Zhang, and Jun Wang. 2020. Bi-level actor-critic for multi-agent coordination. In

AAAI Conference on Artificial Intelligence (AAAI).
[36] Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. 2019. Multi-Agent Reinforce-

ment Learning: A Selective Overview of Theories and Algorithms. arXiv preprint
arXiv:1911.10635 (2019).

[37] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Baar. 2018. Fully

Decentralized Multi-Agent Reinforcement Learning with Networked Agents. In

International Conference on Machine Learning (ICML).
[38] Tianhao Zhang, Yueheng Li, Chen Wang, Guangming Xie, and Zongqing Lu.

2021. Fop: Factorizing optimal joint policy of maximum-entropy multi-agent

reinforcement learning. In International Conference on Machine Learning (ICML).

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1799

	Abstract
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Multi-Agent Alternate Policy Iteration

	3 Method
	3.1 Multi-Agent Alternate Q-Iteration
	3.2 Multi-Agent Alternate Q-Learning

	4 Related Work
	5 Experiments
	5.1 A Didactic Game
	5.2 MPE
	5.3 Multi-Agent MuJoCo
	5.4 SMAC
	5.5 Hyperparameters and Scalability

	6 Closing Remarks
	Acknowledgments
	References

