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ABSTRACT
Extreme weather events and fast-paced adoption of green energy
technologies have led to new challenges in demand-side manage-
ment, maintaining grid reliability, and fulfilling variable consumer
demands One of the effective ways to address these difficulties is
by introducing economic incentives – replacing the flat rate tariffs
with dynamic tariffs. However, dynamic pricing schemes need to be
designed carefully to consider fairness and benefits for consumers
as well as power companies. This paper describes an ML-based sim-
ulation framework for exploring two fairness constructs of dynamic
pricing for residential electricity with behavioral agent-based mod-
els based on social theory combined with active learning. As an
example, we simulate behavior adaptations in response to changes
in electricity prices to study cost savings through monthly bills and
peak demand reduction in synthetic household agents in a Time Of
Use (TOU) pricing scheme in Virginia, USA. Further, we can show
that there exists a region in the parameter space that corresponds
to a fair TOU pricing scheme for both entities: all income-stratified
communities and power companies.
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1 INTRODUCTION
Efforts for meeting climate change goals through the residential
energy sector are increasingly focusing on incentivizing green en-
ergy adoption, decreasing GHG emissions, and conserving overall
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usage. In this context, the U.S. Energy Information Administra-
tion (EIA) and the U.S. Agency for International Development (US-
AID)1 describe three popular demand-side energy use management
strategies – peak shaving, load shifting, and promoting conser-
vation/efficiency. One way of incentivizing the reduction and/or
shifting of household energy use from peak demand times (e.g.,
evening hours) to non-peak hours is by varying the price of elec-
tricity at short intervals throughout the day. This type of pricing
scheme is ‘dynamic grid tariff’ and can be beneficial to electricity
providers2 as well as the consumers. Power companies are inter-
ested in reducing the stress on the grid during peak times. They
nudge households to alter their energy use patterns for reducing
peak time demand by using demand-response strategies such as
dynamic pricing [3, 6, 37].

Power companies and economists have been studying the impor-
tance and effects of rate/tariff design through the lens of economic
& social theory [3, 33, 35] as well as field trials [1, 7, 17, 25]. Re-
cent consumer trials study the effects of different types of dynamic
pricing schemes such as real-time pricing (RTP; e.g., [10]), time of
use (TOU; e.g., [37, 39]), and critical peak pricing (CPP; e.g., [21]).
These are usually longitudinal experiments and support the anal-
ysis of demand changes throughout the day as well as document
long-term benefits for the utilities in terms of demand reduction
and costs. Findings from these trials have reported that many res-
idential consumers achieve a reduction in peak-time energy use
and sometimes observe a reduction in their monthly electricity
bills. Such studies reveal that the potential for these savings varies
by geography, household practices, occupancy patterns, weather
variables, affordability, household demographic composition, and
finally household demand elasticity [14, 17, 36, 46].

A few pricing trials have reported disparities in benefits after
adopting dynamic pricing in different communities. For example,
dynamic tariffs rendered vulnerable consumers unable to afford
adequate cooling or heating of their homes [13, 42], thereby hav-
ing adverse health consequences. Other instances show dispropor-
tionately increased bills for households with elderly and disabled
occupants [8, 43]. Apart from income-related inequities [46], em-
bracing dynamic tariffs has also predicted worse health outcomes
for households with disabled and ethnic minority occupants [42].

1https://www.usaid.gov/energy/efficiency/basics
2We use the terms utility and power company interchangeably to represent electricity
provider.
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Thus, it is important to design a tariff that not only benefits
power companies but also is fair to all communities in the region.
In this paper, we propose a framework for designing a fair Time Of
Use (TOU) dynamic pricing scheme with agent-based simulation
of energy use behaviors and machine learning. Our contributions
are outlined below:

• Our work lies at the intersection of three sets of research:
ABM+ML, fairness, and energy economics. Two fairness
metrics are proposed for designing a Time of Use (TOU) dy-
namic pricing scheme based on principles of tariff design, and
economic and behavior theory. The first fairness criterion
benefits household agents by either decreasing the monthly
bills or keeping them the same as under a flat rate tariff. The
second fairness constraint considers the economics of tariff
design principles and satisfies the power company’s main
goal of reducing peak time demand.

