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ABSTRACT
Resource allocation is a fundamental problem in multi-agent sys-

tems, with two key factors to consider: fairness and efficiency. The

concept of the “price of fairness” helps in the understanding of

efficiency loss under fairness constraints. Among the diverse re-

source allocation settings, cake cutting stands out as a prominent

model. Recently, Höhne and van Stee [Inf. Comput., 2021] examined

a variation of this model in which the cake represents indivisible

chores, with each agent requiring a connected piece of the chores.

Höhne and van Stee provided upper and lower bounds on the price

of fairness when fairness is measured by envy-freeness and pro-

portionality. However, in the case of indivisible items, achieving

envy-free and proportional allocations is difficult, rendering these

bounds insufficient for a comprehensive understanding of the true

trade-off between fairness and efficiency. In this paper, we revisit

the same problem and consider fairness notions that are satisfi-

able, including proportionality up to one item, and maximin share

fairness. By presenting tight bounds on the price of fairness with

respect to these notions, we complete the picture of fairness and

efficiency trade-off.
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1 INTRODUCTION
Resource allocation is a fundamental problem in various multi-

agent systems, where two crucial but orthogonal factors come into

play: fairness and efficiency. Traditionally, research in resource

allocation has predominantly addressed either efficiency or fairness

separately [6, 8, 16], and seminal works by Bertsimas et al. [14] and

Caragiannis et al. [20] introduced the concept of “price of fairness”

to study the impact of fairness on the efficiency of allocations.

Since then, a significant body of research has emerged, focusing

on bounding the price of fairness in diverse resource allocation

settings.
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Cake cutting serves as a prominent model and is capable of cap-

turing a wide range of real-life scenarios in a simple yet powerful

framework [18, 24, 25, 36]. The cake-cutting problem involves di-

viding a heterogeneous resource, represented by an interval [0, 1],
among multiple agents with different preferences and valuations.

The goal is to find a division that satisfies some predetermined ob-

jectives, including but not limited to fairness and efficiency. While

the canonical cake allocation has been well-established and exten-

sively studied, recent research has started to explore more about

its variants, acting as metaphors for practical resource allocation

problems. In particular, [28, 30, 31, 37] studied the discrete version

of the cake cutting problem, where the interval is replaced by a

path of vertices, with each vertex representing an indivisible item,

and each agent is required to receive a contiguous block of items

(i.e., connectivity constraints). This discrete version is particularly

used to capture resource allocation problems where the underlying

resource has a temporal or spatial structure, such as allocating con-

ference sessions to different organizers, assigning workload to bin

workers in a local district and allocating network rail maintenance

activities to maintenance employees. In these allocation problems,

each agent prefers to receive a contiguous block of items.

In the model of allocating contiguous blocks of indivisible items,

the trade-off between fairness and efficiency has already drawn

attention of researchers. Suksompong [37] and Höhne and van Stee

[28], respectively, bounded the price of fairness for goods and chores

of the discrete cake cutting problem. The fairness criteria therein

are envy-freeness (EF), proportionality (PROP) and equitability

(EQ) – three gold-standard fairness notions.
1
For indivisible items,

it is widely known that EF, PROP and EQ are very hard to satisfy,

resulting in the corresponding bounds of price of fairness falling

short in providing a comprehensive understanding of the true trade-

off between fairness and efficiency: the impact of enforcing fairness

on the efficiency loss was not considered for the instances which

do not admit EF or PROP or EQ allocations. Similar limitations

were observed in the earlier work of [20] which studied the price

of fairness of indivisible items without the connectivity constraints.

To overcome these limitations, Bei et al. [13] and Barman et al. [11]

took a different approach by shifting to the fairness notions that

are always satisfiable.

In line with [11, 13], Sun and Li [40] considered the allocation

of indivisible goods with connectivity constraints, the same model

as [37], and provided the bounds of the price of fairness regarding

PROP1 and MMS – two popular relaxed notions of proportionality

that can always be satisfied. The established price of fairness in

[40] also indicates the limitation of studying non-satisfiable fairness

1
Intuitively, an allocation is EF is every agent prefers her own items than any other

agent’s; is PROP if every agent gets at least
1

𝑛
of her total utility for all items, where 𝑛

is the number of agents; is EQ if agents’ utilities are at the same level.
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criteria. However, the issue remains unresolved for the problem

of chores, which motivates our work. Although, at first glance,

allocating chores looks like a symmetric or dual problem of the

allocation of goods, it has been observed that allocating goods or

chores are not mirror images of one another. Thus, in this paper, we

revisit fairness and efficiency trade-off in the model of allocating

contiguous blocks of indivisible chores (that in [28]) by considering

satisfiable fairness notions. Our objective is to complete the picture

of efficiency loss under fairness constraints by establishing the

price of fairness regarding the fairness criteria whose existence

is guaranteed in all instances of allocating contiguous blocks of

indivisible chores.

1.1 Contributions
In this paper, we quantify the efficiency loss under fairness con-

straints by establishing the corresponding price of fairness ratios.

The underlying fairness notions are proportionality up to one item
(PROP1) and maximin share fairness (MMS). The efficiency of an

allocation is assessed through two welfare functions; utilitarian
welfare is the summation of individuals’ value, and egalitarian wel-

fare is the value of the worst-off agent. We first consider the general

case of 𝑛 ≥ 3. In terms of egalitarian welfare, the price of MMS is

𝑛
2
, while the price of PROP1 is

𝑛
2
for 𝑛 ≥ 4 and is 2 for 𝑛 = 3. When

efficiency is measured by utilitarian welfare, the price of MMS is at

most 3𝑛 and at least
𝑛+2
4
, asymptotically tight Θ(𝑛). For the notion

of PROP1, we also establish the asymptotically tight result Θ(𝑛).
These results are summarized in Table 1, and for the ease of compar-

ison, we also provide the known PoF results regarding EF and PROP

in [28]. Additionally, we explore the model with two agents and

demonstrate, in Section 5, that the prices of MMS and of PROP1 are

two and one regarding utilitarian welfare and egalitarian welfare,

respectively.

When comparing the results to those in [28], we have two inter-

esting observations. On the one hand, if one relaxes the underlying

fairness notion from EF to PROP1 and MMS, the price of fairness de-

creases from infinity to Θ(𝑛), which confirms the intuition that the

weaker the fairness notion is, the less efficiency would be sacrificed.

On the other hand, the price of fairness of PROP, together with

that of MMS and PROP1, seems to be counter-intuitive. Specifically,

we show that prices of MMS and of PROP1 are
𝑛
2
, way larger than

the price of PROP. Note that any PROP allocation is also MMS and

PROP1, and hence, the price of PROP1 should be no greater than

the price of PROP and of MMS. This counter-intuitive result, as

we have discussed, arises from neglecting instances in which no

PROP allocation exists when studying the price of PROP. For these

challenging instances, a significant portion of efficiency is sacrificed

even for allocations that satisfy fairness constraints weaker than

PROP.

From the technique perspective, studying the price of fairness

regarding relaxed fairness notions is not easier than that of PROP

or EF, and even brings more challenges. For example, if PROP al-

locations exist, then the price of PROP with respect to egalitarian

welfare is trivially one as the egalitarian welfare-maximizing allo-

cation would also be PROP. Nonetheless, this argument does not

extend to the concepts of MMS and PROP1.

We remark that all upper bounds, in this work, are proven

through a constructive approach. For each fairness notion, we uti-

lize the idea of moving-knife and propose an algorithm with a

tunable parameter for the purpose of controlling individuals’ value.

Then, we characterize the parameter domain, with which imple-

menting the proposed algorithm can output allocations satisfying

the underlying fairness notion. For utilitarian welfare, by choosing

the threshold parameter properly, our parametric algorithm can, in

polynomial time, return fair solutions achieving the asymptotically

tight upper bound. For egalitarian welfare, if we allow an oracle

on computing egalitarian welfare-maximizing allocations, then in

most cases (when 𝑛 ≥ 4 for MMS and 𝑛 ≥ 8 for PROP1), the pro-

posed algorithms can efficiently return fair solutions with the best

possible worst-case efficiency guarantee. The remaining situations

are proved by carefully reallocating chores upon the allocation

returned by the proposed algorithm.

