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ABSTRACT
Online advertising stands as a significant revenue source of the

Internet. Recently, the trend among advertisers tilting towards the

use of auto-bidding tools has heralded the emergence of a new

model of bidders operating with constraints related to return on

investment (ROI). However, most of the current research on ROI-

constrained bidders in auction design only focuses on either the

ROI constraints or values of bidders being private, while it is more

practical to keep them both private in reality. Designing a truthful

mechanism for bidders with both private values and ROI constraints

introduces complexities because of the characteristics of designing

mechanisms with multiple parameters. To remedy this, we divide

bidders into binary classes: the traditional utility maximizers (UMs)

who can be viewed as having an ROI constraint of 1, and the ROI-
constrained bidders (RBs) who share a fixed ROI constraint denoted

as 𝛾 . This framework retains the essence of multi-parameter mech-

anism design but transitions this into a more tractable form. Then

we introduce a novel auction mechanism, cleverly combining the

conventional VCG mechanism and an existing mechanism for pub-

lic ROI-constrained bidders which is called Cavallo’s mechanism.

Our mechanism can achieve an approximation ratio of
3

2
on social

welfare. Additionally, we unearth new insights into the limitations

posed by ROI constraints. When the ROI constraint 𝛾 exceeds 2,

the lower bound of social welfare is
5

4
; when it falls below 2, the

lower bound becomes
3+𝛾

2+3𝛾−𝛾2
.
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1 INTRODUCTION
Online advertising auctions constitute a significant source of in-

come for numerous tech companies, bringing in hundreds of bil-

lions of dollars each year. Recently, as daily ad auctions number

in the tens of millions, happening in real-time, this vast and in-

tricate marketplace has driven contemporary online advertising

platforms to create auto-bidding services. These services allow ad-

vertisers to set broad marketing objectives for their campaigns

and then automatically place bids on their behalf. In such auto-

bidding setups, financial limitations of advertisers, such as budget

or return on investment (ROI), have become key factors in auction

design, and the traditional model of utility maximizers in game

theory can not fit them very well. While auctions for bidders with

budget limits have been extensively studied for more than two

decades [3, 10, 14, 21, 27, 30], research on ROI-constrained bidders

has only recently gained significant attention [6, 17, 18, 22–24].

The ROI constraints demand that the payment can not exceed a

certain portion of the advertising value gained. Simply put, an ROI-

constrained bidder aims for a specific minimum proportion between

the value gained and the payment. This is distinct from budget con-

straints that set a fixed upper limit on payment. ROI constraints

impose a payment ceiling that is proportionally linked to the value

allocated. Empirical studies have shown that ROI constraints more

accurately mirror real-world scenarios compared to budget con-

straints [2, 18], and the analysis of bidding strategies [17, 31, 32]

and auction mechanism design [6, 11, 34] under ROI constraints

have also been proposed.

However, most existing research on mechanism design primar-

ily focuses on either value or ROI being private, while it is more

practical for them both to be private in reality. It has been widely

accepted in literature that the advertisers’ values are private. The

ROI constraints, symbolizing the minimum return on investment

advertisers aim for, are shaped by their internal assessments in con-

trast with other marketing channels or their internal accounting,

which makes these ratios remain undisclosed from the seller’s view-

point [6, 24]. Both value and ROI remaining private pose a challenge
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of multi-parameter mechanism design, historically recognized as a

difficult problem in game theory [29].

To overcome the difficulty and offer insights for realistic appli-

cations, we simplify this model by examining binary ROI scenarios

involving two distinct classes of bidders: the traditional utility max-
imizers (UMs) who can be viewed as having an ROI constraint of

1 (we will discuss this later) and the ROI-constrained bidders (RBs)
who share a fixed ROI constraint denoted as 𝛾 . This adaptation,

while preserving the essence of multi-parameter mechanism design,

transforms the problem into a tractable problem. Intuitively, this

adaption simplifies the misreporting space from a two-dimensional

plane into two one-dimensional lines, thus reducing the complexity

of multi-parameter mechanism design.

Based on this idea, we propose truthful and efficient mechanisms

in this work. To warm up, we first consider the setting with public

class information and propose a mechanism for BINary bidders

with Public classes (BIN-Pub) and private values. BIN-Pub ranks

advertisers by their bids and charges UMs using the Vickrey-Clarke-

Grove (VCG) mechanism [12, 19, 33] and RBs via the mechanism

proposed in [11], which we call Cavallo’s mechanism. However, for

private classes, we show that BIN-Pub may be “unfair” for RBs to

some extent. Thus, we introduce a mechanism for BINary bidders

with Private classes (BIN-Pri) and private values. Its core rationale is

to compute the payment for each slot as the greater of the payment

in VCG or Cavallo’s mechanism, rather than pricing based on the

class of the bidder itself. BIN-Pri first allocates RBs according to

their values and subsequently identifies the position that maximizes

the utilities for UMs. We show that this mechanism is truthful and

ensures that the approximation ratio for social welfare is capped at

a maximum of
3

2
. Particularly, we find that, when the ROI constraint

𝛾 exceeds 2, the lower bound of the ratio is
5

4
, while when it is less

than 2, the lower bound becomes
3+𝛾

2+3𝛾−𝛾2
.

The contributions of our study are threefold:

(1) In practice, it is more practical for bidders when both values

and ROI constraints are private. In contrast to most existing studies

where only value or ROI is private, wemake one of the first attempts

at mechanism design wherein both value and ROI remain private.

(2) We propose a novel mechanism for two classes of bidders

with ROI constraints, named BIN-Pri, which guarantees economic

properties and provides some interesting findings. BIN-Pri indicates

that truthful mechanisms could give preference to bidders who

have high ROI constraints, allocating them higher positions even

when their bids are smaller than those from bidders with low ROI

constraints.

(3) We established a lower bound in this both-private scenario,

demonstrating that it is impossible to achieve social welfare with

a better approximation ratio, let alone reach the optimal solution.

This result advances the understanding of mechanism design for

ROI-constrained bidders.

2 RELATEDWORK
Two primary threads dominate the discussion regarding auction

design with ROI-constrained bidders. The initial thread examines

the impact of ROI constraints of bidding strategies in classical

VCG or generalized second price (GSP) auctions [1, 4, 9, 17, 20,

31, 32]. The second thread, which our study aligns with, explores

the design of auction mechanisms for ROI-constrained bidders [6,

8, 11, 17, 18, 22–25, 28, 34, 36]. Among these studies, Golrezaei

et al. [18] empirically demonstrated that, in online advertising, a

portion of bidders are indeed bound by ROI constraints. The existing

studies on ROI in mechanism design can be divided into two distinct

categories, namely ex ante ROI constraints [6, 18] and ex post ROI
constraints [7, 13, 25]. Ex ante ROI constraints mandate that the

ROI must be met on an expected basis, denoting the expected ROI

based on the prior value distributions of bidders, while ex post ROI

constraints offer a hard ROI constraint for advertisers across all

potential value realizations. Intuitively, ex ante ROI constraints fit

the advertisers who have adequate budgets and participate in a

large number of auctions in a day, while ex post ROI constraints

fit the advertisers who have limited budgets and get few clicks

per day [25]. In this work, we follow the thread of ex post ROI

constraints.