• A novel framework based on active learning and agent-based
simulations is presented to design a fair dynamic pricing
scheme. The agent-based simulations play a two-fold role
in the framework. First, it simulates elasticity in household
behaviors in response to changes in peak price at the appli-
ance level. Second, the simulation acts as an oracle (in the
active learning setup) to create and annotate training data
for the active learner (e.g., classifier). This setup efficiently
navigates the parameter space to find a feasible region that
represents a fair dynamic pricing region.

• Given a reasonable range of peak and non-peak prices, our
most important result shows that it is possible to design a
fair TOU pricing scheme such that (a) all households achieve
the threshold peak-time energy demand reduction; (b) the
pricing is fair to all population groups (based on income
as a sensitive attribute) in terms of observing benefits on
monthly energy bills.

Paper organization.We first provide background on electricity
pricing principles and related literature. This is followed by our
proposed framework, experiments, and results. We conclude with
a discussion and avenues for future work.

2 BACKGROUND
This section will provide background on the principles of designing
energy pricing, appliance scheduling techniques in the literature,
and the synthetic energy use dataset used in this paper.

2.1 Residential energy pricing
Seminal work on rate design goals was proposed by Bonbright [5]
in 1960 and was further expanded by Public Utility Regulatory
Policies Act of 1978 (PURPA) and American Council for an Energy-
Efficient Economy (ACEEE) [3]. There exist many competing policy
objectives in designing residential pricing w.r.t. two entities: utilities
and consumers. Many of these principles focus on fairness of rate
design and promoting energy efficiency – (i) fair return and revenue
stability to maintain grid health and utility profits; (ii) rate recovery
is evenly distributed among all customer classes; (iii) rates will be
designed to discourage wasteful use of public utility services; (iv)
rates should be easy to understand and respond to; (v) revenue

stability to maintain grid health. Further explanation is provided in
Appendix B.

Recently, fairness has gained importance in discussions about
energy pricing as a rate design principle. ACEEE’s preliminary
analyses of dynamic pricing trials have found that adopting time-
varying rates, specifically, TOU rate design with Critical Peak Pric-
ing (CPP) or Peak Time Rebate (PTR) shows the greatest promise of
satisfying the principles of rate design described above. While this
is true, the fairness of these schemes still remains an open question
given that some trials reported discrimination and adverse effects
on consumers. Apart from economic and social theory works in
the fairness of dynamic tariffs [3, 22, 24, 33, 35], there is limited
data-driven AI/ML literature on the design of fair dynamic tariffs
for the residential sector (e.g., [2, 27]). We summarize three essential
qualities that a fair dynamic tariff should possess: (i) Fluctuations in
tariffs should be transparent and easy to understand; (ii) Reference
dependency and fairness of distribution – transition to the new
tariff should be fair to all consumers and the new cost should be the
same or less than the initial cost; (iii) Appropriate controls should
be in place to prevent consumer exploitation after transition. We
use this background knowledge in identifying fairness constructs
in our work.

Figure 1: Conceptual overview - Active learning framework
for learning fairness decision boundaries in residential dy-
namic pricing using ABM simulation.

2.2 Methods in literature
While much of the work in energy economics and public policy
focuses on rate design, statistical optimization techniques have
been employed for optimal scheduling of household appliances
under dynamic tariffs [23]. They optimize competing objectives
such as maximizing utilities’ profits vs. minimizing users’ costs
under dynamic tariffs. A few game-theoretic approaches have mod-
eled appliance scheduling under dynamic tariffs as a game between
utilities and consumers [9, 11, 20, 32, 45]. However, most of these
methods do not guarantee fairness.

Other works develop fair allocation strategies for solving differ-
ent social good problems [26, 29, 30, 34]. For example, Oluwasuji
et al. [34] develop a suite of optimization models for studying the
fair allocation of scarce resources in agents in the context of en-
abling fairer and more efficient load shedding. They evaluate the
results with utilitarian, egalitarian, and envy-freeness social welfare
metrics which are standard in the fair allocation literature.
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A broader class of fairness metrics such as demographic par-
ity, equalized odds, disparate impact, and others have been used
in many applications as fairness constraints [15, 16, 28, 31]. For
example, Biswas et al. [4] use a combination of machine learning
and fairness, to propose “proportional equality” as a fairness met-
ric to evaluate the fairness of classifiers employed in applications
involving societal decisions (e.g., hiring, loan allocation).