1.2 Other Related Works
Our work is closely related to the rich body of literature on cake

cutting, where a divisible resource denoted by the real interval

[0, 1] is allocated to a set of agents. For cake cutting problems,

an envy-free and proportional allocation always exists [18], and

a recent breakthrough paper [8] proved that such an allocation

can be found in finite steps. The follow-up work [23] solved this

problem for the envy-free allocation of a divisible chore. Su [25]

considered the constrained version of this problem, where every

agent is required to receive a contiguous piece of the cake, and the

resulting price of fairness is analyzed in [5].

However, when the items become indivisible, the problem be-

comes different and the aforementioned techniques cannot be ap-

plied any more, which is the focus of the current work. Without

any constraints, approximate envy-freeness and proportionality

are guaranteed to be satisfiable [32, 34, 35]. When the allocations

are required to satisfy extra constraints, the problem is trickier and

the readers can refer to the survey paper [38] for a detailed intro-

duction. One of the most and natural constraints is connectivity,
where the items are assumed to be distributed on a graph [15, 17]

and each agent should receive a connected subgraph. The paths as

we considered in this study represent a significant special case that

yields some interesting positive results.

Besides the price of fairness, there is another line of research

investigating if efficiency and fairness can be satisfied simultane-

ously, such as the compatibility between Pareto optimality and

approximate envy-freeness/proportionality; see, e.g.,[3, 12, 21, 27].

2 PRELIMINARIES
In the model of allocating contiguous blocks of indivisible chores,

there is a set 𝐸 = {𝑒1, . . . , 𝑒𝑚} of indivisible chores located on

a path, and throughout the paper, 𝑒 𝑗 is at the left of 𝑒 𝑗+1 for all

𝑗 ≤ 𝑚 − 1. Let 𝑁 = {1, . . . , 𝑛} denote the set of 𝑛 agents, and each

agent requires a contiguous block, i.e., connectivity constraint. Both

an empty set and a singleton are regarded as connected. We refer

to subsets of items as bundles, and, moreover, let C be the set of

contiguous bundles. Each agent 𝑖 has a disutility or non-positive

valuation function 𝑣𝑖 (·) : C → R≤0. Similar to existing works

on allocations with connectivity constraints [15, 28, 30, 37], for
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General 𝑛 EF PROP MMS PROP1

PoF
∞ 𝑛 Θ(𝑛) (Theorems 12 and 18) Utilitarian

∞ 1
𝑛
2
(Theorem 11)

𝑛
2
for 𝑛 ≠ 3; 2 for 𝑛 = 3

Egalitarian

(Theorem 17)

Table 1: The price of fairness regarding EF, PROP, MMS, PROP1. The ratios for EF and PROP are proved in [28].

any agent 𝑖 , valuation 𝑣𝑖 is assumed to be additive, that is, 𝑣𝑖 (𝐶) =∑
𝑒∈𝐶 𝑣𝑖 ({𝑒}) for all 𝐶 ∈ C, and normalized, that is, 𝑣𝑖 (𝐸) = −1.

Throughout the paper, denote by 𝐼 = ⟨𝑁, 𝐸, {𝑣𝑖 }𝑛𝑖=1⟩ an instance;

by 𝐿(𝑘) = {𝑒1, . . . , 𝑒𝑘 }; by 𝑅(𝑘) = {𝑒𝑘 , . . . , 𝑒𝑚}; by [𝑘] = {1, . . . , 𝑘}
for all 𝑘 ∈ N+. For any agent 𝑖 ∈ [𝑛] and chore 𝑒 ∈ 𝐸, instead of

𝑣𝑖 ({𝑒}), we write 𝑣𝑖 (𝑒).
A feasible allocation A := (𝐴1, . . . , 𝐴𝑛) is an 𝑛-partition of 𝐸

where every bundle must be contiguous, i.e., for any 𝑖 ≠ 𝑗 ,𝐴𝑖∩𝐴 𝑗 =

∅, ∪𝑖∈𝑁𝐴𝑖 = 𝐸 and 𝐴𝑖 ∈ C for all 𝑖 ∈ 𝑁 . If not explicitly stated

otherwise, thereafter, all allocations and bundles are feasible and

contiguous, respectively. For any subset 𝑆 ⊆ 𝐸 and 𝑘 ∈ N+, let
Π𝑘 (𝑆) be the set of 𝑘-contiguous partitions of 𝑆 , and let |𝑆 | be the
number of items in 𝑆 .

2.1 Fairness Notions
We below introduce fairness notions of proportionality (PROP) and

its relaxation. The notion of PROP requires each agent to receive a

value at least − 1

𝑛 .

Definition 1 (PROP). An allocation A = (𝐴1, . . . , 𝐴𝑛) is said to
be PROP if for any 𝑖 ∈ [𝑛], 𝑣𝑖 (𝐴𝑖 ) ≥ − 1

𝑛 .

In the context of indivisible chores, PROP allocation does not

always exist. A relaxation, so-called proportional up to one item
(PROP1) is proposed and has been widely studied in various fair

division problem [6, 9, 22].

Definition 2 (PROP1). An allocation A = (𝐴1, . . . , 𝐴𝑛) is said
to be PROP1 if for any 𝑖 ∈ [𝑛], there exists a chore 𝑒 ∈ 𝐴𝑖 such that
𝐴𝑖 \ {𝑒} ∈ C and 𝑣𝑖 (𝐴𝑖 \ {𝑒}) ≥ − 1

𝑛 .

Another relaxation of PROP is maximin share (MMS) fairness

[4, 29, 32]. The rationale of maximin share comes from the general-

ization of the cut-and-choose protocol: agent 𝑖 is asked to partition

chores into 𝑛 contiguous bundles, but she is the last to choose. In

the worst-case scenario, agent 𝑖 receives the least-value bundle for

her. The risk-averse strategy for agent 𝑖 is to cut in a way that

maximizes the minimum value of a bundle. This idea brings about

the formal definition below.

MMS𝑖 (𝐸, 𝑛) = max

X∈Π𝑛 (𝐸)
min

𝑗 ∈[𝑛]
𝑣𝑖 (𝑋 𝑗 ) .

We say {𝑇𝑘 }𝑛𝑘=1 is an MMS𝑖 (𝐸, 𝑛)-defining partition if 𝑣𝑖 (𝑇𝑘 ) ≥
MMS𝑖 (𝐸, 𝑛) for all 𝑘 ∈ [𝑛]. The MMS fairness ensures that every

agent 𝑖 receives a value at least MMS𝑖 (𝐸, 𝑛).
Definition 3 (MMS). For an allocation A = (𝐴1, . . . , 𝐴𝑛) of

instance 𝐼 = ⟨𝑁, 𝐸, {𝑣𝑖 }𝑛𝑖=1⟩, A is said to be MMS fair if 𝑣𝑖 (𝐴𝑖 ) ≥
MMS𝑖 (𝐸, 𝑛) for all 𝑖 ∈ 𝑁 .

For simple notations, throughout the paper, we write MMS𝑖
when the underlying 𝐸 and 𝑛 are clear from the context. We remark

that in contrast with the NP-hardness of the computation of MMS

without connectivity constraints [10, 33], in our setting, MMS value

of an agent can be computed in polynomial time.

Lemma 4. Given an instance 𝐼 , for any agent 𝑖 , the valueMMS𝑖
can be computed in polynomial time.

Due to the page limit, missing proofs can be found in the full

version.

2.2 Welfare functions and price of Fairness
In this work, we borrow from the welfare economics two canonical

social welfare functions, namely, utilitarian welfare and egalitarian
welfare, to measure the efficiency of outcomes.

