
On the Transit Obfuscation Problem
Hideaki Takahashi

The University of Tokyo

Tokyo, Japan

takahashi-hideaki567@g.ecc.u-tokyo.ac.jp

Alex Fukunaga

The University of Tokyo

Tokyo, Japan

fukunaga@idea.c.u-tokyo.ac.jp

ABSTRACT
Concealing an intermediate point on a route or visible from a route

is an important goal in some transportation and surveillance sce-

narios. This paper studies the Transit Obfuscation Problem, the

problem of traveling from some start location to an end location

while "covering" a specific transit point that needs to be concealed

from adversaries. We propose the notion of transit anonymity, a

quantitative guarantee of the anonymity of a specific transit point,

even with a powerful adversary with full knowledge of the path

planning algorithm. We propose and evaluate planning/search al-

gorithms that satisfy this anonymity criterion.

KEYWORDS
obfuscation, deceptive planning, planning

ACM Reference Format:
Hideaki Takahashi and Alex Fukunaga. 2024. On the Transit Obfuscation

Problem. In Proc. of the 23rd International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10,
2024, IFAAMAS, 9 pages.

1 INTRODUCTION
In applications such as sensitive cargo transportation or surveil-

lance, it is sometimes necessary to route an agent from a start point

to a goal while concealing the location of a transit point, which
is either on the route or visible from the route, from adversaries.

For example, in a cargo transport application, if a depot or drop

location is located somewhere on the route, it is essential to prevent

potential adversaries from deducing the transit point location to

minimize the risk of theft or interception. In a surveillance applica-

tion, it is important to be able to conceal which specific location a

surveillance agent is targeting on its route.

Obfuscating an agent’s true intention has been previously stud-

ied in various fields, including path planning, robotics, and game

theory [2]. Previous work has primarily focused on the Goal Ob-

fuscation Problem, which aims to prevent observers from deducing

the agent’s actual goal, and has numerous applications, e.g., cre-

ating realistic non-player characters (NPCs) capable of deceiving

humans [4], or secure escorting of a VIP to a hidden location [6].

Concealing non-goal locations is also important for customer pri-

vacy protection. For example, Enayati et al. [5] considers a scenario

where a UAV delivers packages to a private location and returns to

This work is licensed under a Creative Commons Attribution

International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). . . . $ACM ISBN 978-x-xxxx-xxxx-x/YY/MM

the starting point. Chen et al. [3] notes that some public transporta-

tion systems track the stations where each customer boards and

leaves, potentially revealing the location of homes or workplaces,

which are the transit points on the round-trip paths. However,

Enayati et al. [5] is limited to path planning in two-dimensional

coordinates, and Chen et al. [3] focuses on not path planning but

anonymizing the collected sequential data.

In this paper, we study the Transit Obfuscation Problem,

where given a graph, start location, end location, a target transit

point, and a visibility function for an agent, the task is to generate

a route from the start to the end location such that the agent’s

visibility function covers the target, but the target location is con-

cealed from adversaries. We assume a strong adversary that has

full knowledge of the agent’s path, as well as full knowledge of the

domain as well the internal decision-making process of the agent

(i.e., the adversary has full access to the agent’s code).

We introduce the notion of (𝑘, ℓ,𝑚)-Anonymity, which quan-

tifies the level of concealment achieved by a path planner. If a

path planner satisfies (𝑘, ℓ,𝑚)-Anonymity, there exist at least 𝑘

transit points resulting in the same path up to the first 𝑚 steps,

while the deviation among these candidate points is ≥ ℓ . Thus,

(𝑘, ℓ,∞)-Anonymity is a guarantee that even with full knowledge

of the agent’s path and code, an adversary can not distinguish the

true target transit point among 𝑘 possible candidates which are at

least ℓ apart from each other. We analyze some theoretical proper-

ties of (𝑘, ℓ,𝑚)-Anonymity and propose a graph partitioning-based
approach to generating paths that guarantee (𝑘, ℓ,𝑚)-Anonymity.

The rest of the paper is structured as follows. First, we define the

Transit Obfuscation Problem (TOP) with respect to a path-planning

problem with a transit point and visibility constraints (Section 2)

Next, in Section 3, we define (𝑘, ℓ,𝑚)-Anonymity for the TOP and

analyze its theoretical properties. We also define some metrics for

evaluating the tradeoffs between privacy and path costs for the

TOP. Then, in Section 4, we propose a partitioning-based search al-

gorithm for the TOP which guarantees anonymity even when when

the adversary knows the complete path, i.e., (𝑘, ℓ,∞)-Anonymity.

Section 5 proposes algorithms which guarantees anonymity for

up to 𝑚 < ∞ steps. In Section 6, we experimentally evaluate

our search algorithms on some standard benchmark game map

instances. Section 7 discusses related work. Section 8 concludes

with a discussion and directions for future work. Our code is avail-

able at: https://github.com/Koukyosyumei/TOP.

2 TRANSIT OBFUSCATION PROBLEM
A path-planning domain with visibility constraints is denoted
by a triple D = ⟨N , E,T , 𝑐, 𝑣⟩, where

• N is a non-empty set of nodes;

• T ⊆ N is a set of transit candidates;

• E ⊆ N ×N is a set of edges between nodes;

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1809

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/Koukyosyumei/TOP

• 𝑐 : E → 𝑅+
0
is a function that returns the non-negative cost

of an edge between two nodes.

• 𝑣 : N → 2
N

is a visibility function that returns the set of

visible nodes from a given node.

The cost of the shortest path (a.k.a minimum cost path) between

node 𝑎 ∈ N and node𝑏 ∈ N is denoted by𝑑 (𝑎, 𝑏). For simplicity, we

assume that 𝐸 does not contain self-loop edges, i.e., 𝑑 (𝑎, 𝑏) = ∞ if

𝑎 = 𝑏. A path 𝜋 in a path-planning domainD is a sequence of nodes

𝜋 = 𝑛1, 𝑛2, ..., 𝑛 |𝜋 | such that ∀𝑖 ∈ {1, ..., |𝜋 | − 1} (𝑛𝑖 , 𝑛𝑖+1) ∈ E,
where |𝜋 | represents the length of 𝜋 . We also denote the subse-

quence of 𝜋 till 𝑚-th node as 𝜋 |𝑚 , i.e., 𝜋 |𝑚 = 𝑛1, 𝑛2, ..., 𝑛𝑚 . For

convenience, we assume that 𝜋 |𝑚 = 𝜋 if𝑚 > |𝜋 |. The binary opera-
tor ◦ represents the concatenation of two paths. Specifically, when

𝜋𝑎 = 𝑎1, 𝑎2, ..., 𝑎 |𝜋𝑎 | , 𝜋𝑏 = 𝑏1, 𝑏2, ..., 𝑏 |𝜋𝑏 | , and 𝑎 |𝜋𝑎 | = 𝑏1, we have

that 𝜋 = 𝜋𝑎 ◦ 𝜋𝑏 = 𝑎1, 𝑎2, ..., 𝑎 |𝜋𝑎 | , 𝑏2, ..., 𝑏 |𝜋𝑏 | . We also introduce ∥
notation, where ∥𝑥𝑖=1

𝜋𝑖 = 𝜋1 ◦ 𝜋2 ◦ ... ◦ 𝜋𝑥 . The cost of 𝜋 is the sum

of the costs of each edge in 𝜋 , given by 𝑐𝑜𝑠𝑡 (𝜋) = ∑ |𝜋 |
𝑖=2

𝑐 (𝜋𝑖−1, 𝜋𝑖),
where 𝜋𝑖 is the 𝑖-th node in 𝜋 . We say that 𝜋 covers node 𝑛 ∈ N if

there exists an index 𝑖 such that 𝑛 ∈ 𝑣 (𝜋𝑖).
A path-planning problem with visibility constraints and a

transit point (PPVT) is represented by a tuple ⟨D, 𝑠, 𝑔, 𝑡⟩, where
D = ⟨N ,T , E, 𝑐, 𝑣⟩ is a domain, 𝑠 ∈ N is the start node, 𝑔 ∈ N
is the goal node, 𝑡 ∈ T is the transit point that must be covered.