In the thread of studies on ex post ROI constraints in mechanism

design, Cavallo et al. [11] first started the research by introducing

the utility function of the RB model as used in our work and propos-

ing a truthful mechanism, which we call Cavallo’s mechanism in

our study with the associated payment rules. Lv et al. [25] further
conducted a study on revenue-maximizing mechanism design for a

single bidder with their RB model. The authors of [22] and [36] con-

sidered multi-round ROI constraints and proposed corresponding

conditions for truthful mechanisms. These studies take either the

values or the ROI constraints as private, whereas our study places

emphasis on the scenario where both values and ROI constraints

are kept private.

In a series of studies concerning ROI [16, 26, 34, 35], the concept

of value maximizer (VM), which only maintains the value term in

the utility function, to some extent, can be viewed as a particular

instance of a large ROI constraint scenario. Wilkens et al. [35]
showed that when an advertiser’s ROI is relatively high (exceeding

2 or 3), their behavioral pattern tends to closely mirror what is

observed in the VM model. Based on this model, the work in [26]

introduced a truthful mechanism for scenarios where UMs and

VMs coexist and achieved a nearly tight approximation ratio on

social welfare. Their study can be viewed as a special case of ours,

where we adopt a more generalized model of RBs and provide a

corresponding truthful and efficient mechanism.

Another closely relevant work to our research is [24], which

also studied the multi-parameters private settings and developed

approximately revenue-maximizing auction mechanisms within

the context of budget and ROI constraints. They explored both fully

and partially private settings regarding agent information, demon-

strating constant approximation mechanisms for different agent

demands and improved approximation ratios when only agents’ tar-

get bars are private. However, there are significant distinctions be-

tween their work and ours. They concentrated on value maximizers

and revenue maximization, while we focused on (ROI-constrained)

utility maximizers and the optimization of social welfare.

3 PRELIMINARIES
We adopt a standard advertising auction model with 𝐾 ad slots

(or interchangeably, positions), labeled as 𝑘 ∈ {1, 2, ..., 𝐾}, from
bottom to up. Each slot 𝑘 is associated with a click-through rate
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(CTR) denoted as 𝑥𝑘 . It is assumed that 𝑥𝐾 ≥ 𝑥𝐾−1 ≥ ... ≥ 𝑥1 > 0.

Moreover, we introduce a virtual slot denoted as 𝑘 = 0 with 𝑥0 = 0,

representing a slot even lower than the lowest slot. We consider a

group of bidders represented as N = {1, 2, ..., 𝑛}, labeled by 𝑖 , and

every individual bidder possesses a private value 𝑡𝑖 for a click. We

assume for simplicity that 𝑛 > 𝐾 without affecting the generality

of our model. Within the auction mechanism defined as 𝑀 , the

allocation outcome is represented as Π = {𝜋0, 𝜋1, 𝜋2, ..., 𝜋𝐾 }, where
𝜋𝑘 denotes the bidder allocated to the 𝑘th advertising slot. We also

introduce the notation 𝑎𝑖 to represent the slot index assigned to

bidder 𝑖 , i.e., 𝑎𝑖 = 𝑘 if 𝜋𝑘 = 𝑖 . Subsequently, a payment 𝑝𝑖 is in-

curred by each bidder 𝑖 per click. In our study, we differentiate

between two advertiser classes: the conventional utility maximiz-
ers (UMs) and ROI-constrained bidders (RBs) bound by a return on

investment (ROI) constraint, represented as 𝛾 . Here, 𝛾 denotes the

value-to-payment ratio, signifying that for each auction outcome,

the inequality
𝑡𝑖
𝑝𝑖
≥ 𝛾 must be strictly satisfied, and we assume

1 < 𝛾 < +∞ in this work. We consider 𝛾 as a shared constant for

all ROI-constrained bidders, but the classes of all bidders are pri-

vate, which maintains the essence of a multi-parameter mechanism

design problem. We adopt the ex post ROI constraints, ensuring
that the auction outcomes meet ROI requirements for any value

profile, thus providing a more stringent guarantee compared to

ex ante constraints as mentioned in the preceding section. Given

these premises, the utility for an ROI-constrained bidder 𝑖 can be

expressed as:

𝑢𝑖 =

{
𝑡𝑖𝑥𝑎𝑖 − 𝑝𝑖𝑥𝑎𝑖 if

𝑡𝑖
𝑝𝑖
≥ 𝛾

−∞ otherwise.

We can further define

𝑣𝑖 =
𝑡𝑖

𝛾
,

representing the maximum willingness-to-pay of bidder 𝑖 per click.

To circumvent ambiguity, we utilize the notations value for 𝑣𝑖 and
click revenue for 𝑡𝑖 . For coherence, we also provide a definition for

the value of each utility maximizer 𝑣𝑖 = 𝑡𝑖 . Next, following the

definitions and annotations in [11] and [26], we provide formal

descriptions for UMs and RBs:

Definition 1 (Utility Maximizer, UM). A utility maximizer 𝑖
strategizes to maximize her utility 𝑢𝑖 = 𝑣𝑖𝑥𝑎𝑖 − 𝑝𝑖𝑥𝑎𝑖 .

Definition 2 (ROI-Constrained Bidder, RB). AnROI-constrained
bidder 𝑖 strategizes to maximize her utility

𝑢𝑖 =

{
𝛾𝑣𝑖𝑥𝑎𝑖 − 𝑝𝑖𝑥𝑎𝑖 if 𝑣𝑖 ≥ 𝑝𝑖
−∞ otherwise. (1)

One can learn from the definitions above that the models of

UM and RB converge when 𝛾 = 1. For ease of presentation, we

assume 𝑣𝑖 ≠ 𝑣 𝑗 for each pair of bidders 𝑖 and 𝑗 .1 Similar to the

terms used in [26], we employ 𝜏𝑖 ∈ {𝑈𝑀, 𝑅𝐵} to express the class of
bidder 𝑖 and 𝜃𝑖 = (𝑣𝑖 , 𝜏𝑖 ) as her type. We presume that a bidder may

misreport both her value and class, which means she may report

her type as
ˆ𝜃𝑖 = {𝑣𝑖 , 𝜏𝑖 } with 𝑣𝑖 ≠ 𝑣𝑖 and/or 𝜏𝑖 ≠ 𝜏𝑖 . Moreover, 𝜃

1
When 𝑣𝑖 = 𝑣𝑗 , we choose one bidder following the lexicographic order of their

non-manipulable unique IDs, and then subtract a sufficiently small positive number 𝜖

from her value, making their values distinct and ordered (in cases with more than two

bidders having identical values, we can do this similarly). Additionally, 𝜖 should be

small enough such that, the allocation will not change by further decreasing it.

signifies the type profiles of all bidders, with 𝜃−𝑖 representing that

of all bidders excluding 𝑖 . Using these notations, 𝑝𝑖 ( ˆ𝜃𝑖 , ˆ𝜃−𝑖 ) and
𝑢𝑖 ( ˆ𝜃𝑖 |𝜃𝑖 , 𝜃−𝑖 ) represent the payment and utility of bidder 𝑖 when

reporting her type as
ˆ𝜃𝑖 , respectively, given her type 𝜃𝑖 and the

type profile of others 𝜃−𝑖 .
Following the classic research on advertising auction mecha-

nisms, there are two primary requirements for mechanism design:

incentive compatibility (IC) and individual rationality (IR).