When considering ABM/ML and fairness, most work is focused
on making ABMs fairer [12, 44]. They emphasize that fairness-
related representations have not received due attention in ABMs.
We consider our work here a step in this direction. We combine fair-
ness and energy economics to develop our constraints. Our fairness
metrics have been defined based on the behavior theory construct
of ‘reference dependency’ and rate design principle of ‘promotion of
energy conservation and energy efficiency’. Our goal with this is to
bring fairness constructs into computational modeling. We further
integrate the ABM with machine learning (active/semi-supervised
learning) to scale the entire framework to work with large-scale
high-resolution agents and save on computation times.

Table 1: Entities and attributes used in the simulation

Entities Attributes

Household agent

Intrinsic attributes: location, income, oc-
cupancy.
Energy-related attributes: presence of ma-
jor appliances, energy use (kWh), energy
use bill ($)
Derived attributes: flexibility factor, appli-
ance shift flexibility

Energy data Hourly appliance-level energy use time-
series for each agent

Price signal Peak price, non-peak price

3 PROBLEM DESCRIPTION
Let there be a valid pricing range for residential electricity. In this
instance, the pricing range is defined by a 2D parameter space of
peak and non-peak pricing and is considered as the region of in-
terest. Let 𝑐peak and 𝑐npeak be an instance of peak and non-peak
prices defined under the TOU pricing strategy. Our goal is to find
a feasible region in this parameter space that is fair to all agents –
consumers and electricity providers. Due to complex agent behav-
iors and dependence on exogenous variables, it is hard to obtain
an analytical form of the fair pricing region. But, it is possible
to query the parameter space and evaluate individual points in
the 2D space. Such points can be assessed by a function 𝐹 (Θ) and
𝑐peak, 𝑐npeak ∈ Θ. Let 𝑦 be the output of 𝐹 . 𝑦 can be evaluated to
represent if the TOU price vector was a fair price or not. If 𝑦 can
be labeled, then, we can treat it as a classification problem where
one can learn the decision boundary in the pricing parameter space
that partitions it into fair and unfair regions. Next, we will describe
our particular problem instance and its proposed solution.

Letℋ be the set of households serviced by a power company. Let
𝑐 be the flat rate tariff ($/kWh) indicating that the price is the same
for all 𝑇 time periods. For household 𝑖 ∈ ℋ, let 𝑒𝑖 be the energy
(kWh) used and 𝑏𝑖 be the monthly energy use bill ($) such that

𝑏𝑖 = 𝑒𝑖 × 𝑐 . An agent 𝑖 responds to a TOU vector [𝑐peak, 𝑐npeak] by
changing appliance use behavior subject to household constraints.
The resultant peak energy use (𝑒𝑖,peak), non-peak demand (𝑒𝑖,npeak),
and monthly energy bill (𝑏𝑖 ) are computed for every agent 𝑖 . Note
that each 𝑖 responds differently to a given pricing vector.

Our goal is to find a range of peak and non-peak prices that are
fair to all agents (in terms of monthly bills) under TOU pricing
and that also satisfy the power company’s goal of peak-time de-
mand reduction. The feasible region for TOU prices will satisfy
the following constraints –

𝑐peak > 0, 𝑐npeak > 0 (1)
𝑐peak > 𝑐npeak (2)

𝑐npeak ≤ 𝑐 (3)
𝑛∑︁
𝑖=1

𝑒𝑖,peak −
𝑛∑︁
𝑖=1

𝑒𝑖,peak ≥ 𝐸 (4)

(𝑒𝑖,peak × 𝑐peak + 𝑒𝑖,npeak × 𝑐npeak) ≤ 𝑒𝑖 × 𝑐 (5)

where 𝐸 is the total energy reduction in peak time demand expected
by the power company. Inequalities 4 – 5 are examples of fairness
constraints for the TOU scheme. They are complex to model in an
analytical form since they strongly depend on environmental factors
as well as agent’s affordability and behaviors. Examples of environ-
mental factors are building stock attributes or weather conditions
such as irradiance, temperature. One example of consumer routines
related to appliance use and comfort preferences is while using
heating/air conditioner systems, since it depends upon efficiency
of the equipment, outside temperature, does the agent have a habit
of changing thermostat setting when at home and not at home. All
of these play an important role in determining if and when they
intend to perform energy-consuming activities. Similar behaviors
apply to other major appliance use. These constraints have been
modeled as an ABM simulation in this work.