The solution to a PPVT is a path 𝜋 such that 𝜋1 = 𝑠 , 𝜋 |𝜋 | = 𝑔, and

∃𝑖 ∈ {1, 2, ..., |𝜋 |}, 𝑡 ∈ 𝑣 (𝜋𝑖).
A path plannerA takes as input a PPVT and returns a feasible

path 𝜋 for that problem, i.e., A(⟨D, 𝑠, 𝑔, 𝑡⟩) = 𝜋 . A returns Failure

when it cannot find a feasible path. For convenience, we define

Failure such that it is not equal to itself, i.e., Failure ≠ Failure.

We assume that there is an adversary who seeks to deduce the

actual transit point 𝑡 ∈ T by observing the trajectory of the agent.

A Transit Obfuscation Problem (TOP) is a tuple ⟨D, 𝑠, 𝑔,O⟩,
where O describes what the adversary can observe.

We make the following assumptions about the abilities of the

adversarial observer (similar to the set of assumptions by [7]):

• Complete Knowledge about the Domain and Transit
Candidates: The adversary has complete knowledge about

the domain D.

• Full Access to the Planner: The adversary has full access to
and thoroughly understands the agent’s planning algorithm.

• Independence of Inputs: The adversary can execute the

agent’s planner with arbitrary input tuples at any time.

• Observability of Path: The adversary can immediately

observe the path executed by the agent so far.

• Semi-Honest Adversary: The adversary is passive, and it

does not disturb the action of the agent or gain any additional

information beyond what has been specified above.

These are challenging assumptions when trying to conceal the

transit point, as the adversary has full information about the mech-

anism of the path planning algorithm, as well as the ability to

rerun/simulate the algorithm many times in order to gain infor-

mation that might reveal the transit point. When 𝑡 = 𝑔, and 𝑣 is

the identity function (the only node visible from a node is itself),

this special case of the TOP is similar to the Goal Obfuscation Prob-

lem [7, 8]. Unlike the Goal Obfuscation Problem, where the final

node of the path always reveals the actual goal, in the TOP, when

s g

Visibility Function
with Radius of 1

Any Observer cannot determine which of
 is the true transit point

Figure 1: Let nodeswithin a radius of one be visible. Then, it is
not possible for an observer to determine which of 𝑡1, 𝑡2, 𝑡3, 𝑡4
is the true transit point.

𝑡 ≠ 𝑔, it is possible to have a path where an adversary cannot deduce

the actual transit point even after observing the entire trajectory.

For example, in Fig. 1, an agent travels from 𝑠 to 𝑔 while covering

one of T = {𝑡1, 𝑡2, 𝑡3, 𝑡4}, where black cells are obstacles. Then, if

the agent can see nodes within a radius of one, any feasible path

covers all of T so that an observer cannot infer the true transit.

3 (𝑘, ℓ,𝑚)-ANONYMITY
Next, we formally define the conditions when a path is anonymized

for a transit point, what inputs are anonymizable, andwhat planners

can achieve anonymization.

3.1 Definitions of (𝑘, ℓ,𝑚)-Anonymity
In order for a transit point 𝑡 to remain private up to the first𝑚 steps,

even if the adversary has the capabilities enumerated above, it must

not be possible to uniquely identify 𝑡 by executing the planner

(possibly many times) and observing the output(s) as well as the

internal state of the planner.

This is possible if the route output by a planner is indistinguish-

able for multiple transit candidate points, including the actual tran-

sit point 𝑡 . For example, if the set of transit candidates T = {𝑡1, 𝑡2},
and A(⟨D, 𝑠, 𝑔, 𝑡1⟩) = A(⟨D, 𝑠, 𝑔, 𝑡2⟩) = 𝜋1,2, it is indeterminate

which of 𝑡1 or 𝑡2 is the true transit point 𝑡 .

In addition, it is often desirable for the transit candidates to be

spread out. For example, if all the transit candidates are close to each

other, the adversary may be able to cost-effectively block access

to all transit candidates (preventing the agent from covering the

transit point). Therefore, it is desirable to be able to disperse the

indistinguishable transit candidates in the search space.

Based on this idea, we first define (𝑘, ℓ,𝑚)-Anonymized Paths.

Definition 1 ((𝑘, ℓ,𝑚)-Anonymized Path). Let 𝑘 ∈ Z>0, ℓ ∈
R≥0 and𝑚 ∈ Z>0. We say that A(⟨D, 𝑠, 𝑔, 𝑡⟩), a path planned by
A from 𝑠 to 𝑔 covering 𝑡 , where 𝑠 ≠ 𝑡 and 𝑔 ≠ 𝑡 , is a (𝑘, ℓ,𝑚)-
Anonymized Path with respect to 𝑡 if there exists a set 𝑇 ⊆ {𝑡 ′ |𝑡 ′ ∈
T and A(⟨D, 𝑠, 𝑔, 𝑡⟩) |𝑚 = A(⟨D, 𝑠, 𝑔, 𝑡 ′⟩) |𝑚} satisfying |𝑇 | ≥ 𝑘

and min(𝑖, 𝑗) ∈𝑇×𝑇 𝑑 (𝑖, 𝑗) ≥ ℓ .

In other words, a path is (𝑘, ℓ,𝑚)-Anonymized when there are at

least 𝑘 transit candidates that result in the same path up to the first

𝑚 nodes from 𝑠 to 𝑔 covering 𝑡 , and the distance between any pair

of nodes within that set is equal to or greater than ℓ . When𝑚 = ∞,
the adversary cannot determine which of those transit candidates

is the true 𝑡 even after observing the entire path.

Second, we define a (𝑘, ℓ,𝑚)-Anonymizable Tuple.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1810

Definition 2 ((𝑘, ℓ,𝑚)-Anonymizable Tuple). Let 𝑘 ∈ Z>0 and
ℓ ∈ R≥0. Given a domain D, we say that the tuple ⟨D, 𝑠, 𝑔, 𝑡⟩, where
𝑠 ∈ N , 𝑔 ∈ N , 𝑡 ∈ T , 𝑠 ≠ 𝑡 , and 𝑔 ≠ 𝑡 , is a (𝑘, ℓ,𝑚)-Anonymizable
Tuple if there exists a path plannerA such that there exists a set𝑇 ⊆
{𝑡 ′ |𝑡 ′ ∈ T and A(⟨D, 𝑠, 𝑔, 𝑡⟩) |𝑚 = A(⟨D, 𝑠, 𝑔, 𝑡 ′⟩) |𝑚} satisfying
|𝑇 | ≥ 𝑘 and min(𝑖, 𝑗) ∈𝑇×𝑇 𝑑 (𝑖, 𝑗) ≥ ℓ .

The input tuple is (𝑘, ℓ,𝑚)-Anonymizable when at least one planner

can output a (𝑘, ℓ,𝑚)-Anonymized Path for this input. Since 𝑘 is

a positive integer, a tuple ⟨D, 𝑠, 𝑔, 𝑡⟩ is not (𝑘, ℓ,𝑚)-Anonymizable

Tuple for any 𝑘 if there exists no path from 𝑠 to 𝑔 covering 𝑡 .

Based on the above definitions, we define (𝑘, ℓ,𝑚)-Anonymity

of a path planner A as follows.

Definition 3 ((𝑘, ℓ,𝑚)-Anonymity). A path planner A satis-
fies (𝑘, ℓ,𝑚)-Anonymity for a domain D if A returns a (𝑘, ℓ,𝑚)-
Anonymized Path for all (𝑘, ℓ,𝑚)-Anonymizable Tuples in D.

A path planner with (𝑘, ℓ,𝑚)-Anonymity is guaranteed to return

anonymized paths for all anonymizable tuples in D.

We also consider the anonymity of the planner for fixed source

and goal locations and define (𝑘, ℓ,𝑚, 𝛿)-Local Anonymity as fol-

lows:

Definition 4 ((𝑘, ℓ,𝑚, 𝛿)-Local Anonymity). Let 𝑥 be the num-
ber of (𝑘, ℓ,𝑚)-Anonymizable Tuples in the domain D with a fixed
source 𝑠 and goal𝑔. We say thatA satisfies (𝑘, ℓ,𝑚, 𝛿)-Local Anonymity
for ⟨D, 𝑠, 𝑔⟩ if A returns (𝑘, ℓ,𝑚)-Anonymized Paths for 𝛿𝑥 or more
(𝑘, ℓ,𝑚)-Anonymizable Tuples in D with 𝑠 and 𝑔.