Definition 3 (Incentive Compatibility, IC). A mechanism is
incentive-compatible if and only if

𝑢𝑖 (𝜃𝑖 |𝜃𝑖 , 𝜃−𝑖 ) ≥ 𝑢𝑖 ( ˆ𝜃𝑖 |𝜃𝑖 , 𝜃−𝑖 ), ∀𝜃𝑖 , ˆ𝜃𝑖 , 𝜃−𝑖 , 𝑖 ∈ N .

Definition 4 (Individual Rationality, IR). A mechanism is
individually rational if and only if

𝑝𝑖 (𝜃𝑖 , 𝜃−𝑖 ) ≤ 𝑣𝑖 , ∀𝜃𝑖 , 𝜃−𝑖 , 𝑖 ∈ N .

In other words, IC ensures that no bidder in the mechanism will

have an incentive to misreport her type, while IR guarantees that

no bidder will ever have a negative utility when bidding truthfully.

Note that IR implies 𝑣𝑖 ≥ 𝑝𝑖 for an RB 𝑖 , which means that we can

simplify (1) as 𝑢𝑖 = 𝛾𝑣𝑖𝑥𝑎𝑖 − 𝑝𝑖𝑥𝑎𝑖 under the IR requirement. We

refer to a mechanism as being both IC and IR by the word “truthful”.

It is widely recognized that the VCGmechanism is truthful for UMs.

Additionally, recent research [11] has shown that the following

mechanism is truthful for RBs with an ROI constraint of 𝛾 , which

we call the Cavallo’s mechanism in our work:

Mechanism 1 (Cavallo’s mechanism).

• Allocation: In accordance with the order of bidders’ values,
slots are allotted from the highest to the lowest.
• Payment: For every bidder labeled as 𝑖 , where 1 ≤ 𝑎𝑖 ≤ 𝐾 , con-
sider 𝑗 to be the bidder allocated the closest slot below, i.e., 𝑎 𝑗 =

𝑎𝑖−1, and the payment is𝑝𝑖 = min

{
𝑣 𝑗 ,

1

𝑥𝑎𝑖

(
𝑝 𝑗𝑥𝑎 𝑗 + 𝛾𝑣 𝑗 (𝑥𝑎𝑖 − 𝑥𝑎 𝑗 )

)}
.

One can observe that the payment of Cavallo’s mechanism con-

stitutes a recursive term, wherein the subsequent term 𝑝𝑖 is contin-

gent upon its antecedent term 𝑝 𝑗 , and this dependency continues

iteratively through a chain of terms.

In this study, we aim to design an efficient mechanism, i.e., to
maximize the total social welfare of a truthful auction for the setting

where both UMs and RBs have private classes and values. It is

noteworthy that the traditional definition of social welfare, which is

an aggregate of the utilities of all bidders combined with the seller’s

revenue (equivalent to summing up the click revenues obtained by

all bidders), does not align well with the nature of RBs. We highlight

that the utility function of bidders should be scale-free, that is, the

expressions 𝑢𝑖 = 𝛾𝑣𝑖𝑥𝑎𝑖 − 𝑝𝑖𝑥𝑎𝑖 and 𝑢𝑖 = 𝑣𝑖𝑥𝑎𝑖 − 1

𝛾 𝑝𝑖𝑥𝑎𝑖 should

be mathematically equivalent, because they indicate the identical

preference of the bidder. However, when optimizing the traditional

concept of social welfare, these two expressions of utility functions

are no longer equivalent. Therefore, building upon prior research

in mechanism design tailored for budget-constrained bidders, we

introduce the concept of liquid social welfare (LSW)
2
[13, 15, 26] to

maintain the scale-free property.

2
Here, “liquid” means “transferable money” in the auction.
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Definition 5 (Liqid Social Welfare, LSW). In a mechanism,
the liquid social welfare of an allocation result Π is defined as the
total of the highest bids that all bidders are willing to pay for the
allocation. In other words,

𝑊𝑒𝑙 (Π) =
𝐾∑︁
𝑘=1

𝑣𝜋𝑘𝑥𝑘 .

By applying the definition of LSW, it becomes straightforward to

deduce that VCG achieves LSW optimality for UMs, while Cavallo’s

mechanism attains this optimality for RBs. Consequently, in the

development of an LSW-optimal mechanism for binary bidders, a

key requisite is consistency, which means, in special cases, it can be

deduced to classical mechanisms. This implies that the mechanism

should naturally evolve as an extension of existing mechanisms:

Definition 6 (Consistency). A mechanism ensures consistency
if its outcome aligns with that of the VCG mechanism when all are
UMs, and it mirrors Cavallo’s mechanism when all are RBs.

An ideal auction mechanism is supposed to be IC, IR, consistent,

and LSW-optimal. Given our emphasis on truthful mechanisms in

this research, we treat 𝜃𝑖 and ˆ𝜃𝑖 as equivalent in instances devoid

of ambiguity.

4 MECHANISM FOR BINARY BIDDERS WITH
PUBLIC CLASSES

In this section, as a warm-up, we consider a fundamental scenario

where the class information of bidders is public to all bidders and

the auctioneer. This scenario falls under the umbrella of single-

parameter mechanism design [29], which, in this case, simplifies

the problem while providing insights for our subsequent multi-

parameter mechanism design problem. The proposed mechanism

for BINary bidders with Public classes is referred to as BIN-Pub.

As shown in Algorithm 1, BIN-Pub sorts all bidders by their

respective values (Line 3). The top 𝐾 bidders are grouped into a set

𝑁 , with the (𝐾 + 1)st bidder assigned to a virtual slot, labeled by 0,

for pricing purposes (Line 4). Following this, BIN-Pub sequentially

fills the slots using the sorted bidders (Lines 5-6). The algorithm

then deduces the payments for each slot utilizing the VCG and

Cavallo’s mechanism separately (Lines 7-8). The final payment is

calculated based on the class of each bidder (Lines 9-13).

Next, we prove BIN-Pub is IC, IR, consistent, and LSW-optimal.

Due to space limitations, the proof is omitted and will be included

in the full version of the paper.

Theorem 1. If the classes of bidders are public, BIN-Pub is IC, IR,
consistent, and LSW-optimal.

5 MECHANISM FOR BINARY BIDDERS WITH
PRIVATE CLASSES

In the previous section, we studied an optimal mechanism for UMs

and RBs when their classes are public. However, the situation shifts

when such class information is kept private, steering the problem

into the realm of multi-parameter mechanism design—a domain

known for its complexity [29]. We first scrutinize the viability of

BIN-Pub in a setting where class information is private. We can

observe that the payment heavily relies on the class of bidders.