Let the ABM simulation be described as a stochastic function
𝐹 (Θ) where Θ is the set of 𝑘 parameters. 𝑐peak, 𝑐npeak ∈ Θ will be
one of the input parameters to the simulation. 𝑦 is the output of the
simulation for a setting of Θ. Each agent 𝑖 responds to a setting of
Θ through the behavior models. At every iteration, the simulation
computes 𝑦 and classifies it into two classes: fair or unfair, corre-
sponding to pre-defined fairness constructs. The representation of
𝑦 for this work is described in the fairness criteria definitions below.
We attempt to iteratively characterize the behavior of the ABM in
terms of the probability of seeing a fair output with different Θ
settings. In this work, we define two classes 𝐿0 indicating the ABM
output lies in the infeasible region or is unfair, and 𝐿1 suggesting
the ABM output lies in the feasible region (i.e., fair).

This setup makes it suitable to treat this as a classification prob-
lem and find a decision boundary that separates the fair pricing
region from the unfair pricing region in the 2D space of 𝑐peak and
𝑐npeak parameters in terms of the ABM output 𝑦 such that it satis-
fies a set of constraint(s) listed in Equations 1–5. To navigate this
unlabeled parameter space efficiently and reduce the number of
expensive simulation runs, we use active learning. The general idea
is to train a multi-class classifier on the data points labeled by the
ABM simulation. The classifiers estimate the area under each class,
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thus giving us the functional representation of the ABM outputs
over the parameter space. Thus, our ABM simulation is plugged as
an oracle in the active learning framework.

Once the ABM output is annotated, the active learning process
trains a binary classifier with the updated training data in each
iteration. Then, we use the uncertainty margin sampling function
to find the next most indecisive price point. The selected point
generates new parameter settings on which the simulation is eval-
uated in the next iteration. Once termination condition is reached,
the classifier has successfully learned the fairness boundary in the
parameter space. Figure 1 provides a conceptual overview of the
problem setup.
Fairness criterion 1. This criterion is defined based on the be-
havior theory construct of ‘Reference Dependency’ (described in
Background). A TOU price vector is fair only if the new monthly
bill 𝑏𝑖 is the same or less than the baseline monthly bill 𝑏𝑖 under
the flat rate tariff with no behavior change. In the proposed active
learning framework, the oracle is our ABM simulation. We define
two bins/classes 𝐿0 and 𝐿1 for the active learner. The last step of the
ABM simulation is to analyze and annotate the output. The output
lies in bin 𝐿0 when the price vector (selected by active learning)
induces an unfair outcome and in 𝐿1 when the price vector induces
a fair outcome. Let the simulation run for 𝑛 agents for a TOU price
vector [𝑐peak, 𝑐npeak]. Then, the label of the simulation output is
decided by the following equation

𝐵 =

∑𝑛
𝑖=1 𝑏𝑖
𝑛 , �̃� =

∑𝑛
𝑖=1 𝑏𝑖
𝑛

class =

{
𝐿1, if �̃� − 𝐵 ≥ 0
𝐿0, otherwise

(6)

where 𝑒𝑖 and 𝑏𝑖 are calculated as follows –

𝑒𝑖 = 𝑒𝑖,peak + 𝑒𝑖,npeak
𝑏𝑖 = 𝑒𝑖,peak × 𝑐peak + 𝑒𝑖,npeak × 𝑐npeak

(7)