AplannerA satisfying (𝑘, ℓ,𝑚)-Anonymity inD satisfies (𝑘, ℓ,𝑚, 1)-
Local Anonymity for any combination of a start 𝑠 and a goal 𝑔.

3.2 Properties of (𝑘, ℓ,𝑚)-Anonymity
We have identified several important properties about (𝑘, ℓ,𝑚) -
Anonymity: equivalence conditions for (𝑘, ℓ,𝑚) - Anonymizable

Tuples and Anonymized Paths, path-extensibility, and existence

guarantee of a planner achieving (𝑘, ℓ,𝑚)-Anonymity. All omit-

ted proofs, as well as some additional properties can be found in

Supp. A [18].

First, the following proposition indicates the necessary and suf-

ficient conditions for a path to be a (𝑘, ℓ,∞)-Anonymized Path.

Proposition 1 (3C Condition for Output Path). A path 𝜋 =
A(⟨D, 𝑠, 𝑔, 𝑡⟩) is (𝑘, ℓ,∞)-Anonymized Path iff there exists a set of
nodes 𝑇 ⊆ T satisfying all of the following:

(1) Cardinality: |𝑇 | ≥ 𝑘

(2) Cost: min(𝑖, 𝑗) ∈𝑇×𝑇 𝑑 (𝑖, 𝑗) ≥ ℓ

(3) Coverage: 𝜋 covers all nodes in 𝑇 , and A returns 𝜋 whenever
the transit point belongs to 𝑇 .

The similar necessary and sufficient conditions for an input tuple

to be (𝑘, ℓ,∞)-Anonymizable are in Supp. A.2 [18].

Next, the coverage condition of Prop. 1 leads to the computational

complexity of planning a (𝑘, ℓ,∞)-Anonymized Path.

Theorem 1 (Complexity). Finding a (𝑘, ℓ,𝑚)-Anonymized Path
for the given tuple is NP-Hard.

Proof of Theorem 1. Finding a path that covers all nodes in

the given set of nodes is a generalization of WRP, which is NP-

Hard [14] (see Sec. 4.3) □

g s g s

Figure 2: Directed vs. Undirected:While all tuples are (3, 1,∞)-
Anonymizable Tuples, planning (3, 1,∞)-Anonymized Path
for every transit point is impossible in the directed (left) case.

If the domain consists of an undirected graph, we can ensure the

existence of a path planner that satisfies (𝑘, ℓ,𝑚)-Anonymity.

Theorem 2 (Existence of a Satisfying Path Planner). If
every edge in the domain D is undirected, meaning that ∀(𝑖, 𝑗) ∈
N × N , (𝑖, 𝑗) ∈ E ⇒ (𝑗, 𝑖) ∈ E, there exists a path planner A that
satisfies (𝑘, ℓ,𝑚)-Anonymity for any given 𝑘 , ℓ and𝑚.

To prove this, we use belowwhich states that extending a (𝑘, ℓ,𝑚)-
Anonymized Path preserves the same level of anonymity.

Lemma 1 (Path-Extension). Let𝜋 = 𝐴(⟨D, 𝑠, 𝑔, 𝑡⟩) be a (𝑘, ℓ,𝑚)-
Anonymized Path with respect to 𝑡 , 𝜋𝑠′→𝑠 be a path, constructed in-
dependently of 𝑡 , from 𝑠′ to 𝑠 , and 𝜋𝑔→𝑔′ be an arbitrary path from 𝑔

to 𝑔′. Then, 𝜋𝑠′→𝑠 ◦ 𝜋 ◦ 𝜋𝑔→𝑔′ is also a (𝑘, ℓ,𝑚)-Anonymized Path
with respect to 𝑡 .

Proof of Theorem 2. Let𝑇𝑠,𝑔 = {𝑡 | 𝑡 ∈ T , ⟨𝐷, 𝑠, 𝑔, 𝑡⟩ is (𝑘, ℓ,𝑚)
-Anonymizable Tuple} = {𝑡1, 𝑡2, ..., 𝑡𝑥 }, and 𝜋

𝑡𝑖
𝑠→𝑔 be the (𝑘, ℓ,𝑚)-

Anonymized Path for ⟨𝐷, 𝑠, 𝑔, 𝑡𝑖 ⟩. If |𝑇𝑠,𝑔 | ≥ 1 and all edges in D
are undirected, there exists 𝜋𝑔→𝑠 , a path from 𝑔 to 𝑠 . By Lemma 1,

we have that 𝜋𝑠→𝑔 = (∥𝑥−1

𝑖=1
𝜋
𝑡𝑖
𝑠→𝑔 ◦ 𝜋𝑔→𝑠) ◦ 𝜋𝑡𝑥𝑠→𝑔 is a (𝑘, ℓ,𝑚)-

Anonymized Path with respect to all transit nodes in 𝑇𝑠,𝑔 .

Now, consider a path plannerA such thatA(⟨𝐷, 𝑠, 𝑔, 𝑡⟩) = 𝜋𝑠→𝑔

if |𝑇𝑠,𝑔 | ≥ 1 and A(⟨𝐷, 𝑠, 𝑔, 𝑡⟩) = Failure otherwise. It is evident

that A satisfies (𝑘, ℓ,𝑚)-Anonymity: □

Although Theorem. 2 guarantees that there exists a path planner

with (𝑘, ℓ,𝑚)-Anonymity for any undirected graph, such a guaran-

tee is not possible when the edges are directed. A counterexample

is shown in the left-side of Fig. 2, where there are two possible

paths from 𝑠 to 𝑔; 𝜋𝑎 = (𝑠, 𝑡1, 𝑡2, 𝑡3, 𝑔) or 𝜋𝑏 = (𝑠, 𝑡1, 𝑡4, 𝑡5, 𝑔). Thus,
if we assume that the costs of edges are all one, all input tuples are

(3, 1,∞)-Anonymizable Tuples. Let 𝜋𝑖 = A(⟨D, 𝑠, 𝑔, 𝑡𝑖 ⟩). Clearly,
any path planner A should satisfy 𝜋𝑎 = 𝜋2 = 𝜋3 and 𝜋𝑏 = 𝜋4 = 𝜋5.

Then, if 𝜋𝑎 = 𝜋1, 𝜋𝑎 is a (3, 1,∞)-Anonymized Path but 𝜋𝑏 is not a

(3, 1,∞)-Anonymized Path. Likewise, if 𝜋𝑏 = 𝜋1, 𝜋𝑏 is a (3, 1,∞)-
Anonymized Path but 𝜋𝑎 is not a (3, 1,∞)-Anonymized Path. On

the other hand, if all edges are undirected, we can construct a

(3, 1,∞)-Anonymized Path from 𝜋𝑎 and 𝜋𝑏 by concatenating them.

4 PBP: PARTITIONING-BASED PLANNER FOR
(𝑘, ℓ,∞)-ANONYMITY

We now propose an algorithm for (𝑘, ℓ,∞)-Anonymity. First, note

that if we disregard path cost, then in principle, a relatively straight-

forward approach to achieve (𝑘, ℓ,∞)-Anonymity would be to re-

turn some path which covers all transit candidates. However, a prac-

tical algorithm for Transit Obfuscation needs to effectively trade

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1811

off the privacy objective vs. path costs, on average, overall (𝑠, 𝑔, 𝑡)
tuples of interest. We first propose objectives that express this trade-

off and then propose a partitioning-based algorithm which seeks a

solution which optimizes this objective. Proofs are in Supp. B [18].

4.1 Objectives
We define two metrics, Anonymized Path Ratio (APR) and Mean

Anonymization Cost (MAC), to evaluate the performance of plan-

ners that satisfy (𝑘, ℓ,𝑚)-Anonymity. Let T+ be the set {𝑡 |𝑡 ∈
T ,A(⟨D, 𝑠, 𝑔, 𝑡⟩) is a (𝑘, ℓ,𝑚)-Anonymized Path} for the fixedD,

𝑠 , and 𝑔. APR is defined as follows:

Definition 5 (Anonymized Path Ratio (APR)).