Definition 5. Given an allocation A = (𝐴1, . . . , 𝐴𝑛), utilitar-
ian welfare and egalitarian welfare functions of A are UW(A) =∑
𝑖∈[𝑛] 𝑣𝑖 (𝐴𝑖 ) and EW(A) = min𝑖∈[𝑛] 𝑣𝑖 (𝐴𝑖 ), respectively.

The last notion to be introduced is price of fairness (PoF) that
characterizes, in the worst-case scenario, the efficiency loss under

a certain fairness constraint. The PoF is the supremum ratio over

all instances between maximum welfare of all fair allocations and

maximum welfare of all allocations.

Definition 6 (PoF). The price of fairness with respect to welfare
function𝑊 and fairness criterion 𝐹 is

PoF(𝑊 | 𝐹 ) = sup

𝐼

min

A∈𝐹 (𝐼 )
𝑊 (A)

OPT𝑊 (𝐼 )
,

where OPT𝑊 (𝐼 ) refers to the maximum𝑊 (A) among all allocations
A of 𝐼 ; 𝐹 (𝐼 ) refers to the set of allocations satisfying fairness criterion
𝐹 .

In the above definition, we apply the following convention: if the

maximum welfare of an instance is equal to zero
2
, then the price of

fairness is defined to be 1. Note that in the above definition of PoF,

we pursue the minimum ratio as the welfare is non-positive in the

allocations of chores. For a simple presentation, we use OPT𝐸 and

OPT𝑈 to refer to OPT𝐸𝑊 (𝐼 ) and OPT𝑈𝑊 (𝐼 ), respectively if the

instance is clear from the context. The PoF with respect to fairness

criterion 𝐹 is also called price of 𝐹 , i.e., price of PROP1 or price of
MMS.

3 PRICES OF MMS FOR GENERAL 𝑛 ≥ 3

We start with MMS fairness. To find and compute the desired MMS

allocation, we propose a polynomial time algorithm ALG-M(𝛽)

(see Algorithm 1) with a parameter 𝛽 . ALG-M(𝛽) relies on the

idea of a moving knife. It involves starting from the leftmost item

2
In this case, the welfare-maximizing allocation satisfies both fairness notions consid-

ered in this paper.
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and iteratively identifying the farthest item such that there exists

some agent 𝑖 whose valuation for items ranging from the leftmost

item to the current one does not exceed a predetermined threshold

max{MMS𝑖 , 𝛽} where 𝛽 is a non-positive real number. The param-

eter 𝛽 , as an input, is incorporated to control an individual’s value

thereby ensuring a certain level of welfare. In the following, we

first present the value range of 𝛽 allowing ALG-M(𝛽) to return an

MMS allocation. Then, we choose the proper 𝛽 to establish the tight

PoF ratio regarding both egalitarian welfare and utilitarian welfare.

Algorithm 1 ALG-M(𝛽)

Input: An instance 𝐼 = ⟨𝑁, 𝐸, {𝑣𝑖 }𝑛𝑖=1⟩ and a real number 𝛽 .

Output: An allocation A = (𝐴1, . . . , 𝐴𝑛).
1: Initialize 𝑁0 ← 𝑁 and 𝐸0 ← 𝐸.

2: while |𝑁0 | > 1 & 𝐸0 ≠ ∅ do
3: Denote by 𝑒𝐿 ∈ 𝐸0 the left-most item in 𝐸0.

4: if there exists an agent 𝑖 ∈ 𝑁0 such that 𝑣𝑖 (𝑒𝐿) ≥
max{MMS𝑖 , 𝛽} then

5: Let 𝑝 be the largest index such that there exists an agent

𝑖∗ with 𝑣𝑖∗ (𝐿(𝑝) ∩ 𝐸0) ≥ max{MMS𝑖∗ , 𝛽}. If there is a tie,
pick the agent with largest value on 𝐿(𝑝) ∩ 𝐸0.

6: 𝐴𝑖∗ ← 𝐿(𝑝) ∩ 𝐸0, 𝐸0 ← 𝐸0 \𝐴𝑖∗ , 𝑁0 ← 𝑁0 \ {𝑖∗}.
7: else
8: Let 𝑖∗ ∈ argmax𝑗 ∈𝑁0

𝑣 𝑗 (𝑒𝐿), breaking tie arbitrarily.

9: 𝐴𝑖∗ ← {𝑒𝐿}, 𝐸0 ← 𝐸0 \ {𝑒𝐿}, 𝑁0 ← 𝑁0 \ {𝑖∗}.
10: end if
11: end while
12: If 𝐸0 ≠ ∅, assign 𝐸0 to the only agent in 𝑁0.

13: return A

Lemma 7. For any 𝛽 ≤ − 2

𝑛 , ALG-M(𝛽) returns anMMS allocation
in polynomial time.

Proof. By Lemma 4, the value MMS𝑖 ’s can be computed in

polynomial time. With knownMMS𝑖 , ALG-M(𝛽) allocates all items

in 𝑂 (𝑚2𝑛2) time since the number of agents is reduced by one in

each iteration of while-loop, and all remaining items are assigned

to the last agent.

Next we prove that the returned allocation A = (𝐴1, . . . , 𝐴𝑛) is
MMS. Renumber the agents from 1 to 𝑛 according to the order of

receiving bundles in the algorithm, where agent 1 is the first to

receive a bundle and agent 𝑛 is the last. For an agent 𝑖 ∈ [𝑛 − 1],
she receives 𝐴𝑖 in either Step 6 or 9. If 𝐴𝑖 is assigned in Step 6,

we have 𝑣𝑖 (𝐴𝑖 ) ≥ max{MMS𝑖 , 𝛽} ≥ MMS𝑖 . For the latter, since
|𝐴𝑖 | = 1, then 𝑣𝑖 (𝐴𝑖 ) ≥ MMS𝑖 holds. Thus, agents [𝑛 − 1] satisfy
MMS fairness, and the remaining is to show 𝑣𝑛 (𝐴𝑛) ≥ MMS𝑛 .

If 𝑣𝑛 (𝐴𝑛) = 0, then we are done. As for the case where 𝑣𝑛 (𝐴𝑛) ≠
0, we split the proof into two cases.

Case 1: MMS𝑛 ≥ 𝛽 . Let S = (𝑆1, . . . , 𝑆𝑛) be an MMS𝑛-defining
partition and for 𝑝, 𝑞 with 𝑝 < 𝑞, bundle 𝑆𝑝 is on the left of 𝑆𝑞 . By

the order of agents, for any pair of 𝑖, 𝑗 with 𝑖 < 𝑗 , bundle 𝐴𝑖 is on

the left of 𝐴 𝑗 . Then we prove the following claim.

Claim 8. For any 1 ≤ 𝑘 ≤ 𝑛 − 1, ⋃𝑘
𝑗=1 𝑆 𝑗 ⊆

⋃𝑘
𝑗=1𝐴 𝑗 .

Claim 8 implies that𝐴𝑛 ⊆ 𝑆𝑛 , and thus 𝑣𝑛 (𝐴𝑛) ≥ 𝑣𝑛 (𝑆𝑛) ≥ MMS𝑛 ,
which completes the proof for the case MMS𝑛 ≥ 𝛽 .

Case 2:MMS𝑛 < 𝛽 . Under this case, the threshold value in Step 4

becomes 𝛽 ; note that 𝛽 ≤ − 2

𝑛 . Due to the ordering of agents, for

any 𝑗 ∈ [𝑛 − 1], bundle 𝐴 𝑗+1 is on the right of 𝐴 𝑗 , and moreover,

𝐴 𝑗 ∪𝐴 𝑗+1 ∈ C. We then upper bound agent 𝑛’s value on any two

connected bundles.

Claim 9. For any 𝑗 ∈ [𝑛 − 1], 𝑣𝑛 (𝐴 𝑗 ∪𝐴 𝑗+1) < 𝛽 holds.