Algorithm 1: BIN-Pub
Input: All bidders’ type profile 𝜃 , the CTR 𝑥𝑘 for each slot,

and the ROI constraint 𝛾 .

Output: The allocation and payment outcome.

1 𝑝𝑖 ← 0,∀𝑖 ∈ {1, ..., 𝑛};
2 𝑝
(0)
𝑈𝑀

, 𝑝
(0)
𝑅𝐵
← 0, and 𝑥0 ← 0;

3 Order bidders based on their values;

4 Define 𝑁 as the group of the highest 𝐾 bidders according to

their values, and let 𝜋0 represent the bidder with the

(𝐾 + 1)th highest value;

5 for 𝑘 from 1 to |𝑁 | do
6 𝜋𝑘 ← the bidder with the 𝑘th lowest value in 𝑁 ;

7 𝑝
(𝑘 )
𝑈𝑀

= 1

𝑥𝑘

(
𝑝
(𝑘−1)
𝑈𝑀

𝑥𝑘−1
+ 𝑣𝜋𝑘−1

(𝑥𝑘 − 𝑥𝑘−1
)
)
;

8 𝑝
(𝑘 )
𝑅𝐵

= min

{
𝑣𝜋𝑘−1

, 1

𝑥𝑘

(
𝑝
(𝑘−1)
𝑅𝐵

𝑥𝑘−1
+ 𝛾𝑣𝜋𝑘−1

(𝑥𝑘 − 𝑥𝑘−1
)
)}
;

9 for 𝑘 from 1 to |𝑁 | do
10 if 𝜋𝑘 is a UM then
11 𝑝𝜋𝑘 ← 𝑝

(𝑘 )
𝑈𝑀

;

12 else
13 𝑝𝜋𝑘 ← 𝑝

(𝑘 )
𝑅𝐵

;

14 Return 𝜋𝑘 and 𝑝𝜋𝑘 for each bidder.

Therefore, one can verify that, if an RB misreports her class as a

UM but reports her value truthfully, she could potentially bene-

fit from a reduced payment, without altering her allocation. This

highlights an inherent bias in BIN-Pub against RBs, and such a

bias increases the opportunity for strategic manipulation when

their classes are private. Following our previous discussion, in the

context of private classes, the payment should be independent of

her class. This implies that the payment for a bidder, be it from the

UM or RB class, should be invariant if she secures a specific slot,

assuming other allocation parameters remain consistent. To this

end, we introduce a nuanced payment rule that is anchored more

to the slot than to the individual bidder. This rule melds compo-

nents from both VCG and Cavallo’s mechanism frameworks and

is influenced by the classes and values of the bidders positioned

below the slot. Consequently, we posit that payment at the slot

should be the greater of two elements: 1) the VCG-style payment,
originating from the closest lower UM; 2) the Cavallo-style payment,
originating from the closest lower RB. To expound, for any slot

indexed by 𝑘 ≥ 1, if 𝑖𝑅 represents the closest RB below 𝑘 at position

𝑘𝑅 , and 𝑖𝑈 represents the closest UM below 𝑘 at position 𝑘𝑈 , then

the payment at slot 𝑘 can be formulated as:

𝑝 (𝑘 ) = max

{
𝑝
(𝑘 )
𝑈

, 𝑝
(𝑘 )
𝑅

}
, (2)

where

𝑝
(𝑘 )
𝑈

=
1

𝑥𝑘

(
𝑝 (𝑘𝑈 )𝑥𝑘𝑈 + 𝑣𝑖𝑈 (𝑥𝑘 − 𝑥𝑘𝑈 )

)
, (3)

and

𝑝
(𝑘 )
𝑅

= min

{
𝑣𝑖𝑅 ,

1

𝑥𝑘

(
𝑝 (𝑘𝑅 )𝑥𝑘𝑅 + 𝛾𝑣𝑖𝑅 (𝑥𝑘 − 𝑥𝑘𝑅 )

)}
. (4)
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Algorithm 2: BIN-Pri
Input: The type profile 𝜃 of all bidders, the CTR 𝑥𝑘 for all

slots, the ROI constraint 𝛾 .

Output: The allocation and payment outcome.

1 𝑝𝑖 ← 0,∀𝑖 ∈ {1, ..., 𝑛}, 𝑝 (0) ← 0 and 𝑥0 ← 0;

2 Order bidders based on their values, and define 𝑁 as the set

of top 𝐾 bidders;

3 Set 𝑖 as (𝐾 + 1)st highest bidder, and 𝜋0 ← 𝑖;

4 Define 𝑆 as the set of all UMs in 𝑁 and 𝑇 as all RBs in 𝑁 ;

// Slot Allocation to RBs in 𝑇.

5 if 𝑇 is non-empty then
6 for 𝑘 = 1 to |𝑇 | do
7 𝜋𝑘 ← RB with 𝑘th lowest value from 𝑇 ;

8 Update payment 𝑝 (𝑘 ) for slots 1 ≤ 𝑘 ≤ |𝑇 | + 1 using (2);

// Iterative Slot Allocation to UMs.

9 while 𝑆 is non-empty do
10 Select 𝑖 with the lowest value in 𝑆 ;

11 Set
¯𝑘 ← 𝐾 − |𝑆 | + 1;

12 Find 𝑘𝑖 to maximize 𝑥𝑘𝑖 (𝑣𝑖 − 𝑝 (𝑘
𝑖 ) ) for 1 ≤ 𝑘𝑖 ≤ ¯𝑘 ;

13 if 𝑘𝑖 ≠ ¯𝑘 then
14 // Shift existing bidders by one slot up.

for 𝑘 = ¯𝑘 to 𝑘𝑖 + 1 descending do
15 𝜋𝑘 ← 𝜋𝑘−1

;

16 Assign 𝜋𝑘𝑖 ← 𝑖;

17 Update 𝑝 (𝑘 ) for slots 𝑘𝑖 + 1 ≤ 𝑘 ≤ ¯𝑘 + 1 using (2);

18 Remove 𝑖 from 𝑆 ;

19 Set payment for each slot: 𝑝𝜋𝑘 ← 𝑝 (𝑘 ) where 𝑘 ∈ {1, ..., 𝐾};
20 Return 𝜋𝑘 and 𝑝𝑖 for each slot 𝑘 and bidder 𝑖 .

Here, we use 𝑝 (𝑘 ) to represent the (interim) payment at slot 𝑘 . In

the absence of an RB or UM below slot 𝑘 , we designate a payment

of 0 for that corresponding term in (2).

In light of this payment rule and inspired by [26], we propose

our mechanism for BINary bidders with Private classes as BIN-Pri.