APR(A, 𝐷, 𝑠, 𝑔) = |T+ |
#Coverable Transit Nodes

where #Coverable Transit Nodes denotes the number of transit nodes

within T such that there exists a path from 𝑠 to 𝑔 covering 𝑡 ∈ T .

APR is equivalent to the lower bound of 𝛿 , and a larger APR is

desirable.

Next, inspired by deception cost [12], a metric for goal obfusca-

tion, we define the MAC metric:

Definition 6 (Mean Anonymization Cost (MAC)).

MAC(A, 𝐷, 𝑠, 𝑔) =
∑︁
𝑡 ∈T+

𝑐𝑜𝑠𝑡 (A(⟨D, 𝑠, 𝑔, 𝑡⟩)) − 𝑐𝑜𝑠𝑡 (𝜋𝑡∗)
|T+ | 𝑐𝑜𝑠𝑡 (𝜋𝑡∗))

where 𝜋𝑡∗ is the shortest path from 𝑠 to 𝑔 covering 𝑡 . MAC shows

the cost of anonymizing the transit points.

4.2 Pbp: Partitioning-based Planner

Algorithm 1 Partitioning-based Planner (Pbp)

Input: Tuple ⟨D, 𝑠, 𝑔, 𝑡⟩ and privacy parameters (𝑘, ℓ)
Output: a path 𝜋 from 𝑠 to 𝑔 covering 𝑡

1: /* Pre-Processing independent of 𝑡*/
2: Generate a partition of T ,𝑇1,𝑇2, ...,𝑇Φ such that

⋃Φ
𝜙=1

𝑇𝜙 = T ,

any 𝑇𝜙 except 𝑇Φ meets all conditions of Prop. 1, and any pair

are disjoint.

3: /* End of Pre-Processing */

4: if 𝑡 belongs to 𝑇Φ then return Failure

5: 𝑇 ← the partition that contains 𝑡

6: 𝜋∗
𝑇
← shortest path from 𝑠 to 𝑔 while covering 𝑇

7: return 𝜋∗
𝑇

We now propose the Partitioning-based Planner (Pbp), a prac-

tical algorithm that seeks to achieve (𝑘, ℓ,∞)-Anonymity while

optimizing the above objectives.

Pbp is composed of two phases: (1) the Partitioning/Pre-Processing

phase and (2) the path query phase. In the Partitioning/Pre-Processing

phase, the algorithm searches for a partition of all transit candi-

dates, denoted as 𝑇1,𝑇2, ...,𝑇Φ, such that (a) each subset except the

final 𝑇Φ satisfies the 3C Conditions described in Prop. 1, ensuring

that each subset covers the required nodes to achieve the desired

level of anonymity, and (b) the objectives are optimized. The set 𝑇Φ
consists of transit candidates that the planner cannot anonymize.

This phase only needs to be executed once for each domain.

In the path query phase, given a specific 𝑠 , 𝑔, and 𝑡 , the algorithm

finds the shortest path 𝜋 from the source node 𝑠 to the goal node

𝑔 while covering all the nodes assigned to the subset (computed

above in the Partitioning phase) that includes the target node 𝑡 .

By utilizing this approach, Pbp can effectively plan a (𝑘, ℓ,∞)-
Anonymized Path, ensuring the privacy requirements are met while

efficiently navigating from the source to the destination. If the

obtained partition is perfect, Pbp satisfies (𝑘, ℓ,∞)-Anonymity.

Theorem 3 (Completeness). Let all edges in D be undirected.
Then, if

∑Φ−1

𝜙=1
|𝑇𝜙 | is maximized for any pair of 𝑠 and𝑔, Alg. 1 satisfies

(𝑘, ℓ,∞)-Anonymity.

4.3 WRPWith Targets (WRPT)
A key building block for the Pbp algorithm is a search algorithm for

finding the minimum cost path 𝜋 from 𝑠 to 𝑔, which covers all of the

nodes in a set of nodes. We call this the Watchman Route Problem

with Targets (WRPT). The WRPT corresponds to the subproblem

solved by the path query phase of Pbp in Alg. 1, line 6. The WRPT

is also used in the Partitioning phase when evaluating candidate

partitionings (Alg. 2, line 18).

The WRPT is a variant of the Watchman Route Problem (WRP)

[15], The differences between the WRP and WRPT are: (1) WRP

does not have a specified goal node, while the WRPT has a specific

goal 𝑔, and (2) the objective of the WRP is to cover all nodes in the

graph, while the WRPT seeks to cover some subset𝜓 of nodes in

the graph. Since WRP was shown to be NP-Hard [15], the WRPT is

clearly NP-Hard. Recent work has studied heuristic search-based

algorithms to solve WRP [15].

Following Skyler et al. [15], we use an A* search for the WRPT.

We define a state for the search as a tuple ⟨𝑛,U⟩, where 𝑛 ∈ N
represents the current location, andU ⊆ N represents the set of

uncovered nodes. The initial state is ⟨𝑠,𝜓 \ 𝑣 (𝑠)⟩, and the final is

⟨𝑔, ∅⟩. Expanding a state ⟨𝑛,U⟩ involves moving from 𝑛 to one of

its neighboring nodes 𝑛′ and updating the set of uncovered nodes

U toU \ 𝑣 (𝑛′). The cost of this expansion equals 𝑐 (𝑛, 𝑛′).
To make the search more efficient, we propose Tunnel Heuristic,

which is based on the Singleton Heuristic for the WRP [15]. The

Tunnel Heuristic value ℎ𝑡𝑢𝑛𝑛𝑒𝑙 is computed as follows:

ℎ𝑡𝑢𝑛𝑛𝑒𝑙 (⟨𝑛,U⟩) =

(max

𝑢∈U
min

𝑞∈𝑣−1 (𝑢)
𝑑 (𝑛, 𝑞))

+(min

𝑢∈U
min

𝑞∈𝑣−1 (𝑢)
𝑑 (𝑞,𝑔)) ifU ≠ ∅

𝑑 (𝑛,𝑔) otherwise

where the function 𝑣−1 (𝑛) : N → 2
N

takes a node and returns

the set of nodes from which 𝑛 is observable. The heuristic ℎ𝑡𝑢𝑛𝑛𝑒𝑙
is admissible since the agent must travel to one of the nodes in

𝑣−1 (𝑢) to observe an uncovered node 𝑢 and then proceed to the

goal 𝑔 after covering all nodes inU.

4.4 Searching for a Partitioning
Alg. 1 requires an algorithm that generates a partition of the set

of nodes. Let Ψ+ ⊆ Ψ be the largest subset of Ψ whose elements

all satisfy the conditions of Prop. 1. We denote the sum of the

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1812

cardinalities of the subsets in Ψ+ as |𝑎𝑝 |, and the MAC correspond-

ing to Ψ+ as 𝑚𝑎𝑐 . Specifically, 𝑚𝑎𝑐 is

∑
𝜓 ∈Ψ+ 𝑎𝑐 (𝜓)/|𝑎𝑝 |, where

𝑎𝑐 (𝜓) = ∑
𝑘∈𝜓 (𝜋∗𝜓 − 𝜋

𝑘∗)/(𝜋𝑘∗), where 𝜋𝑘∗ denotes the minimal

cost path from 𝑠 to 𝑔 covering 𝑘 , and 𝜋∗
𝜓
denotes the minimal cost

path from 𝑠 to 𝑔 while covering all nodes within 𝜓 , i.e., the solu-

tion to a WRPT which covers𝜓 . We seek a partitioning which first

prioritizes maximizing |𝑎𝑝 |, then minimizes𝑚𝑎𝑐 , i.e., a partition-

ing which anonymizes as many transit nodes as possible while

minimizing the average cost of the anonymized paths.