Then, we show 𝑣𝑛 (𝐴𝑛) ≥ − 1

𝑛 by elementary counting. On the

one hand, if
𝑛−1
2
∈ N+, as 𝑣𝑛 (𝐴 𝑗 ∪ 𝐴 𝑗+1) < 𝛽 ≤ − 2

𝑛 for all 𝑗 ∈
[𝑛 − 2], it holds that∑𝑗 ∈[𝑛−1] 𝑣𝑛 (𝐴 𝑗 ) < −𝑛−1𝑛 , implying 𝑣𝑛 (𝐴𝑛) >
− 1

𝑛 ≥ MMS𝑛 due to normalized valuations. On the other hand,

if
𝑛−1
2

∉ N+, we sum up 𝑗 from 1 to 𝑛 − 2 and have an upper

bound of

∑𝑛−2
𝑗=1 𝑣𝑛 (𝐴 𝑗 ) < −𝑛−2𝑛 . Accordingly, due to normalized

valuations, 𝑣𝑛 (𝐴𝑛) > − 2

𝑛 ≥ 𝛽 > MMS𝑛 holds, and therefore, agent

𝑛 is satisfied with MMS fairness. □

The above proof also implies that agent 𝑛’s value is at least 𝛽

for all 𝛽 ≤ − 2

𝑛 . This bound will be used later for characterizing the

PoF ratio regarding utilitarian welfare.

Corollary 10. For any 𝛽 ≤ − 2

𝑛 , agent 𝑛 (the last agent to receive
a bundle), in the allocation returned by ALG-M(𝛽), has a value at
least 𝛽 .

3.1 On egalitarian welfare
In this section, we are concerned with egalitarian welfare, and prove

that the tight ratio on the price of MMS is
𝑛
2
. We will investigate the

allocation returned byALG-M(− 1

2
) and show that such an allocation

is either the desired MMS allocation or a step-stone for finding the

desired one.

Theorem 11. For egalitarian welfare and MMS fairness, the price
of fairness is 𝑛

2
.

Proof. We begin with the upper bound. Due to normalized

valuations, if OPT𝐸 ≤ − 2

𝑛 , then any MMS allocation achieves the

PoF ratio of
𝑛
2
. Moreover, if OPT𝐸 ≥ − 1

𝑛 , then egalitarian welfare-

maximizing allocation is MMS. Thus, we can further assume − 2

𝑛 <

OPT𝐸 < − 1

𝑛 .

For 𝑛 ≥ 4, the assumption becomes − 1

2
≤ − 2

𝑛 < OPT𝐸 < − 1

𝑛 .

Hence, it suffices to show that there exists an MMS allocation

with egalitarian welfare at least − 1

2
. Denote by A = (𝐴1, . . . , 𝐴𝑛)

the allocation returned by ALG-M(− 1

2
). Without loss of generality,

agents are renumbered by the order of receiving bundles in the

algorithm, that is, agent 1 is the first to receive a bundle and agent 𝑛

is the last. By Lemma 7, allocation A is MMS, and thus, if EW(A) ≥
− 1

2
, the statement is proved. Below we discuss the situation where

EW(A) < − 1

2
.

Let agent 𝑘 be the one such that 𝑣𝑘 (𝐴𝑘 ) ≤ 𝑣𝑖 (𝐴𝑖 ) for all 𝑖 ∈ [𝑛],
and hence 𝑣𝑘 (𝐴𝑘 ) = EW(A) < − 1

2
. According to Step 4, bundle

𝐴𝑘 is allocated in Step 9 and moreover |𝐴𝑘 | = 1, which further

implies MMS𝑘 = 𝑣𝑘 (𝐴𝑘 ) < − 1

2
. We claim that every other agent

receives a value at least − 1

2
; that is, for any 𝑗 ≠ 𝑘 , 𝑣 𝑗 (𝐴 𝑗 ) ≥ − 1

2

holds. For any 𝑗 < 𝑘 , if 𝑣 𝑗 (𝐴 𝑗 ) < − 1

2
, then 𝐴 𝑗 is allocated in

Step 9 and moreover 𝑣𝑘 (𝐴 𝑗 ) ≤ 𝑣 𝑗 (𝐴 𝑗 ) < − 1

2
. Then, we have −1 >

𝑣𝑘 (𝐴𝑘 ∪𝐴 𝑗 ) ≥ 𝑣𝑘 (𝐸) = 1, a contradiction. If there exists some agent
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𝑗 > 𝑘 with 𝑣 𝑗 (𝐴 𝑗 ) < − 1

2
. Note that 𝑣 𝑗 (𝐴𝑘 ) < − 1

2
; otherwise, 𝐴𝑘 is

not allocated to agent 𝑘 . Similarly, we have −1 > 𝑣 𝑗 (𝐴𝑘 ∪ 𝐴 𝑗 ) ≥
𝑣 𝑗 (𝐸) = −1, a contradiction.

As OPT𝐸 > − 1

2
, there exists an agent 𝑝∗ (with 𝑝∗ < 𝑘) who

receives bundle𝐴𝑘 in the egalitarian welfare-maximizing allocation

and has a value 𝑣𝑝∗ (𝐴𝑘 ) > − 1

2
. Construct another allocation B

where 𝐵𝑝∗ = 𝐴𝑘 , 𝐵𝑘 = 𝐴𝑝∗ , and 𝐵 𝑗 = 𝐴 𝑗 for all 𝑗 ≠ 𝑝∗, 𝑘 . Allocation
B is clearly contiguous and moreover, for any agent 𝑗 ≠ 𝑝∗, 𝑘 , it
holds that 𝑣 𝑗 (𝐵 𝑗 ) ≥ − 1

2
and 𝑣 𝑗 (𝐵 𝑗 ) ≥ MMS𝑗 . As for agents 𝑘 and

𝑝∗, both of them receive a value at least − 1

2
. Moreover, agent 𝑘

satisfies MMS as 𝑣𝑘 (𝐵𝑘 ) > − 1

2
≥ MMS𝑘 and agent 𝑝∗ is also happy

regarding MMS as |𝐵𝑖∗ | = 1. Therefore, allocation B is MMS and

has an egalitarian welfare at least − 1

2
, which implies that the price

of MMS regarding egalitarian welfare is at most
𝑛
2
when 𝑛 ≥ 4.

When 𝑛 = 3, if OPT𝐸 > − 1

2
, then by similar arguments as the

case of 𝑛 ≥ 4, one can prove the price of MMS is at most
3

2
. As for

the case ofOPT𝐸 ≤ − 1

2
, there exists an item 𝑒 such that 𝑣𝑖 (𝑒) ≤ − 1

2

holds for all 𝑖 ∈ [3], implying MMS𝑖 ≤ − 1

2
for all 𝑖 ∈ [3]. As a

consequence, the egalitarian welfare-maximizing allocation is also

MMS so that the price of MMS in this case is equal to one. Up to

here, we show that price of MMS regarding egalitarian welfare is

at most
𝑛
2
for 𝑛 ≥ 3.

As for the lower bound, let us consider an instance with 𝑛 ≥ 3

agents and a set 𝐸 = {𝑒1, . . . , 𝑒𝑛+2} of 𝑛 + 2 chores. The valuations
are shown in the following table, where 𝜖 > 0 is arbitrarily small.

Chores 𝑒1 𝑒2 𝑒3 𝑒4&𝑒5 𝑒6 · · · 𝑒𝑛+2
𝑣1 (·) − 1

𝑛 −𝜖 −𝜖 − 1

𝑛 + 𝜖 − 1

𝑛 · · · − 1

𝑛

𝑣𝑖 (·) for 𝑖 ≥ 2 − 1

2
0 − 1

2
0 0 · · · 0

Table 2: The lower bound instance in Theorem 11

In an egalitarian welfare maximizing allocation O, agent 1 re-
ceives bundle 𝑂1 = {𝑒1, 𝑒2, 𝑒3} and has a value 𝑣1 (𝑂1) = − 1

𝑛 − 2𝜖 .
However, one can verify that MMS1 = − 1

𝑛 − 𝜖 > 𝑣1 (𝑂1), and thus,

allocation O is not MMS. Note that in any MMS allocation, items 𝑒1
and 𝑒3 cannot be assigned to agent 1 at the same time. Accordingly,

the egalitarian welfare of an MMS allocation is at most − 1

2
, and

thus the price of MMS with respect to egalitarian welfare is at least

PoF(EW | MMS) ≥
1

2

1

𝑛 + 2𝜖
→ 𝑛

2

, when 𝜖 → 0,

which finishes the proof. □

Remark: If we have an oracle on computing the egalitarianwelfare-

maximizing allocation, then the MMS allocation achieving
𝑛
2
PoF

ratio can be computed in polynomial time.