Algorithm 2 specifies BIN-Pri in detail. At its heart, BIN-Pri first

allocates slots to all RBs and then, iteratively, allocates UMs to the

slots that optimize their utilities. Within Algorithm 2, the bidders

with top 𝐾 values are represented as a set 𝑁 (Line 2). A virtual

slot, denoted as 0, is assigned to the bidder ranking (𝐾 + 1)st in
value, as the baseline for pricing (Line 3). Here, 𝑆 represents the

set of all UMs in 𝑁 , while 𝑇 corresponds to the set of all RBs (Line

4). Sequentially, the lowest |𝑇 | slots (excluding the virtual slot) are

occupied by the RBs in 𝑇 (Lines 5-7). After these allocations, the

payment for each slot, ranging from 1 to |𝑇 | + 1, is determined

using (2), based on the allocated RBs (Line 8). Given that UMs

in 𝑆 have not been allocated slots at this step, the variable 𝑝
(𝑘 )
𝑈

defaults to 0, simplifying the price determination. Subsequent to

this price calculation, the unallocated UM with the lowest value is

represented by 𝑖 , and an optimal slot 𝑘𝑖 is identified for her, that

is, the slot with the highest utility; if there is a tie, the lower slot

is preferred (Lines 10-12). Crucially, there exist two potential slot

options: 1) 𝑘𝑖 = ¯𝑘 = 𝐾 − |𝑆 | + 1, indicating the slot just above the

Bidder Class Value

A RB 3

B RB 4

C RB 5

D UM 6

E UM 7 

0.3

0.2

0.1

0

0.4

CTR

3

2

1

0

4

Slot

Figure 1: The illustration of four slots with their CTRs, and
five bidders with their classes and values in Example 1.

previously assigned bidders (with 𝐾 being the sum of the sizes of𝑇

and 𝑆 initially, and 𝑆 gets updated as the set of all remaining UMs);

and 2) 𝑘𝑖 < ¯𝑘 , indicating an already occupied slot. In the former

scenario, bidder 𝑖 is immediately allocated slot 𝑘𝑖 . In the latter, all

bidders located at slot 𝑘𝑖 or above are moved up a slot to make

room for bidder 𝑖 (Lines 13-16). Prices of slots ranking above 𝑘𝑖

are then revised based on the value of the newly placed UM (Line

17). Once this is done, UM 𝑖 is removed from set 𝑆 , and this entire

process repeats until all UMs in 𝑆 secure a slot (Line 18). In the end,

if a bidder is allocated to slot 𝑘 , her pay-per-click is defined as the

price of the slot; if not, she incurs no charge (Line 19).

To elucidate the idea of BIN-Pri, we now provide an example.

Notably, it is quite intriguing to observe from the example that, RBs

with lower values, might be allocated to higher slots in comparison

to UMs that have higher values.

Example 1. Consider a scenario with four slots and five bidders,
with their CTRs or types illustrated in Fig. 1. We set 𝛾 = 1.2 in this
example. In BIN-Pri, we initially position bidder A, who has the fifth
highest value, in the virtual slot 0. Subsequently, the RBs B and C
occupy slots 1 and 2. This allocation leads to the payment for slots 1, 2,
and 3 as 𝑝 (1) = 3, 𝑝 (2) = 3.9, and 𝑝 (3) = 4.6, respectively. Given these
prices, the utilities for bidder D at each slot are computed as 0.3, 0.42,
and 0.42 for slots 1, 2, and 3. Slot 2, yielding the maximum utility, is
assigned to bidder D, moving bidder C to slot 3. Using (2), the updated
prices for slots 3 and 4 are calculated as 𝑝 (3) = 4.6 and 𝑝 (4) = 4.95.
Subsequently, bidder E’s utilities at each slot are determined to be 0.4,
0.62, 0.72, and 0.82 for slots 1, 2, 3, and 4, hence, slot 4 is allocated
to bidder E. The bidders’ payments per click are determined by the
respective prices of their assigned slots.

5.1 Game Theoretical Properties
Prior to delving into the game-theoretical aspects of BIN-Pri, we

introduce the concept ofmarginal payment increase [5] as it applies
to a pair of ad slots. This notion measures the cost-benefit trade-off

a bidder encounters when vying for a higher slot. Using this foun-

dational concept, we introduce a series of lemmas that shed light on

the core tenets governing BIN-Pri. These lemmas are instrumental

in substantiating the proofs for IC and IR. Due to space constraints,

we have omitted some proofs.
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Definition 7. For two slots 𝑘 > 𝑘′, the marginal payment in-
crease is defined as

Δ(𝑘′, 𝑘) ≜
𝑝𝜋𝑘𝑥𝑘 − 𝑝𝜋𝑘′𝑥𝑘 ′

𝑥𝑘 − 𝑥𝑘 ′
.

Lemma 1. At the round after allocating a UM 𝑖 to slot 𝑎𝑖 = 𝑘 , it

follows that 𝑝
(𝑘+1)𝑥𝑘+1−𝑝 (𝑘 )𝑥𝑘

𝑥𝑘+1−𝑥𝑘 = 𝑣𝑖 .

Lemma 2. For two bidders 𝑖 and 𝑗 , if 𝑣𝑖 > 𝑣 𝑗 and 𝜏𝑖 = 𝜏 𝑗 , i.e., they
are both UMs or both RBs, then we have 𝑎𝑖 > 𝑎 𝑗 .

Corollary 1. After allocating a UM 𝑖 to a slot 𝑘 , the allocations
and payments of slot 𝑘 and below will not change throughout the
algorithm process.

This corollary can be derived from Lemma 2, that is, when a UM 𝑖

is allocated to position 𝑘 , the next UMwith higher values than 𝑖 will

definitely be at a higher position than 𝑘 , so the prices at position

𝑘 and below remain unchanged after the round of allocating 𝑖 .

Henceforth, in the following discussion, we will not distinguish

between the notations of 𝑝 (𝑘 ) and 𝑝𝜋𝑘 when there is no ambiguity.

For notation simplicity, we use 𝑝 (𝑘 ) to denote the final price of slot
𝑘 after the entire algorithm process if it is not specified.

Lemma 3. For two bidders 𝑖 and 𝑗 , if bidder 𝑖 is an RB and 𝑗 is a
UM, and 𝑎𝑖 < 𝑎 𝑗 , then we have 𝑣𝑖 < 𝑣 𝑗 .

Lemma 4. If a UM 𝑖 is allocated a slot 𝑎𝑖 = 𝑘 , then we have
Δ(𝑘, 𝑘∗) ≥ 𝑣𝑖 ,∀𝑘∗ > 𝑘.

Lemma 5. For two bidders 𝑖 and 𝑗 , if bidder 𝑖 is an RB and 𝑗 is a
UM, and 𝑎𝑖 > 𝑎 𝑗 , then we have 𝛾𝑣𝑖 ≥ 𝑣 𝑗 .

Proof. Through Lemma 2, we only need to examine the proof

for the bidder 𝑖 nearest to 𝑗 . We denote the closest UM below 𝑗 as

𝑗 . Given the allocation rule of BIN-Pri, when selecting an optimal

slot for bidder 𝑗 , slot 𝑎 𝑗 emerges as the one offering maximal utility,

resulting in

𝑝 (𝑎𝑖 )𝑥𝑎𝑖 ≥ 𝑝 (𝑎 𝑗 )𝑥𝑎 𝑗 + 𝑣 𝑗 (𝑥𝑎𝑖 − 𝑥𝑎 𝑗 ) (5)

From here, we can outline two potential cases of the payment 𝑝 (𝑎𝑖 )

in the round of allocating 𝑗 .