Algorithm 2 Merge-BB Partitioning

Input: Tuple ⟨D, 𝑠, 𝑔, 𝑡⟩ and privacy parameters (𝑘, ℓ)
Output: The best partition Ψ∗ of T
1: |𝑎𝑝 |∗ ← 0,𝑚𝑎𝑐∗ ←∞, Ψ∗ = ∅
2: function Merge_BB_Search(Ψ)
3: Ψ+ ← {𝜓 |𝜓 ∈ Ψ s.t.𝜓 satisfies all conditions of Prop. 1 }
4: |𝑎𝑝 | ← ∑

𝜓 ∈Ψ+ |𝜓 |,𝑚𝑎𝑐 ← ∑
𝜓 ∈Ψ+ 𝑎𝑐 (𝜓)/|𝑎𝑝 |

5: if (|𝑎𝑝 | > |𝑎𝑝 |∗) or (|𝑎𝑝 | = |𝑎𝑝 |∗ and𝑚𝑎𝑐 < 𝑚𝑎𝑐∗) then
6: |𝑎𝑝 |∗ ← |𝑎𝑝 |,𝑚𝑎𝑐∗ ←𝑚𝑎𝑐 , Ψ∗ ← Ψ

7: if (|Ψ| = 1) or (|𝑎𝑝 | = ∑
𝜓 ∈Ψ |𝜓 |) or (|𝑎𝑝 |∗ =

∑
𝜓 ∈Ψ |𝜓 | and

𝑚𝑎𝑐 ≥ 𝑚𝑎𝑐∗) then return True

8: for (𝑖, 𝑗) ∈ 𝑀𝑒𝑟𝑔𝑒𝑂𝑟𝑑𝑒𝑟 (Ψ) do
9: if Prunable(𝜓𝑖 ,𝜓 𝑗) then Continue

10: 𝜋∗
𝜓𝑖∪𝜓 𝑗

← shortest path from 𝑠 to 𝑔, covering𝜓𝑖 ∪𝜓 𝑗

11: if 𝜋∗
𝜓𝑖

is not found then Continue

12: Ψ′ ← Ψ \ {𝜓𝑖 ,𝜓 𝑗 } ∪ {𝜓𝑖 ∪𝜓 𝑗 }
13: Merge_BB_Search(Ψ′)

14:

15: for 𝑖 ∈ T do
16: if ∃𝑢 ∈ 𝑣 (𝑖) 𝑢 is reachable from 𝑠 and ∃𝑢 ∈ 𝑣 (𝑖) 𝑔 is reach-

able from 𝑢 then
17: 𝜓𝑖 ← {𝑖}
18: 𝜋∗

𝜓𝑖
← shortest path from 𝑠 to 𝑔, covering 𝑡

19: Merge_BB_Search({𝜓1,𝜓2, ...})
20: return Ψ∗+ ∪ {

⋃
Ψ∗ \ Ψ∗+}

4.4.1 Merge-based Branch-and-Bound. One practical partitioning
algorithm is Merge-based Branch-and-Bound Partitioning (Merge-

BB). It initially assigns each node to its own separate partition. It

removes any node without a valid path from 𝑠 to 𝑔 while cover-

ing that node. This pruning step involves calculating all pair-wise

shortest paths on the node set 𝑁 , which can be done efficiently

within a reasonable amount of time. The algorithm then performs

a recursive branch-and-bound search which considers all possible

combinations of merges of these partitions.

The termination condition for this recursive search is imple-

mented in Line 7: Return True when (1) the partition Ψ contains

only one subset, or (2) |𝑎𝑝 | reaches the upper bound, or (3) the

current best partition Ψ∗ has an optimal |𝑎𝑝 |, and the𝑚𝑎𝑐 of Ψ is

not better than𝑚𝑎𝑐∗. The third termination condition is based on

the observation that the cost of the optimal path covering all nodes

in the union of𝜓𝑖 and𝜓 𝑗 is always equal to or greater than both of

the costs of the optimal paths covering all nodes in𝜓𝑖 and𝜓 𝑗 .

Alg. 2 explores all potential merges and returns a partition that

maximizes the number of anonymized transit points while mini-

mizing the average cost of anonymized paths.

Proposition 2 (Optimality). Alg. 1 using Alg 2 achieves the
largest APR and also has the minimum MAC among planners with
the largest APR for any combination of D, 𝑠 , and 𝑔.

Since Theorem 2 tells that there exists a planner satisfying

(𝑘, ℓ,∞)-Anonymity for an undirected graph, which means that it

can anonymize all (𝑘, ℓ,∞) - Transit Anonymizable Tuples, com-

bining Theorem 3 and Prop. 2 immediately yields the guarantee

that Alg. 1 with Alg. 2 satisfies (𝑘, ℓ,∞)-Anonymity.

We also implemented the following enhancements.

Merge Ordering Strategies. The order in which partitions are

merged in Alg. 2 by the recursive enumeration is determined by

a call to the MergeOrder function in line 8, which returns the

list of all pairs of candidate subsets to merge, sorted according to

some merge ordering criterion. One simple strategy is Random,

which simply returns a randomly shuffled list of the pairs of par-

titions. Another ordering strategy, CostAsc, sorts the pairs to be

merged in ascending order of a heuristic cost function. We use

𝑚𝑎𝑥 (𝑐𝑜𝑠𝑡 (𝜋𝜓𝑖
), 𝑐𝑜𝑠𝑡 (𝜋𝜓 𝑗

))×(|𝜓𝑖 |+ |𝜓 𝑗 |) as the cost of a pair (𝜓𝑖 ,𝜓 𝑗),
where the first term is the lower bound of the covering path of the

merged partition, and the second term is the number of transit

candidates assigned to the merged partition. CostAsc helps the

planner find a better solution earlier, leading to more upper/lower

bound-based pruning.

Pruning Criteria. To determine whether we need to try merging

(𝜓𝑖 ,𝜓 𝑗), Alg. 2, line 9 calls Prunable (Alg.3). If both 𝜓𝑖 and 𝜓 𝑗 al-

ready satisfy all the conditions stated in Thm.1, the merge is pruned

because it would increase the cost of a path covering all the nodes

within the set (Alg. 3, Line 2). Furthermore, suppose we have al-

ready found a satisfactory solution for anonymizing all possible

tuples. In that case, we can establish an upper bound for the path

cost covering the union of 𝜓𝑖 and 𝜓 𝑗 to surpass the current best

satisfying solution and prune based on this bound (Alg. 3, Line 3).

Specifically, we denote 𝑎𝑐 as the upper bound for the cost that

𝜋𝜓𝑖∪𝜓 𝑗
must meet to improve upon the best 𝑎𝑐∗, and it is calcu-

lated as |𝑎𝑝 |∗𝑚𝑎𝑐∗ − |𝑎𝑝 |𝑚𝑎𝑐 + 𝑎𝑐 (𝜋𝜓𝑖
) + 𝑎𝑐 (𝜋𝜓 𝑗

). To estimate the

cost of a path that covers all the nodes within the union of𝜓𝑖 and

𝜓 𝑗 , we use max(𝑐𝑜𝑠𝑡 (𝜋∗
𝜓𝑖
), 𝑐𝑜𝑠𝑡 (𝜋∗

𝜓 𝑗
)), which is the lower-bound

of 𝑐𝑜𝑠𝑡 (𝜋∗𝜋𝑖∪𝜋 𝑗
). Finally, we check the minimum distance between

a node in 𝜓𝑖 and 𝜓 𝑗 . If that distance is less than ℓ , we prune this

merge, as any set containing the union of 𝜓𝑖 and 𝜓 𝑗 would also

violate this condition (Alg. 3, Line 7).

5 PLANNERS FOR𝑚-BOUNDED
(𝑘, 𝑙,𝑚)-ANONYMITY

We now propose three planners that output (𝑘, ℓ,𝑚)-Anonymized

Paths with𝑚 < ∞, which means that the adversary cannot identify

which node is the transit point until observing more than𝑚 nodes.

If𝑚 is less than the length of the output path, the adversary might

be able to identify the true transit point after obtaining the𝑚 + 1st

and later nodes. Proofs for this section can be found in Supp. C [18].