3.2 On utilitarian welfare
For utilitarian welfare, we also utilize ALG-M(𝛽) and show an

asymptotically tight PoF ratio of Θ(𝑛). In particular, by setting

𝛽 = − 2

𝑛 , one can compute, in polynomial time, an MMS allocation

achieving utilitarian welfare at least −3.

Theorem 12. For utilitarian welfare and MMS fairness, the price
of fairness is Θ(𝑛).

Proof. For the upper bound, ifOPT𝑈 ≥ − 1

𝑛 , then the utilitarian-

welfare maximizing allocation is also MMS. Thus it suffices to con-

sider the case where OPT𝑈 < − 1

𝑛 .

Let A = (𝐴1, . . . , 𝐴𝑛) be the allocation returned by ALG-M(− 2

𝑛 ).

Without loss of generality, agents are renumbered by the order of

receiving bundles; that is, agent 1 is the first to receive a bundle,

while agent 𝑛 is the last. By Lemma 7, allocation A is MMS. Let 𝑁1

and 𝑁2 be the sets of agents whose bundles are assigned in Step 6

or 9, respectively. Then, by Step 5, 𝑣𝑖 (𝐴𝑖 ) ≥ − 2

𝑛 holds for all 𝑖 ∈ 𝑁1.

As for 𝑁2, denote by 𝑁2 = {𝑖1, 𝑖2, . . . , 𝑖𝑝 }, and bundle 𝐴𝑖𝑙 is on the

left of 𝐴𝑖𝑘 for any 𝑙 < 𝑘 ≤ 𝑝 . By the selection of agents in Step 8,

𝑣𝑖𝑝 (𝐴𝑖𝑘 ) ≤ 𝑣𝑖𝑘 (𝐴𝑖𝑘 ) for 𝑘 ≤ 𝑝 . Thus, the total value of agents in 𝑁2

is ∑︁
𝑖∈𝑁2

𝑣𝑖 (𝐴𝑖 ) =
∑︁

𝑘∈[𝑝 ]
𝑣𝑖𝑘 (𝐴𝑖𝑘 ) ≥

∑︁
𝑘∈[𝑝 ]

𝑣𝑖𝑝 (𝐴𝑖𝑘 ) ≥ −1,

where the last inequality is due to normalized valuations. Accord-

ingly, the welfare of A is bounded by∑︁
𝑖∈[𝑛]

𝑣𝑖 (𝐴𝑖 ) ≥
∑︁
𝑖∈𝑁1

𝑣𝑖 (𝐴𝑖 ) +
∑︁
𝑖∈𝑁2

𝑣𝑖 (𝐴𝑖 ) + 𝑣𝑛 (𝐴𝑛)

≥ − 2
𝑛
· |𝑁1 | − 1 −

2

𝑛

≥ −3,
where the second inequality comes from Corollary 10 and the last

inequality is due to |𝑁1 | ≤ 𝑛 − 1. Thus, in polynomial time, we

find an MMS allocation with welfare at least −3, and, moreover, the

price of MMS is at most 3𝑛.

As for the lower bound, consider an instance with 𝑛 agents and

a set 𝐸 = {𝑒1, . . . , 𝑒3𝑛−2} of 3𝑛− 2 chores. The valuations are shown
in Table 3. One can verify that MMS𝑖 = − 1

𝑛 for all 𝑖 ∈ 𝑁 . In a

Chores 𝑒1 · · · 𝑒2𝑛 𝑒2𝑛+1 · · · 𝑒3𝑛−2
𝑣1 (·) − 1

𝑛2
· · · − 1

𝑛2
− 1

𝑛 · · · − 1

𝑛

𝑣𝑖 (·), 𝑖 ≥ 2 − 1

2𝑛 · · · − 1

2𝑛 0 · · · 0

Table 3: The lower bound instance in Theorem 12

utilitarian welfare-maximizing allocation O = (𝑂1, . . . ,𝑂𝑛), the
first 2𝑛 items are assigned to agent 1, and remaining items are,

in a contiguous way, arbitrarily allocated to other agents so that

𝑣1 (𝑂1) = − 2

𝑛 , 𝑣𝑖 (𝑂𝑖 ) = 0 for 𝑖 ≥ 2 and UW(O) = − 2

𝑛 . However,

this allocation is not MMS fair for agent 1 since 𝑣1 (𝑂1) < MMS1.
For any MMS allocation A, agent 1 can receive at most 𝑛 of the first

2𝑛 items, and thus, at least 𝑛 of the first 2𝑛 items are assigned to

agents 𝑖 ≥ 2. Thus, UW(A) ≤ − 1

𝑛 −
1

2
, and consequently, the price

of fairness is at least

PoF(UW | MMS) ≥
1

𝑛 +
1

2

2

𝑛

=
1

2

+ 𝑛
4

= Ω(𝑛) .

Therefore, the price of MMS with respect to utilitarian welfare is

Θ(𝑛). □

4 PRICES OF PROP1 FOR GENERAL 𝑛 ≥ 3

In this section, we quantify efficiency loss under PROP1 alloca-

tions. Similar to Section 3, we introduce another parametric algo-

rithm ALG-P(𝛽) (see Algorithm 2) which leverages the protocol of
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moving-knife while carefully handling the item right-connected to

the underlying bundle (from the left end to the knife position). Then

algorithm ALG-P(𝛽) can compute PROP1 allocations, ensuring that

every agent’s value remains above a certain real number. In the

following, we first demonstrate that ALG-P(𝛽) can return PROP1

allocations for all 𝛽 ≤ − 2

𝑛 and then establish tight PoF ratios by

implementing Algorithm 2 with properly chosen 𝛽 . Although the

approach here resembles that of MMS, the analysis needs to be

more detailed.

Algorithm 2 ALG-P(𝛽)

Input: An instance 𝐼 = ⟨𝑁, 𝐸, {𝑣𝑖 }𝑛𝑖=1⟩ and a real number 𝛽 .

Output: An allocation A = (𝐴1, . . . , 𝐴𝑛).
1: Initialize 𝑁0 ← 𝑁 , 𝐸0 ← 𝐸 and 𝐴𝑖 = ∅ for all 𝑖 ∈ 𝑁 .

2: while |𝑁0 | > 1 & 𝐸0 ≠ ∅ do
3: Let 𝑒𝐿 ∈ 𝐸 be the left most item.