Case 1: If 𝑝 (𝑎𝑖 ) comes from (4), combining with (5), we can

deduce 𝛾𝑣𝑖 ≥ 𝑣 𝑗 .
Case 2: If 𝑝 (𝑎𝑖 ) comes from (3), by Lemma 4, we obtain

𝑝 (𝑎 𝑗 )𝑥𝑎 𝑗 − 𝑝
(𝑎 𝑗 )𝑥𝑎 𝑗 ≥ 𝑣 𝑗 (𝑥𝑎 𝑗 − 𝑥𝑎 𝑗 ).

Combining with (5) and Lemma 2, we deduce

𝑝 (𝑎𝑖 )𝑥𝑎𝑖 ≥ 𝑝 (𝑎 𝑗 )𝑥𝑎 𝑗 + 𝑣 𝑗 (𝑥𝑎𝑖 − 𝑥𝑎 𝑗 )

≥ 𝑝 (𝑎 𝑗 )𝑥𝑎 𝑗 + 𝑣 𝑗 (𝑥𝑎𝑖 − 𝑥𝑎 𝑗 ) + 𝑣 𝑗 (𝑥𝑎 𝑗 − 𝑥𝑎 𝑗 )

> 𝑝
(𝑎 𝑗 )𝑥𝑎 𝑗 + 𝑣 𝑗 (𝑥𝑎𝑖 − 𝑥𝑎 𝑗 ),

which means that 𝑝 (𝑎𝑖 ) can not come from (3). This leads to a

contradiction and completes the proof. □

Corollary 2. BIN-Pri is a consistent mechanism.

The BIN-Pri algorithm naturally gives rise to this corollary: when

all bidders are UMs, the outcome aligns with the VCG mechanism;

when all bidders are RBs, as per Lemma 2, the outcome corresponds

to Cavallo’s mechanism. This corollary reinforces BIN-Pri as a gen-

eralization of both the VCG and Cavallo’s mechanism, in alignment

with our theoretical anticipations.

Building on the preceding discussions, we are well-positioned

to conclude that BIN-Pri satisfies both IR and IC.

Theorem 2. BIN-Pri is individually rational.

Theorem 3. BIN-Pri is incentive-compatible.

Proof. We discuss the proof for UMs and RBs separately.

Case 1:We first consider a UM 𝑖 . Define 𝑗 and 𝑗 as the closest

UMs below and above bidder 𝑖 under truthful reporting, respectively

(in the absence of such UMs, we can introduce virtual UMs at slots

0 and 𝐾 + 1). We denote their slots in the truthful scenario as 𝑎 𝑗
and 𝑎 𝑗 . If bidder 𝑖 misreports her type, their allocated slots become

𝑎′
𝑗
and 𝑎′

𝑗
, respectively. We now examine the position of bidder 𝑖

when she misreports her type, denoted by 𝑎′
𝑖
and we classify the

scenario into three possibilities:

• 𝑎′
𝑖
lies between 𝑎′

𝑗
and 𝑎′

𝑗
;

• 𝑎′
𝑖
is positioned higher than 𝑎′

𝑗
;

• 𝑎′
𝑖
is positioned lower than 𝑎′

𝑗
.

For the first possibility, until bidder 𝑗 is allocated, the outcome

mirrors the truthful reporting scenario. Bidder 𝑖 would have the

choice between 𝑎𝑖 and 𝑎
′
𝑖
at the same price as in truthful reporting.

Since she has a preference for𝑎𝑖 , it can be deduced that misreporting

her type does not provide her with a more favorable outcome.

For the second possibility, by invoking Lemma 4, we observe

that the utility bidder 𝑖 derives at 𝑎′
𝑖
is always less or equivalent to

the utility at slot 𝑎′
𝑗
when she misreports her type as (𝑣 𝑗 − 𝜖,𝑈𝑀).

Here, 𝜖 is a sufficiently small positive number. Bidder 𝑖 displays a

preference for 𝑎𝑖 over the outcomes resulting from misreporting

(𝑣 𝑗 − 𝜖,𝑈𝑀), which falls into the first possibility.

For the third possibility, we define 𝑗 as the closest UM above 𝑎′
𝑖

in the untruthful scenario. The allocation for all slots below 𝑎′
𝑖
is

consistent with the truthful setting. We define 𝑎 𝑗 as the allocated

slot of 𝑗 when 𝑖 bids truthfully. If 𝑎 𝑗 does not equal 𝑎
′
𝑖
, then 𝑗

would have previously faced a choice between 𝑎′
𝑖
and 𝑎 𝑗 and shown

preference for 𝑎 𝑗 during its allocation round under 𝑖’s truthful

reporting. As 𝑣𝑖 > 𝑣 𝑗 , bidder 𝑖 would also prefer 𝑎 𝑗 and could

obtain it by misreporting as (𝑣 𝑗 − 𝜖,𝑈𝑀) with a sufficiently small

𝜖 . Leveraging Lemma 1, we deduce that bidder 𝑖 would prefer the

slot just above 𝑗 , denoted as 𝑎 𝑗 + 1. If 𝑗 > 𝑗 , this procedure can be

repeated iteratively until 𝑎 𝑗 + 1 > 𝑎′
𝑗
. Conclusively, as it can be

reduced to the first case, bidder 𝑖 consistently prefers 𝑎𝑖 .

Case 2: We now consider an RB 𝑖 . If 𝑖 is still assigned to the

same position through misreporting her types, and given that other

bidders are truthful, the utility will not change, and hence the bidder

has no incentive to do so. Therefore, we only need to consider that

𝑖 can attain either a higher or lower position 𝑘 by misreporting

her class or value. We use 𝑝 to denote the payment when bidding

untruthfully and 𝑎𝑖 to the allocated slot when bidding truthfully.

Then we categorize the situations into four possibilities.
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1). We assume that bidder 𝑖 gets to a higher position 𝑘 than her

truthful position by misreporting her type, and 𝑘 is only higher

than UMs above 𝑖 in truthful scenarios, but not than such RBs.

We assume that 𝑖∗ is the UM at 𝑘∗ that is closest to 𝑖 above when
bidding truthfully. We now prove that after 𝑖 reaches a position 𝑘

higher than 𝑖∗ through misreporting, the IR property is violated,

and hence 𝑖 has no incentives to do so. After 𝑖 misreporting her type,

UM 𝑖∗ might be allocated to 𝑘∗
′
. Because UMs always satisfy IR, we

can obtain 𝑣𝑖∗ ≥ 𝑝 (𝑘
∗′ )

. Through Lemma 4, we further deduce

𝑝 (𝑘 )𝑥𝑘 ≥ 𝑝 (𝑘
∗′ )𝑥𝑘∗′ + 𝑣𝑖∗ (𝑥𝑘 − 𝑥𝑘∗′ ) ≥ 𝑣𝑖∗𝑥𝑘 .