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1813

Algorithm 3 Prunable

1: if Both𝜓𝑖 and𝜓 𝑗 meets all conditions in Prop. 1 then
2: return True

3: if min(𝑥,𝑦) ∈𝜓𝑖×𝜓 𝑗
𝑑 (𝑥,𝑦) < ℓ then return True

4: if |𝑎𝑝 |∗ = ∑
𝜓 ∈Ψ |𝜓 | then

5: 𝑎𝑐 = |𝑎𝑝 |∗𝑚𝑎𝑐∗ − |𝑎𝑝 |𝑚𝑎𝑐 + 𝑎𝑐 (𝜋𝜓𝑖
) + 𝑎𝑐 (𝜋𝜓 𝑗

)

6: 𝑎𝑐 =
∑
𝑘∈𝜓𝑖∪𝜓 𝑗

max(𝑐𝑜𝑠𝑡 (𝜋∗
𝜓𝑖
),𝑐𝑜𝑠𝑡 (𝜋∗

𝜓𝑗
))−𝑐𝑜𝑠𝑡 (𝜋𝑘∗)

𝑐𝑜𝑠𝑡 (𝜋𝑘∗)
7: if 𝑎𝑐 ≥ 𝑎𝑐 then return True

8: return False

Random-Walk-based Planner (Rbp). The first algorithm is a Random-

Walk-based Planner (Rbp), which randomly selects the path’s first

𝑚 nodes. Specifically, the planner selects the 𝑖-th node (2 ≤ 𝑖 ≤ 𝑚)

of the path randomly from the neighbors of the (𝑖 − 1)-th node,

where 𝜋1 = 𝑠 . Subsequently, the planner guides the agent’s move-

ment from 𝜋𝑚 to 𝑡 and finally to 𝑔 utilizing the shortest paths

available. 𝜋 |𝑚 is the same for all transit candidates, and the planner

outputs Failure if there is no feasible path. This planner archives

(𝑘, ℓ,𝑚)-Anonymity with finite𝑚 for undirected graphs.

Proposition 3. If all edges in E are undirected, Random-Walk-
based Planner satisfies (𝑘, ℓ,𝑚)-Anonymity with𝑚 < ∞.

𝑚-Pbp. The second planner is𝑚-Pbp, which is an extension of

Pbp.𝑚-Pbp returns 𝜋𝑃𝑏𝑝 |𝑚 ◦𝜋∗𝑢𝑎 , where 𝜋𝑃𝑏𝑝 |𝑚 is the output path

up to the𝑚-th node planned by Pbp, and 𝜋∗𝑢𝑎 is the unanonymized

shortest path from the last node of 𝜋𝑃𝑏𝑝 |𝑚 to the goal while cover-

ing 𝑡 if 𝜋𝑃𝑏𝑝 |𝑚 does not cover 𝑡 . The anonymity of𝑚-Pbp relies on

the anonymity of Pbp.

Proposition 4. If Pbp satisfies (𝑘, ℓ,∞)-Anonymity for the given
domain D,𝑚-Pbp satisfies (𝑘, ℓ,𝑚)-Anonymity for that domain D.

Clustering-based Planner (Cbp). The third𝑚-bounded planner is

a Clustering-based Planner (Cbp), which first applies 𝑘-means-like

clustering to the transit candidates and then returns the concate-

nation of paths from 𝑠 to the centroid of the cluster corresponding

to 𝑡 and from the centroid to 𝑔. Following Wasserman and Faust

[20], we call a node 𝜎 ∈ N that minimizes the maximum distance

to cover a node within a set of nodesU ⊆ N the centroid ofU, i.e.,

𝜎 = arg min𝑛∈N max𝑢∈U min𝑤∈𝑣−1 (𝑢) 𝑑 (𝑛,𝑤). Like 𝑘-means clus-

tering [1], Cbp iteratively updates the assignment of each transit

candidate to minimize the distance between each candidate and the

centroid of their respective cluster. After the assignments stabilize,

Cbp repeatedly merges a cluster with cardinality less than 𝑘 with

the nearest cluster until each cluster has 𝑘 or more nodes. Here, we

use the shortest distance from the centroid of the 𝑖-th cluster to the

centroid of the 𝑗-th cluster as the distance from the 𝑖-th cluster to

the 𝑗-th cluster. Then, Cbp checks |𝜋𝑠→𝜎𝑡 |, the length of the short-

est path from 𝑠 to the centroid of the cluster containing the true

transit node 𝑡 . If it exceeds𝑚, Cbp assigns the first𝑚 nodes from

𝜋𝑠→𝜎𝑡 , as 𝜋
1
. Otherwise, Cbp appends a randomly generated path

as padding (Line 12-15 in Algorithm 4) and assigns the extended

path to 𝜋1
. Finally, Cbp computes 𝜋2

, the shortest path from the

last node of 𝜋1
to 𝑔, covering 𝑡 , and returns 𝜋1 ◦ 𝜋2

. The sequence

of the first𝑚 nodes planned by Cbp is the same for all transit points

belonging to the same cluster. Cbp satisfies the following.

Proposition 5. Let all edges inD be undirected. If for any 𝑡 ∈ T ,
there exists a path from 𝑠 to 𝑔 while covering 𝑡 , Cbp satisfies (𝑘, 0,𝑚)-
Anonymity.

Algorithm 4 Clustering-based Planner (Cbp)

1: Randomly assign the transit candidates to [|T |/𝑘] clusters s.t.
the number of nodes in each cluster is equal to or more than 𝑘

2: while True do
3: for each transit candidate 𝑡𝑖 ∈ T do
4: Compute the distance to each centroid

5: Assign 𝑡𝑖 to the cluster with the nearest centroid.

6: for each cluster do
7: Recompute the centroid for each cluster;

8: if the assignment does not change then Break

9: while There exists a cluster consisting of less than 𝑘 nodes do
10: for each cluster consisting of less than 𝑘 nodes do
11: Assign all elements of this cluster to the nearest cluster

12: 𝜎𝑡 ← the centroid of the cluster containing 𝑡

13: 𝜋∗𝑠→𝜎𝑡
← the shortest path from 𝑠 to 𝜎𝑡

14: if |𝜋∗𝑠→𝜎𝑡
| ≥ 𝑚 then 𝜋1 ← 𝜋∗𝑠→𝜎𝑡

|𝑚
15: else
16: 𝑟 = 𝑠 , 𝜋𝑠→𝑟 = 𝑠

17: while |𝜋𝑠→𝑟 | + |𝜋∗𝑟→𝜎𝑡
| < 𝑚 do

18: 𝑟 ← Randomly pick the neighbour of 𝑟

19: Append 𝑟 to the tail of 𝜋𝑠→𝑟

20: 𝜋1 ← 𝜋𝑠→𝑟 ◦ 𝜋∗𝑟→𝜎𝑡

21: 𝜋2 ← shortest path from 𝜋1

|𝜋1 | to 𝑔 while covering 𝑡

22: return 𝜋1 ◦ 𝜋2

6 EXPERIMENTS
Benchmarks and Settings. We evaluate the performance of Pbp

on six 2D grid world benchmark instances from the Moving AI

pathfinding benchmark set [16]: den101d, den201d, lak102d, lak510d,

orz000d, and orz201d. We randomly select 5 pairs of start and goal

points for each benchmark. The number of transit candidates, |T |,
is 8, 12, and 16, and we randomly selectT fromN for each problem.

We use a visibility function where nodes within a range less than

or equal to distance 𝑟 are covered (for 𝑟 =0,2,10). All experiments

used 4-way unit cost movement.

All algorithms were implemented in C++, and experiments were

run on an Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz and 125GB

of RAM, running Ubuntu 22.04.2 LTS. A time limit of 300 sec-

onds/instance was used.