4: if there exists an agent 𝑖 ∈ 𝑁0 such that 𝑣𝑖 (𝑒𝐿) ≥ − 1

𝑛 then
5: Suppose 𝑝 be the largest index such that there exists some

agent 𝑖 with 𝑣𝑖 (𝐿(𝑝) ∩ 𝐸0) ≥ − 1

𝑛 . Let 𝑁0 = {𝑖 ∈ 𝑁0 |
𝑣𝑖 (𝐿(𝑝) ∩ 𝐸0) ≥ − 1

𝑛 }. If 𝐿(𝑝) ∩ 𝐸0 = 𝐸0, then assign 𝐸0

to an arbitrary agent in 𝑁0. If 𝐿(𝑝) ∩ 𝐸0 ⊊ 𝐸0, then let

𝑖∗ ∈ argmax

𝑖∈𝑁0

𝑣𝑖 (𝐿(𝑝 + 1) ∩ 𝐸0);

6: if 𝑣𝑖∗ (𝐿(𝑝 + 1) ∩ 𝐸0) < 𝛽 then
7: 𝐴𝑖∗ ← 𝐿(𝑝) ∩ 𝐸0;
8: else
9: 𝐴𝑖∗ ← 𝐿(𝑝 + 1) ∩ 𝐸0;
10: end if
11: else
12: Let 𝑖∗ ∈ argmax

𝑖∈𝑁0

𝑣𝑖 (𝑒𝐿), where ties are broken arbitrarily

and assign 𝐴𝑖∗ ← {𝑒𝐿};
13: end if
14: Update 𝑁0 ← 𝑁0 \ {𝑖∗} and 𝐸0 ← 𝐸0 \𝐴𝑖∗ ;

15: end while
16: If 𝐸0 ≠ ∅, assign 𝐸0 to an arbitrary agents in 𝑁0.

17: return A

Lemma 13. For any 𝛽 ≤ − 2

𝑛 , ALG-P(𝛽) returns a PROP1 alloca-
tion in polynomial time.

Proof. In every round of the while-loop of Algorithm 2, the

number of agents is reduced by one, and hence the algorithm termi-

nates in𝑂 (𝑚𝑛) time. Without loss of generality, agents are ordered

by the order of receiving bundles in the algorithm; that is, agent 1

is the first to receive a bundle and agent 𝑛 is the last.

Denote byA = (𝐴1, . . . , 𝐴𝑛) the allocation returned by ALG-P(𝛽).
Given an agent 𝑖 with 𝑖 < 𝑛, if agent 𝑖 receives 𝐴𝑖 in the while-loop,

then it is not hard to verify that she satisfies PROP1. Accordingly,

if the while-loop stops as all chores are assigned, the statement

is proved. Accordingly, the remaining work is to show when the

while-loop terminates as 𝐸0 ≠ ∅ (and hence |𝑁0 | = 1), agent 𝑛

(the last agent) can still be PROP1. It suffices to show that, after

assigning bundles 𝐴1, 𝐴2, . . . , 𝐴𝑛−1, agent 𝑛’s value on remaining

items is at least − 1

𝑛 .

Fix 𝑖 with 𝑖 ≤ 𝑛−1. If𝐴𝑖 is assigned in Steps 9 or 12, then 𝑣𝑛 (𝐴𝑖 ) <
− 1

𝑛 ; otherwise, violating Steps 5 or 4. Note that for those 𝐴𝑖 ’s

allocated in Step 7, both 𝑣𝑛 (𝐴𝑖 ) < − 1

𝑛 and 𝑣𝑛 (𝐴𝑖 ) ≥ − 1

𝑛 are possible.

Denote by P𝑛 = {𝑖 ∈ [𝑛] | 𝐴𝑖 is assigned in Step 7 and 𝑣𝑛 (𝐴𝑖 ) ≥
− 1

𝑛 }. Then, by the construction, for any 𝑗 < 𝑛, if 𝑗 ∉ P𝑛 , then
𝑣𝑛 (𝐴 𝑗 ) < − 1

𝑛 holds. For any 𝑗 ∈ P𝑛 , let 𝑒 𝑗 be the item on the

right of 𝐴 𝑗 and {𝑒 𝑗 } ∪ 𝐴 𝑗 ∈ C. Then, according to Steps 5 and 6,

it holds that 𝑣𝑛 (𝐴 𝑗 ∪ {𝑒 𝑗 }) ≤ 𝑣 𝑗 (𝐴 𝑗 ∪ {𝑒 𝑗 }) < 𝛽 ≤ − 2

𝑛 . We next

let Q𝑛 be the set of agents whose bundles are on the right of and

connected to some 𝐴 𝑗 with 𝑗 ∈ P𝑛 . Formally, Q𝑛 = {𝑡 ∈ [𝑛] |
𝐴𝑡 is on the right of 𝐴 𝑗 and 𝐴𝑡 ∪𝐴 𝑗 ∈ C for some 𝑗 ∈ P𝑛}.

Claim 14. P𝑛 ∩ Q𝑛 = ∅ and 𝑛 − 1 ∉ P𝑛 .

By Claim 14, there is one-to-one correspondence between P𝑛
and Q𝑛 , and moreover, P𝑛 ∪ Q𝑛 ⊆ [𝑛 − 1]. Then, we provide an
upper bound of agent 𝑛’s value on allocated items;

𝑛−1∑︁
𝑖=1

𝑣𝑛 (𝐴𝑖 ) =
∑︁

𝑖∈P𝑛∪Q𝑛
𝑣𝑛 (𝐴𝑖 ) +

∑︁
𝑖∈[𝑛−1]\P𝑛∪Q𝑛

𝑣𝑛 (𝐴𝑖 )

< − |P𝑛 ∪ Q𝑛 |
2

· 𝛽 − 𝑛 − 1 − |P𝑛 ∪ Q𝑛 |
𝑛

≤ −𝑛 − 1
𝑛

,

where the last inequality transition is due to 𝛽 ≤ − 2

𝑛 . As 𝑣𝑛 (𝐸) = −1,
we have 𝑣𝑛 (𝐴𝑛) > − 1

𝑛 , and therefore, allocation A is PROP1. □

The proof of Lemma 13 also implies that agent 𝑛 (the last agent)

receives a value at least − 1

𝑛 .

Corollary 15. For any 𝛽 ≤ − 2

𝑛 , agent 𝑛 (the last agent to receive
a bundle), in the allocation returned by ALG-P(𝛽), has a value at least
− 1

𝑛 .

4.1 On egalitarian welfare
Wenowpresent the tight PoF ratio regarding egalitarianwelfare.We

examine the allocation returned by ALG-P(− 1

2
). Similar to MMS, we

prove that either the allocation returned by ALG-P(− 1

2
) is a PROP1

allocation achieving the target PoF ratio
𝑛
2
, or it can serve as a

starting point for obtaining the desired PROP1 allocation through

bundle reallocation. However, such a reallocation is not always

straightforward and may pose challenges. Different reallocation

approaches are needed to address various cases.

Before presenting our main result, we establish a sufficient con-

dition for obtaining a partial PROP1 allocation.

Lemma 16. Suppose 𝑆 ⊆ 𝐸 be a connected bundle and 𝑁 ⊆ 𝑁

be a set of agents. If for any 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝑆) ≥ − |𝑁 ||𝑁 | , then 𝑆 can be

assigned to 𝑁 , satisfying PROP1 requirement defined on an instance
with agents set being 𝑁 .

Proof Sketch. One can think of assigning 𝑆 to 𝑁 in the follow-

ing way: repeatedly identify the farthest chore for which at least

one agent values the chore from the left end to the current position

at no less than − 1

|𝑁 | , and then allocate the selected bundle, along

with the next item (if any), to the chosen agent. The formal proof

is presented in the full version. □
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In essence, the lemma above suggests that when dealing with

a reduced instance 𝐼 ′ involving a smaller number of agents (e.g.,

six) and a connected bundle 𝑆 , if each of these agent values 𝑆 at

least − 6

𝑛 , then it becomes feasible to allocate 𝑆 to these six agents,

meeting the PROP1 criteria of the original instance 𝐼 , which has 𝑛

agents. We remark that to establish the exact PoF ratio, we have a

unified approach to find the desired PROP1 allocation for all 𝑛 ≥ 8.

Unfortunately, such an approach does not carry over to the case

of 3 ≤ 𝑛 ≤ 7. And finding the desired PROP1 allocation for 𝑛 ≤ 7

involves detailed analysis of cases.

Theorem 17. For egalitarian welfare and PROP1, the price of
fairness is 2 when 𝑛 = 3 and is 𝑛

2
when 𝑛 ≥ 4.

Proof. We here prove the upper bound for the case of 𝑛 ≥ 8.

The upper bound proof for 3 ≤ 𝑛 ≤ 7 is deferred to the full version.