Combining with Lemma 3, we deduce 𝑝 (𝑘 ) ≥ 𝑣𝑖∗ > 𝑣𝑖 , which means

violating the IR requirement.

2). We assume that bidder 𝑖 gets to a higher position 𝑘 than her

truthful position by misreporting her type, and 𝑘 is higher than at

least an RB above 𝑖 in truthful scenarios.

If the payment at 𝑘 takes the former term of (4) in one step of

the chain of terms, it would contradict IR. Therefore, we only need

to consider the payment taking the latter term of (4) in every step

of the chain. Therefore, combining (2) and (4), we can obtain

𝑝 (𝑘 )𝑥𝑘 ≥ 𝑝 (𝑎𝑖 )𝑥𝑎𝑖 +𝛾𝑣𝜋𝑎𝑖+1 (𝑥𝑎𝑖+1 − 𝑥𝑎𝑖 ) + . . . +𝛾𝑣𝜋𝑘−1
(𝑥𝑘 − 𝑥𝑘−1

) .
We assume 𝑢𝑖 as the truthful utility and 𝑢𝑖,𝑘 as the utility when

bidding untruthfully. The utility difference is non-negative:

𝑢𝑖 − 𝑢𝑖,𝑘 = 𝛾𝑣𝑖𝑥𝑎𝑖 − 𝑝 (𝑎𝑖 )𝑥𝑎𝑖 − (𝛾𝑣𝑖𝑥𝑘 − 𝑝 (𝑘 )𝑥𝑘 )

= 𝛾𝑣𝑖 (𝑥𝑎𝑖 − 𝑥𝑘 ) + 𝑝 (𝑘 )𝑥𝑘 − 𝑝 (𝑎𝑖 )𝑥𝑎𝑖 ≥ 0.

Hence, misreporting her type does not increase the utility for 𝑖 .

3).We assume that bidder 𝑖 gets to a lower position 𝑘 than her

truthful position by misreporting her type, and 𝑘 is only lower than

RBs who are below 𝑖 when 𝑖 bids truthfully, but not than such UMs.

The new payment has two possibilities.

• We consider the scenario that the payment for 𝑖 is only from

(4), i.e., the recursive chain of calculating the payment only

uses the (4). No matter what she bids, the price at position

𝑘 remains the same. The price 𝑝 (𝑎𝑖 ) is derived from 𝑝 (𝑘 ) ,
leading to the following inequality:

𝑝 (𝑎𝑖 )𝑥𝑎𝑖 ≤ 𝑝 (𝑘 )𝑥𝑘 + 𝛾𝑣𝜋𝑘 (𝑥𝑘+1 − 𝑥𝑘 ) + . . .
+ 𝛾𝑣𝑖−1 (𝑥𝑎𝑖 − 𝑥𝑎𝑖−1

) .
From this, we represent 𝑢𝑖 as the utility when bidding truth-

fully and 𝑢𝑖,𝑘 as the utility when bidding untruthfully, then

the difference in these utilities becomes

𝑢𝑖 − 𝑢𝑖,𝑘 = 𝛾𝑣𝑖𝑥𝑎𝑖 − 𝑝 (𝑎𝑖 )𝑥𝑎𝑖 − (𝛾𝑣𝑖𝑥𝑘 − 𝑝 (𝑘 )𝑥𝑘 )

= 𝛾𝑣𝑖 (𝑥𝑎𝑖 − 𝑥𝑘 ) + 𝑝 (𝑘 )𝑥𝑘 − 𝑝 (𝑎𝑖 )𝑥𝑎𝑖 ≥ 0.

• We consider the senario that the payment for 𝑖 is not only

from (4). We assume an RB 𝑖 is allocated to the slot 𝑘 , which

is below 𝑎𝑖 , with the VCG-style payment from the UM 𝑖

allocated at
ˆ𝑘 (if such RB does not exist, it can be reduced to

the former possibility). From 𝑘 to 𝑎𝑖 , 𝑘 is the highest position

such that (3) is taken by the max function in (2), i.e., 𝑝 (𝑘 )𝑥
𝑘
=

𝑝 (
ˆ𝑘 )𝑥

ˆ𝑘
+ 𝑣𝑖 (𝑥𝑘 −𝑥 ˆ𝑘

), while others all take the term (4). From

the previous possibility, we can obtain that the utility of 𝑖 at

𝑘 is not as high as being truthful at position 𝑎𝑖 . Then we aim

2
�
1
�
0

CTR

2

1

0

Slot Bidder Class Value

A RB ϵ

B RB 2+ϵ

C UM or RB 4 or 1

Figure 2: The counter-example for 𝛾 ≥ 2 in Theorem 5.

to validate the inequality (𝛾𝑣𝑖 − 𝑝 (𝑘 ) )𝑥𝑘 ≥ (𝛾𝑣𝑖 − 𝑝
(𝑘 ) )𝑥𝑘 ,

which further translates to

𝑝 (𝑘 )𝑥𝑘 ≥ 𝑝 (
ˆ𝑘 )𝑥

ˆ𝑘
+ 𝑣𝑖 (𝑥𝑘 − 𝑥 ˆ𝑘

) + 𝛾𝑣𝑖 (𝑥𝑘 − 𝑥𝑘 ) .

Combining 𝑝 (𝑘 )𝑥𝑘 ≥ 𝑝 (
ˆ𝑘 )𝑥

ˆ𝑘
+ 𝑣𝑖 (𝑥𝑘 − 𝑥 ˆ𝑘

) and 𝛾𝑣𝑖 ≥ 𝑣𝑖
drawing upon Lemma 5, we can complete this proof.

4). We assume that bidder 𝑖 gets to a lower position 𝑘 than her

truthful position by misreporting her type, and 𝑘 is lower than at

least one UM who is below 𝑖 when 𝑖 bids truthfully.

Under truthful conditions, the closest UM advertiser 𝑗 lower than

bidder 𝑖 is located at position 𝑘 . As demonstrated in the proof of

Lemma 5, we have 𝛾𝑣𝑖 ≥ 𝑣 𝑗 . Consequently, when bidder 𝑖 misre-

ports her type and moves to position 𝑘 , her utility at that position

will surpass any position below 𝑘 . Moreover, through Lemma 1,

the utility at position 𝑘 is inferior to that of the position 𝑘 + 1. The

utility of the position 𝑘 + 1 is also less than what is realized under

truthful bidding, reducing our analysis to the last situation.

This concludes the proof. □

5.2 Approximation Ratio on LSW
We next show the upper and lower bounds on LSW, and again, we

refer the reader to our full version for detailed proof.

Theorem 4. BIN-Pri achieves an approximation ratio of no more
than 3

2
on LSW, i.e.,𝑊𝑒𝑙𝑜𝑢𝑟 ≥ 2

3
𝑊𝑒𝑙𝑂𝑃𝑇 , where𝑊𝑒𝑙𝑜𝑢𝑟 denotes the

LSW of our mechanism, and𝑊𝑒𝑙𝑂𝑃𝑇 =𝑚𝑎𝑥Π𝑊𝑒𝑙 (Π).