6.1 Evaluation of Pbp with𝑚 = ∞
We evaluate Pbp using Merge-BB and DF-BB partitioning strategies,

two merge orders (Random and CostAsc), and two WRTP heuris-

tics: the blind heuristic (equivalent to breadth-first search) and the

Tunnel heuristic. We also evaluate two baseline partitionings:

Baseline #1: Naive. This generates a partitioning by randomly

splitting the transit candidates into pairs of 2 nodes. This approach

satisfies (2, 1,∞)-Anonymity for this class of undirected grid maps.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1814

0 100 200 300
Time [s]

0.2

0.4

0.6

0.8

1.0

AP
R

| |=8

0 100 200 300
Time [s]

0.5

1.0

M
AC

0 100 200 300
Time [s]

0.2

0.4

0.6

0.8

1.0

AP
R

| |=12

0 100 200 300
Time [s]

0.5

1.0

M
AC

0 100 200 300
Time [s]

0.2

0.4

0.6

0.8

1.0

AP
R

| |=16

0 100 200 300
Time [s]

0.5

1.0

M
AC

DF-BB - Random Merge-BB - Random Merge-BB - CostAsc

Figure 3: Convergence of ARP and MAC. Mege-BB with
CostAsc shows the best performance.

Baseline #2: Depth-First Branch-and-Bound (DF-BB) partitioning.
DF-BB starts with all nodes unassigned and then constructs a parti-

tioning by assigning one unassigned node to an existing subset of

Φ or a new subset (details in Supp. D [18]).

For the privacy parameters, we set 𝑘 to 2 and 3 and ℓ to 1 and 10.

Results. Tab. 1 shows the performance of the Partitioning-based

Planner when 𝑘 = 2, ℓ = 1. We report coverage, APR, MAC, and

execution time. Coverage is the percentage of problems on which

Pbp completed the search (found the optimal solution and proved

its optimality) within the time limit. We report mean MAC for the

configurations which found satisfying solutions (ARP=1) for all

instances within the time limit. Total Time denotes the average

execution time for the instances where Merge-BB with the blind

heuristic completed the search for |T | of 8 and 12.

Tab. 2 shows the mean and standard deviation of the MAC of

Merge-BB divided by the MAC of Naive, showing over 50% im-

provement of Merge-BB with CostAsc.

From Tab. 1-2, we observe that: (1) Pbp (Merge-BB) consistently

results in better MAC than the Naive baseline, showing that search-

ing for an optimal partition achieves significantly better path costs

than a naive partitioning. (2) Merge-BB has significantly higher

coverage than DF-BB, showing that the merge-based approach is a

more efficient strategy. (3) Overall, combining Merge-BB, CostAsc,

and Tunnel gives the best performance.

Fig. 3 depicts the changes over time in ARP andMACwhen 𝑘 = 2,

ℓ = 1. All combinations use ℎ𝑡𝑢𝑛𝑛𝑒𝑙 . Mege-BB archives higher APR

faster, and CostAsc can find solutions with lower MAC earlier.

=1
 k=2

=10 =1
 k=3

=10
0.00

0.25

0.50

0.75

1.00

1.25

1.50

M
AC

0.200453

0.465152
0.61857

1.07765

Radius = 0

=1
 k=2

=10 =1
 k=3

=10
0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.164759

0.45935 0.519961

1.04755

Radius = 2

=1
 k=2

=10 =1
 k=3

=10
0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.154437

0.754397

0.433462

1.49476Radius = 10

Figure 4: Impact of 𝑘 , ℓ , and radius 𝑟 . Larger 𝑘 and ℓ increase
MAC. The impact of 𝑟 is not monotonic.

Fig. 4 shows MAC for each combination of (𝑘, ℓ,𝑚) and 𝑟 when
using Merge-BB with CostAsc and ℎ𝑡𝑢𝑛𝑛𝑒𝑙 . Larger 𝑘 and ℓ result in

worse MAC. The correlation between MAC and 𝑟 is not monotonic

since larger 𝑟 allows the agent to cover nodes with less movement,

decreasing both the numerator and denominator of MAC.

Figure 5: Example of (2, 1,∞)-Anonnymized Paths.

FIg. 5 shows an example of optimal (2, 1,∞)-Anonnymized Paths

in den101 obtained by Pbp (Merge-BB). The cyan (S) and green (G)

cells are the source and goal, respectively. The transit candidate

belonging to the same subset (1 ∼ 4) has the same color, while its

corresponding path is colored in a lighter color. More qualitative

examples can be found in Supp. E.

6.2 Evaluation with bounded𝑚
We compared the three𝑚-bounded anonymity planners,𝑚-Pbp,

Rbp, and Cbp, for various values of𝑚 and 𝑘 . For each problem, we

set𝑚 such that𝑚/|𝜋∗ | is [0.1, 0.3, 0.5, 1.0, 5.0, 10.0], where 𝜋∗ is
the length of the shortest path for that problem. 𝑘 is [2, 3, 5]. The

remaining parameters are kept constant: ℓ = 1, |T | = 8, and the

heuristic function is ℎ𝑡𝑢𝑛𝑛𝑒𝑙 .

Fig. 6 shows that as𝑚 increases, theMAC of Rbp and Cbp exhibits

exponentia growth (y-axis is log scale), while𝑚-Pbp’s performance

converges towards that of Pbp. 𝑚-Pbp aims to cover all nodes

within the same partition, while Cbp strives to move towards the

centroid of the cluster. Thus, when 𝑚 is small enough that Cbp

doesn’t require appending a random-walking path, the MAC of

Cbp surpasses that of𝑚-Pbp. However,𝑚-Pbp exhibits superior

performance compared to the other methods for larger values of𝑚.

Tab. 3 shows the execution time of each planner. Cbp is faster

than𝑚-Pbp. Larger𝑚 makes Cbp faster because the path after the

𝑚-th node tends to be shorter, reducing the runtime of the search

in Line 21 in Alg. 4. However, this effect decreases if𝑚 is too large

for Cbp to need additional time to append random nodes.

7 RELATEDWORK
𝑘-Anonymity. 𝑘-anonymity is a fundamental concept in data pri-

vacy and anonymization that aims to safeguard individual identities

in a dataset while preserving its utility [17, 19]. It seeks to render

each record in a dataset indistinguishable from at least 𝑘-1 other

records, i.e., each individual’s data is grouped with a minimum of

𝑘-1 other individuals with similar attributes. This grouping makes

it difficult to identify a specific individual within the group.

Obfuscation. Some existing methods for goal obfuscation lever-

age concepts similar to 𝑘-anonymity. For instance, Kulkarni et al.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1815

Table 1: Comparison of each combination of partitioning, MergeOrder, and heuristic functions on coverage, the number of
evaluated partitions, and the total execution time. Merge-BB with CostAsc using Tunnel achieved the best performance.

|T | 8 12 16 8 12 16 8 12 16 8 12 16

Planner MergeOrder Heuristic Coverage [%] Total Time [s] APR (higher=better) MAC (lower=better)

Naive

Blind n/a n/a n/a <1 <1 - 1.00 1.00 1.00 0.714 0.434 0.582

Tunnel n/a n/a n/a <1 <1 - 1.00 1.00 1.00 0.714 0.434 0.582

DF-BB

Blind 77 0 0 19 - - 1.00 0.672 0.439 0.232 - -

Tunnel 100 20 0 2 92 - 1.00 0.828 0.558 0.229 - -

Merge-BB

Random

Blind 74 7 0 35 185 - 1.00 1.00 1.00 0.232 0.418 0.561

Tunnel 100 27 0 3 13 - 1.00 1.00 1.00 0.229 0.287 0.452

CostAsc

Blind 77 7 0 10 80 - 1.00 1.00 1.00 0.231 0.222 0.223

Tunnel 100 47 0 1 5 - 1.00 1.00 1.00 0.229 0.190 0.205

Table 2: Ratio of Merge-BB’s MAC to Naive’s MAC. Merge-BB
reduces the MAC of a satisfying solution by more than 50%.

MergeOrder Heuristic |T | = 8 |T | = 12 |T | = 16

Random

Blind

0.425

(±0.227)

0.679

(±0.380)

0.937

(±0.716)

Tunnel

0.423

(±0.226)

0.462

(±0.347)

0.706

(±0.723)

CostAsc

Blind

0.435

(±0.237)

0.350

(±0.160)

0.378

(±0.189)

Tunnel

0.423

(±0.226)

0.313

(±0.140)

0.349

(±0.188)

Table 3: Comparison of the runtime ([s]) for each planner. Rbp
and Cbp show better scalability compared to𝑚-Pbp.