If OPT𝐸 ≥ − 1

𝑛 , then an egalitarian welfare maximizing allocation

is PROP1 and the statement is proved. Thus, we can further assume

OPT𝐸 < − 1

𝑛 . Also, if OPT𝐸 ≤ −
2

𝑛 , then as 𝑣𝑖 (𝐸) = −1 for all

𝑖 ∈ [𝑛], any PROP1 allocation results in the PoF ratio of
𝑛
2
. Thus,

we can focus on the case where − 1

2
≤ − 2

𝑛 < OPT𝐸 < − 1

𝑛 .

Denote by A = (𝐴1, . . . , 𝐴𝑛) the allocation returned by ALG-

P(− 1

2
). Without loss of generality, agents are renumbered by the

order of receiving bundles in the algorithm; that is, agent 1 is the

first to receive a bundle and agent𝑛 is the last. If EW(A) ≥ − 1

2
, then

the statement is proved. If EW(A) < − 1

2
, let agent 𝑘 be the one such

that 𝑣𝑘 (𝐴𝑘 ) ≤ 𝑣𝑖 (𝐴𝑖 ) for 𝑖 ∈ [𝑛], which implies 𝑣𝑘 (𝐴𝑘 ) = EW(A) <
− 1

2
. By Steps 5, 7 and 9, one can verify that 𝐴𝑘 is assigned in Step

12 and moreover 𝑣 𝑗 (𝐴𝑘 ) ≤ 𝑣𝑘 (𝐴𝑘 ) < − 1

2
for all 𝑗 > 𝑘 . Let 𝑘 ′ be the

index such that𝐴𝑘′ is on the left of𝐴𝑘 and𝐴𝑘′ ∪𝐴𝑘 ∈ C. Note that
𝐴𝑘′ is guaranteed to exist; otherwise, contradicting OPT𝐸 > − 1

2
.

Denote by R = {𝑖 ∈ [𝑛] | 𝐴𝑖 ≠ ∅} and J = [𝑛] \ R. Note that
bundle 𝐴 |R | is the right-most non-empty one among {𝐴 𝑗 }𝑛𝑗=1.

We now analyze agent 𝑛’s value on bundles. For any 𝑗 ∈ R
but 𝑗 ≠ |R |, 𝑘 ′, 𝑘 , we claim that 𝑣𝑛 (𝐴 𝑗 ) < − 1

𝑛 ; if not, 𝐴 𝑗 must be

assigned in Step 7, and then 𝑣𝑛 (𝐴 𝑗 ∪ 𝐴 𝑗+1) < 𝛽 = − 1

2
. As 𝑗 ≠ 𝑘 ′

(hence 𝑗 + 1 ≠ 𝑘), and thus, 𝑣𝑛 (𝐸) ≤ 𝑣𝑛 (𝐴 𝑗 ∪𝐴 𝑗+1) + 𝑣𝑛 (𝐴𝑘 ) < −1,
a contradiction. Then, we have the following

𝑣𝑛 (𝐸) = 𝑣𝑛 (𝐴𝑘 ∪𝐴𝑘′ ∪𝐴 |R |) +
∑︁

𝑗 ∈R, 𝑗≠𝑘′,𝑘, |R |
𝑣𝑛 (𝐴 𝑗 )

< −1
2

− |R| − 3
𝑛

,

where the last inequality transition is due to 𝑣𝑛 (𝐴 𝑗 ) < − 1

𝑛 for all

𝑗 ∈ R and 𝑗 ≠ 𝑘 ′, 𝑘, |R |. Due to normalized valuations, the above

inequality implies |R | < 𝑛
2
+ 3, and hence 𝑛 − |R| > 𝑛

2
− 3, meaning

that the number of agents receiving empty bundles is larger than

𝑛
2
− 3, i.e., |J | > 𝑛

2
− 3.

AsOPT𝐸 ≥ − 1

2
, there exists an agent 𝑝∗ such that 𝑣𝑝∗ (𝐴𝑘 ) ≥ − 1

2
,

and moreover, by ALG-P(− 1

2
), we know 𝑞∗ < 𝑘 . Consider a partial

allocation B, in which 𝐴𝑘 is assigned to agent 𝑝∗ and 𝐵 𝑗 = 𝐴 𝑗 for

all 𝑗 ∈ R and 𝑗 ≠ 𝑝∗, 𝑘 . Note that agent 𝑝∗ is PROP1 as |𝐴𝑘 | = 1

and agent 𝑗 ∈ R \ ({𝑘} ∪ {𝑝∗}) is PROP1 since A is PROP1. The

unallocated items are 𝐴𝑝∗ and moreover for each 𝑗 ∈ J , agent 𝑗 ’s

value on 𝐴𝑝∗ is larger than − 1

2
so that assigning 𝐴𝑝∗ to agents in

J does not violate the requirement of EW > − 1

2
.

We next show that 𝐴𝑝∗ can be assigned to J without violating

PROP1. Note that each agent 𝑗 ∈ J is equivalent to agent 𝑛 as

every agent in J gets an empty bundle in A. Consequently, for any
𝑗 ∈ J , her value on 𝐴𝑝∗ can be bounded as follows;

𝑣 𝑗 (𝐴𝑝∗ ) = 𝑣𝑙 (𝐸) − 𝑣 𝑗 (𝐴𝑘′ ∪𝐴𝑘 ∪𝐴 |R |) −
∑︁
𝑡 ∈R

𝑡≠𝑝∗,𝑘′,𝑘, |R |

𝑣 𝑗 (𝐴𝑡 )

> −1
2

+ |R| − 4
𝑛

,

where the inequality transition is due to 𝑣 𝑗 (𝐴𝑡 ) < − 1

𝑛 for all 𝑡 ∈ R
and 𝑡 ≠ 𝑘 ′, 𝑘, |R |. As |J | = 𝑛 − |R|, we have − |J |𝑛 ≤ − 1

2
+ |R |−4𝑛

for 𝑛 ≥ 8. According to Lemma 16, assigning 𝐴𝑝∗ to agents in J
extends B to a complete PROP1 allocation.

For the lower bound regarding𝑛 ≥ 4, consider an instance with𝑛

agents and a set 𝐸 = {𝑒1, . . . , 𝑒𝑛+2} of𝑛+2 chores. The valuations are
shown in the following table, where 𝜖 > 0 is arbitrarily small. In an

Items 𝑒1 𝑒2 𝑒3 𝑒4 · · · 𝑒𝑛 𝑒𝑛+1 𝑒𝑛+2
𝑣1 (·) −𝜖 − 1

𝑛 -𝜖 − 1

𝑛 · · · − 1

𝑛 − 1

𝑛 − 1

𝑛 + 2𝜖
𝑣𝑖 (·)

for 𝑖 ≥ 2

− 1

2
0 − 1

2
0 · · · 0 0 0

Table 4: The Lower Bound Instance for 𝑛 ≥ 4

egalitarianwelfaremaximizing allocationO, agent 1 receives bundle
𝑂1 = {𝑒1, 𝑒2, 𝑒3} and has a value − 1

𝑛 − 2𝜖 , and agents 𝑖 ≥ 2 receives

other items and have value zero. Then, we have OPT𝐸 = − 1

𝑛 − 2𝜖 .
However, in allocation O, agent 1 is not satisfied regarding PROP1

as removing item 𝑒1 or 𝑒3 still yields value− 1

𝑛 −𝜖 < − 1

𝑛 for him, and

thus, in any PROP1 allocation, agent 1 cannot receive all 𝑒1, 𝑒2, 𝑒3.