Theorem 5. No mechanism that is IC, IR, and consistent can
guarantee an approximation ratio on LSW which is lower than{

5

4
when 𝛾 ≥ 2

3+𝛾
2+3𝛾−𝛾2

when 1 < 𝛾 < 2.

Proof. To substantiate this theorem, we employ two counter-

examples.

When 𝛾 ≥ 2, we consider the situation presented in Fig. 2. We

provide two slots with CTRs of
2

𝛾 and
1

𝛾 , in addition to a virtual

slot with the CTR of 0. We focus on three bidders A, B, and C. The

respective types for A and B are defined as (𝜖, 𝑅𝐵) and (2 + 𝜖, 𝑅𝐵),
where 𝜖 is a sufficiently small positive number. We then examine

the type of bidder C across four distinct cases: Case 1: (4,𝑈𝑀);
Case 2: (4, 𝑅𝐵); Case 3: (1,𝑈𝑀); Case 4: (1, 𝑅𝐵) .We suppose that

the approximation ratio, denoted as 𝑅, on LSW in𝑀 is strictly below

5

4
, then the allocation outcomes must be as following:

• In Cases 1 and 2, bidders A, B, and C are allocated slots in

the order of 0, 1, and 2.
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• In Cases 3 and 4, bidders A, B, and C are allocated slots in

the order of 0, 2, and 1.

One can verify that the approximation ratio of any alternative

allocations unlike the above will be higher than 𝑅. For example, in

Cases 1 and 2, if bidders A, B, and C are allocated slots 0, 2, and 1,

respectively, the approximation ratio is
10+𝜖
8+2𝜖 which would be larger

than 𝑅 because we can always find an 𝜖 which is sufficiently small.

From earlier discussions, it is evident that the payments for

bidder C in both Case 1 and Case 2 should be equal, and we denote
this as 𝑝ℎ . Otherwise, C maymisreport her class. A similar assertion

can be made for Case 3 and 4 with the payment represented as

𝑝𝑙 . Moving to the first case, if C misreports her value as 1, the

resulting allocation would mirror Case 3. By the IC constraint, her

utility when bidding untruthfully should not exceed the utility from

truthfully declaring a value of 4. Therefore, the following relation

is derived

2

𝛾
· (4 − 𝑝ℎ) ≥

1

𝛾
· (4 − 𝑝𝑙 ),

which, upon simplification, leads to

2𝑝ℎ − 𝑝𝑙 ≤ 4. (6)

A critical observation is that in both Case 2 and 4, all bidders are
RBs. The consistency requirement allows us to employ Cavallo’s

mechanism to compute the payments. Specifically, we get 𝑝ℎ = 2+𝜖
and 𝑝𝑙 = 𝜖 . Substituting these values, we find

2𝑝ℎ − 𝑝𝑙 = 4 + 𝜖 > 4,

which starkly contradicts (6), completing our proof.

When 1 < 𝛾 < 2, we consider the situation presented in Fig. 3.

This situation is similar to the above but is slightly more compli-

cated. We still have two slots, associated with CTRs of 1 and
1

𝛾 ,

respectively, alongside a virtual slot with a CTR of 0. We concen-

trate on three bidders: A, B, and C. Bidders A and B have types

defined as (𝜖, 𝑅𝐵) and ((2 + 𝜖) (3 − 𝛾), 𝑅𝐵), respectively, with 𝜖 be-
ing a sufficiently small positive number. We discuss the type of

bidder C into four distinct cases: Case 1: (4,𝑈𝑀); Case 2: (4, 𝑅𝐵);
Case 3: (1,𝑈𝑀); Case 4: (1, 𝑅𝐵) . We assume the approximation

ratio of𝑀 on LSW is less than
3+𝛾

2+3𝛾−𝛾2
, then the allocation results

will be certainly as following:

• In Cases 1 and 2, bidders A, B, and C are allocated slots 0, 1,

and 2, in that order.

• In Cases 3 and 4, bidders A, B, and C are allocated slots 0, 2,

and 1, in that order.

Again, one can verify that any alternative to this allocation pattern

will be higher than the defined approximation ratio. Building upon

prior discussions, we discern that the payments associated with

bidder C for Cases 1 and 2 must coincide and be represented as

𝑝ℎ . Otherwise, C might misreport her class. This logic analogously

applies to Cases 3 and 4, where the payments are symbolized as

𝑝𝑙 . Transitioning to Case 1, if C misreports her declared value to 1,

it mirrors the allocation and payment of Case 3. The IC constraint

asserts that her utility from this should not supersede the utility

derived from a truthful declaration of 4. This provides

1 · (4 − 𝑝ℎ) ≥
1

𝛾
· (4 − 𝑝𝑙 ),

1
1
�
0

CTR

2

1

0

Slot Bidder Class Value

A RB ϵ

B RB (2+ϵ)(3-γ)

C UM or RB 4 or 1

Figure 3: The counter-example for 1 < 𝛾 < 2 in Theorem 5.

which translates to

𝛾𝑝ℎ − 𝑝𝑙 ≤ 4𝛾 − 4. (7)

Based on the consistency constraint inCase 2 andCase 4, Cavallo’s
mechanism determines the payments. We get

𝑝ℎ = min

{
(2 + 𝜖) (3 − 𝛾), 𝜖

𝛾
+ (𝛾 − 1) (2 + 𝜖) (3 − 𝛾)

}
and 𝑝𝑙 = 𝜖 . We now prove that, however, no matter which term

in the 𝑝ℎ is taken, this yields stark contradiction to (7). If 𝑝ℎ =

(2 + 𝜖) (3 − 𝛾), combining (7) and 1 < 𝛾 < 2, we have that

2𝛾 ≤ (2 + 𝜖)𝛾 − 𝜖 < (2 + 𝜖)𝛾 (3 − 𝛾) − 𝜖 ≤ 4𝛾 − 4.

We can further obtain 𝛾 > 2, which goes against our premise

1 < 𝛾 < 2. If 𝑝ℎ = 𝜖
𝛾 + (𝛾 − 1) (2 + 𝜖) (3 − 𝛾), combining with (7),

we get (2 + 𝜖)𝛾 (3 − 𝛾) ≤ 4, which also goes against our premise

1 < 𝛾 < 2. This completes the proof. □

6 CONCLUSION
In this study, we make one of the first attempts at mechanism de-

sign that treats both values and ROI constraints as private, which

is a practical setting in reality. We introduced two distinctive mech-

anisms: BIN-Pub for the setting with public class information and

BIN-Pri for the setting with private class information. Both mech-

anisms ensure IC, IR, consistency, and an approximately optimal

LSW. This research paves the way for subsequent investigations

into private ROI constraints and brings forth a handful of unre-

solved problems. A salient problem is to consider two classes of

bidders with two distinct and arbitrary ROI constraints (instead of

fixing the ROI constraint of one class as 1 as in our model). Further,

we aim to generalize this mechanism to accommodate bidders with

multiple classes and a diverse spectrum of ROI constraints.
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