𝑚/|𝜋∗ | 0.1 0.3 0.5 1.0 5.0 10.0

Rbp 0.006 0.006 0.006 0.006 0.006 0.006

Cbp 0.098 0.085 0.046 0.009 0.006 0.006

𝑚-Pbp 63.985 63.985 63.985 63.985 63.985 63.985

10 1 100 101

m/| *|

10 2

10 1

100

101

M
AC

k=2

10 1 100 101

m/| *|

10 2

10 1

100

101

M
AC

k=3

10 1 100 101

m/| *|

10 1

100

101

M
AC

k=5

m-Pbp Rbp Cbp (Pbp)

Figure 6: Impact of 𝑘 and 𝑚 on MAC. While MAC of Rbp in-
creases linearly with respect to𝑚, MAC of𝑚-Pbp converges to
MAC of Pbp.

[7, 8] define a secure path as one where 𝑘 different goals result in

the same path, thereby making it difficult for an observer to discern

the true purpose among these 𝑘 nodes. Another example is Dissim-
ulation proposed in Masters and Sardina [11], where the true goal is

considered to be obfuscated if there exist other nodes that look like

the goal equally or more than the real goal. While our work refrains

from making any assumptions regarding how the observer deduces

the agent’s intention, some studies [9–11, 13] model the inference

process of the observer and devise obfuscation techniques tailored

to these models. However, approaches based on such models do

not provide a guarantee of security against adversaries who do not

adhere to the model assumptions.

8 CONCLUSION
This paper introduced the Transit Obfuscation Problem and pro-

posed novel techniques to address this challenge. We introduced

(𝑘, ℓ,𝑚)-Anonymity as a measure of concealment achieved by a

path planner. We proposed a Pbp, a partitioning based algorithm to

achieve (𝑘, ℓ,∞)-Anonymity, and evaluated its performance on 2D

grid maps with obstacles. We showed that Pbp with a merge-based

branch-and-bound strategy significantly outperforms baseline par-

titioning approaches.

Although we showed that Merge-BB with the APR and MAC

objectives is a viable approach to partitioning, a complete branch-

and-bound search to find and prove the optimality of a solution

poses a scalability challenge. For example, although our current

implementation of Pbp can find solutions for |T | = 16 (Tab. 1),

it can not complete the search and prove optimality within the

300 sec. limit. Search algorithms finding good partitionings quickly

without an optimality guarantee (e.g., local search/metaheuristics)

are a direction for future work.

We also investigated algorithms for𝑚-bounded anonymity (𝑚 <

∞). We showed that while𝑚-Pbp yielded the best MAC scores, Cbp

offers fairly good MAC scores but runs much faster. Future work

will investigate additional approaches to trading off scalability vs.

solution quality.

Finally, while this work focused on a single agent and single

adversary in a static environment, an extension of our proposed

techniques to more complex scenarios, such as multi-agent systems

and dynamic environments, is another direction for future work.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1816

REFERENCES
[1] Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. 2020.

The k-means algorithm: A comprehensive survey and performance evaluation.

Electronics 9, 8 (2020), 1295.
[2] Tathagata Chakraborti, Anagha Kulkarni, Sarath Sreedharan, David E Smith,

and Subbarao Kambhampati. 2019. Explicability? legibility? predictability? trans-

parency? privacy? security? the emerging landscape of interpretable agent be-

havior. In Proceedings of the international conference on automated planning and
scheduling, Vol. 29. 86–96.

[3] Rui Chen, Benjamin CM Fung, Bipin C Desai, and Nériah M Sossou. 2012. Differ-

entially private transit data publication: a case study on the montreal transporta-

tion system. In Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining. 213–221.

[4] Joao Dias, Ruth Aylett, Ana Paiva, and Henrique Reis. 2013. The great deceivers:

Virtual agents and believable lies. In Proceedings of the Annual Meeting of the
Cognitive Science Society, Vol. 35.

[5] Saeede Enayati, Dennis L. Goeckel, Amir Houmansadr, and Hossein Pishro-

Nik. 2022. Privacy-Preserving Path-Planning for UAVs. In 2022 International
Symposium on Networks, Computers and Communications (ISNCC). 1–6. https:

//doi.org/10.1109/ISNCC55209.2022.9851770

[6] Sarah Keren, Avigdor Gal, and Erez Karpas. 2016. Privacy Preserving Plans in

Partially Observable Environments.. In IJCAI. 3170–3176.
[7] Anagha Kulkarni, Matthew Klenk, Shantanu Rane, and Hamed Soroush. 2018.

Resource bounded secure goal obfuscation. InAAAI Fall Symposium on Integrating
Planning, Diagnosis and Causal Reasoning.

[8] Anagha Kulkarni, Siddharth Srivastava, and Subbarao Kambhampati. 2019. A

unified framework for planning in adversarial and cooperative environments. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 2479–2487.
[9] Alan Lewis and Tim Miller. 2023. Deceptive Reinforcement Learning in Model-

Free Domains. arXiv preprint arXiv:2303.10838 (2023).

[10] Junren Luo, Wanpeng Zhang, Fengtao Xiang, and Su Jiongming. 2019. Inten-

tion Obfuscated Adversarial Deceptive Path Recommendation for UGV Patrol

Maneuver. 206–211. https://doi.org/10.1109/IHMSC.2019.00055

[11] Peta Masters and Sebastian Sardina. 2017. Deceptive Path-Planning.. In IJCAI.
4368–4375.

[12] Adrian Price, Ramon Fraga Pereira, Peta Masters, and Mor Vered. 2023. Domain-

Independent Deceptive Planning. In Proceedings of the 2023 International Confer-
ence on Autonomous Agents and Multiagent Systems. 95–103.

[13] Yagiz Savas, Christos K Verginis, and Ufuk Topcu. 2022. Deceptive decision-

making under uncertainty. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 36. 5332–5340.

[14] Shawn Seiref, Tamir Jaffey, Margarita Lopatin, and Ariel Felner. 2020. Solving the

watchman route problem on a grid with heuristic search. In Proceedings of the
international conference on automated planning and scheduling, Vol. 30. 249–257.

[15] Shawn Skyler, Dor Atzmon, Tamir Yaffe, and Ariel Felner. 2022. Solving the

Watchman Route Problem with Heuristic Search. J. Artif. Intell. Res. 75 (2022),
747–793. https://doi.org/10.1613/jair.1.13685

[16] N. Sturtevant. 2012. Benchmarks for Grid-Based Pathfinding. Transactions
on Computational Intelligence and AI in Games 4, 2 (2012), 144 – 148. http:

//web.cs.du.edu/~sturtevant/papers/benchmarks.pdf

[17] Latanya Sweeney. 2002. k-anonymity: A model for protecting privacy. Interna-
tional journal of uncertainty, fuzziness and knowledge-based systems 10, 05 (2002),
557–570.

[18] Hideaki Takahashi and Alex Fukunaga. 2024. Supplementary Material for "On

the Transit Obfuscation Problem. arXiv preprint (2024).
[19] Duygu Sinanc Terzi, Ramazan Terzi, and Seref Sagiroglu. 2015. A survey on

security and privacy issues in big data. In 2015 10th International Conference for
Internet Technology and Secured Transactions (ICITST). IEEE, 202–207.

[20] Stanley Wasserman and Katherine Faust. 1994. Social network analysis: Methods

and applications. (1994).

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1817

https://doi.org/10.1109/ISNCC55209.2022.9851770
https://doi.org/10.1109/ISNCC55209.2022.9851770
https://doi.org/10.1109/IHMSC.2019.00055
https://doi.org/10.1613/jair.1.13685
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf

	Abstract
	1 Introduction
	2 Transit Obfuscation Problem
	3 (k, , m)-Anonymity
	3.1 Definitions of (k, , m)-Anonymity
	3.2 Properties of (k, , m)-Anonymity

	4 PbP: Partitioning-based Planner for (k,,)-Anonymity
	4.1 Objectives
	4.2 Pbp: Partitioning-based Planner
	4.3 WRP With Targets (WRPT)
	4.4 Searching for a Partitioning

	5 Planners for m-bounded (k,l,m)-Anonymity
	6 Experiments
	6.1 Evaluation of Pbp with m =
	6.2 Evaluation with bounded m

	7 Related Work
	8 Conclusion
	References