Hence, any PROP1 allocation A must allocate at least one of 𝑒1, 𝑒3
to agents 𝑖 ≥ 2, which implies EW(A) ≤ − 1

2
. Therefore, the price

of PROP1 with respect to egalitarian welfare is at least

PoF(PROP1 | EW) ≥
− 1

2

− 1

𝑛 − 2𝜖
→ 𝑛

2

, when 𝜖 → 0,

which completes the proof. □

Note that Sun and Li [40] show that in the model of allocat-

ing contiguous blocks of indivisible goods, PROP1 allocations, in

the worst-case scenario, do not guarantee any egalitarian welfare,

i.e., the price of PROP1 is infinite for goods. On the other hand,

Theorem 17 of this work indicates that PROP1 allocations, in the

context of contiguous chores, can guarantee a certain degree of

egalitarian welfare. This observation underscores the notable con-

trast between goods and chores, even within the framework of

allocating contiguous blocks of items.

Remark: If we have an oracle on computing the egalitarianwelfare-

maximizing allocation, then the PROP1 allocation achieving
𝑛
2
PoF

ratio can be computed in polynomial time.

4.2 On utilitarian welfare
For utilitarian, we also provide a tight ratio on the price of PROP1.

The proof relies on the allocation returned by Algorithm 2 with

𝛽 = − 2

𝑛 .
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Theorem 18. For utilitarian welfare and PROP1, the price of
fairness is Θ(𝑛).

Proof. We begin with the upper bound part. Denote by A =

(𝐴1, . . . , 𝐴𝑛) the allocation returned by ALG-P(− 2

𝑛 ), and accord-

ing to Lemma 13, allocation A is PROP1. Denote by 𝑁1, 𝑁2, 𝑁3 be,

respectively, the set of agents who receive items in Steps 7, 9, and

12. Then 𝑣𝑖 (𝐴𝑖 ) ≥ − 1

𝑛 holds for all 𝑖 ∈ 𝑁1 and 𝑣𝑖 (𝐴𝑖 ) ≥ − 2

𝑛 holds

for all 𝑖 ∈ 𝑁2. We now bound the value of agents in 𝑁3. Suppose

𝑁3 = {𝑖1, 𝑖2, . . . , 𝑖𝑝 } and without loss of generality bundle 𝐴𝑖𝑙 is on

the left of bundle 𝐴𝑖𝑘 for any 𝑙 < 𝑘 ≤ 𝑝 . For every 𝑘 ≤ 𝑝 , we have

𝑣𝑖𝑝 (𝐴𝑘 ) ≤ 𝑣𝑖𝑘 (𝐴𝑖𝑘 ) due to the condition in Step 12 of Algorithm 2.

Consequently, the welfare of agents in 𝑁3 is bounded by∑︁
𝑖∈𝑁3

𝑣𝑖 (𝐴𝑖 ) ≥
∑︁
𝑖∈𝑁3

𝑣𝑖𝑝 (𝐴𝑖 ) ≥ −1,

where the last transition is due to normalized valuations. As for

agent 𝑛, according to the proof of Lemma 13, we have 𝑣𝑛 (𝐴𝑛) ≥
− 1

𝑛 . Therefore, the utilitarian welfare of allocation A satisfies the

following,

UW(A) ≥ (
∑︁
𝑖∈𝑁1

+
∑︁
𝑖∈𝑁2

+
∑︁
𝑖∈𝑁3

)𝑣𝑖 (𝐴𝑖 ) + 𝑣𝑛 (𝐴𝑛)

> − 2
𝑛
( |𝑁1 | + |𝑁2 |) − 1 −

1

𝑛

≥ −3,

where the second inequality transition is due to Corollary 15 and

the last inequality transition is due to the fact that |𝑁1 |+ |𝑁2 | ≤ 𝑛−1
holds. Suppose O be a contiguous utilitarian welfare-maximizing

allocation. If UW(O) ≥ − 1

𝑛 , then allocation O is PROP1 and the

statement trivially holds. We can further assume UW(O) < − 1

𝑛 .

As allocation A is a PROP1 allocation with welfare at least −3, the
price of PROP1 is at most 3𝑛.

As for the lower bound, consider an instance with 𝑛 (even)

agents and a set 𝐸 = {𝑒1, . . . , 𝑒𝑛+1} of 𝑛 + 1 chores. The valua-

tions are shown in Table 5. In a utilitarian welfare maximizing

Items 𝑒1 𝑒2 · · · 𝑒𝑛 𝑒𝑛+1
𝑣1 (·) − 2

𝑛2
− 2

𝑛2
· · · − 2

𝑛2
−𝑛−2𝑛

𝑣𝑖 (·) for 𝑖 ≥ 2 − 1

𝑛+1 − 1

𝑛+1 · · · − 1

𝑛+1 − 1

𝑛+1
Table 5: The Lower Bound Instance

allocation O = (𝑂1, . . . ,𝑂𝑛), the first 𝑛 chores are assigned to agent

1 and chore 𝑒𝑛+1 is arbitrarily allocated to the other agents so that

UW(O) = − 3𝑛+2
𝑛 (𝑛+1) . However, agent 1 violates PROP1 in O. In

a PROP1 allocation A, agent 1 can receive at most
𝑛
2
+ 1 items,

which leaves at least 𝑛 items to other agents. Thus, UW(A) ≤
− 𝑛
2(𝑛+1) −

𝑛+2
𝑛2

, and consequently, the price of PROP1 has the fol-

lowing lower bound

PoF(PROP1 | UW) ≥ 𝑛3 + 2(𝑛 + 2) (𝑛 + 1)
2𝑛(3𝑛 + 2) ≥ 𝑛

6

+ 2

9

= Ω(𝑛),

which completes the proof. □

5 TWO AGENTS
The allocation problem involving two agents is also of considerable

significance and has garnered notable attention [1, 2]. In this section,

we delve into the PoF ratios when 𝑛 = 2. Unlike the general case,

it’s noteworthy that both MMS and PROP1 fairness concepts are

compatible with optimal egalitarian welfare when there are only

two agents involved.

Theorem 19. When 𝑛 = 2, for bothMMS and PROP1, the price of
fairness with respect to egalitarian welfare is 1; the price of fairness
with respect to utilitarian welfare is 2.

In order to prove Theorem 19, we need the following lemma.

Lemma 20. There exists an allocation that satisfies MMS, PROP1,
and attains optimal egalitarian welfare and achieves utilitarian wel-
fare at least -1.

Proof Sketch. We consider an allocation O constructed as fol-

lows; O first maximizes the egalitarian welfare among all alloca-

tions; If there is a tie, O minimizes the number of items allocated

to the agent with a smaller value. By detailed analysis of agents’

value, one can show that allocation O is both MMS and PROP1

and achieving utilitarian welfare at least −1. The formal proof is

deferred to the full version. □

Now we are ready to prove Theorem 19.

Proof of Theorem 19. Consider the allocation O constructed

in Lemma 20. The PoF regarding egalitarian welfare is straightfor-

ward by the design. We focus on utilitarian welfare in the following.

Note that OPT𝐸 ≥ OPT𝑈 always holds. Since O achieves the op-

timal egalitarian welfare, we have UW(O) ≥ 2OPT𝐸 ≥ 2OPT𝑈
where the first inequality transition is due to 𝑛 = 2. Thus, the

price of fairness ratio regarding utilitarian welfare is at least 2. The

lower bound instances that match the ratio are provided in the full

version. □

6 CONCLUDING REMARK
In this work, we revisited fairness and efficiency trade-off in the

model of allocating contiguous blocks of indivisible chores. We

focused on the fairness notions of MMS and PROP1, of which the

existence is guaranteed in the underlying model. We utilize the well-

studied notion of price of fairness to quantify the social welfare loss

under fairness allocations. For every pairwise fairness and welfare

combination, we establish the tight ratio of the price of fairness.

We also discussed, in the full version, the price of fairness with

respect to other fairness criteria such as envy-free (or equitabil-

ity) up to one item [7, 19, 26, 39] whose existence however in the

connectivity constraint setting is still unknown. We found out that

these two fair allocations can not provide a bounded welfare guar-

antee in some hard instances. We hope that our results on the price

of fairness may shed some light on fairness and efficiency trade-off

and be helpful in guiding the decision-maker to pick the proper

underlying fairness notions.
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