Fairness criterion 2. This criterion is defined in reference to a rate
design principles i.e. ‘promotion of energy conservation and energy
efficiency’. In our case, we quantify this as a minimum average
amount of peak demand reduction achieved by agents for a TOU
price vector to be fair (from the power company’s perspective).
Let the average minimum peak demand reduction (in kWh) be
Δpeak across 𝑛 agents. Two classes 𝐿0 and 𝐿1 as defined similar
to fairness criterion 1. The ABM output is categorized as unfair
when the average minimum peak demand reduction is not achieved
(thus, unfair from the utility’s perspective), thus labeled as 𝐿0. If
the minimum peak demand reduction is achieved, then the oracle
labels this point as fair and is assigned to 𝐿1. Let the simulation
run for 𝑛 households for a TOU price vector [𝑐peak, 𝑐npeak]. The
label for the simulation output is computed using the following
condition

𝐸peak =

∑𝑛
𝑖=1 𝑒𝑖,peak

𝑛 , 𝐸peak =

∑𝑛
𝑖=1 𝑒𝑖,peak

𝑛

class =

{
𝐿1, if 𝐸peak − 𝐸peak ≥ Δpeak

𝐿0, otherwise
(8)

For evaluating fairness criteria 1, 𝑦 is defined in terms of 𝐵 and
then classified as shown in Eq 6. For evaluating fairness criteria 2,
𝑦 is computed as 𝐸peak and then labeled by the condition in Eq 8.

4 SIMULATION FRAMEWORK
We describe our simulation using the general skeleton of the ODD
protocol [19]. The purpose of the simulation is to compute the
changes in energy use by households due to the given price signal,
and the consequent change in the energy bill. An ML wrapper for
the simulation is then used to find a range of fair prices (in terms
of peak and non-peak prices) for residential electricity consumers.

4.1 Entities
The primary agent in the simulation is a household denoted by
𝑖 ∈ ℋ. We use a synthetic representation of households from an
openly available digital twin of the U.S. population in Gallagher et
al [18] and supporting data from [40]. The entities and attributes in
the simulation are listed in Table 1. In the following, the household
agent’s energy use (in kWh) is denoted as 𝑒𝑖 and the agent’s monthly
energy use bill (in $) as 𝑏𝑖 . The household agent interacts with an
external factor – the TOU pricing variable which is defined as
a vector [𝑐peak, 𝑐npeak]. TOU prices are typically defined on an
hourly basis. Prices are typically lower early in the day, overnight
but are higher during peak evening hours. An example of TOU
implementation by Southern California Edison is illustrated in the
Appendix. Section 5 describes the setup of TOU for our experiments.

4.2 Inputs and initialization
We consider a valid price range for peak and non-peak prices for
the region under consideration. Non-peak price ranges from 0-0.11
$/kWh. Peak price ranges from 0-1.5 $/kWh. The flat rate tariff for
the region under consideration is 0.11 $/kWh. Note that behavior
attributes such as the flexibility factors of individual agents are
derived from occupancy pattern, affordability, and their interac-
tions with the TOU vector with the goals of reducing peak time
consumption and overall monthly costs.

Second, the preference data for appliance shifting is obtained
from a survey conducted by Stelmach et al. [39] for over 337 house-
holds in a Northern California city slated for TOU rates. The survey
analyses show that agents’ “willingness-to-shift” is highest for
activities such as dishwasher, and laundry activities followed by
EV charging and personal grooming activities such as showering.
Further, the survey illustrates that agents’ are hesitant to shift peak-
time activities such as cooking, resetting thermostat controls, and
watching TV. We quantify this data for “willingness-to-shift” out of
peak time given a 30% price increase for all activities in the survey
and use it as a simulation input. This data supports calculating
flexibility factors for individual agents in our work. Note that this
data is already made available by Stelmach et al. [39].
Digital twin of household-level energy use: The final major in-
put to the simulation is the detailed energy use data at the household
appliance level for 24 hours. Energy demand literature has shown
that there is a general lack of large-scale high-resolution comprehen-
sive datasets on energy use in households mainly due to consumer
privacy and lack of infrastructure. In this work, we use openly avail-
able synthetic energy data and code provided by [40]. This digital
twin is generated using data-centric AI methods and synthetic pop-
ulations [18]. A mixture of stochastic, machine learning, physics-
based engineering methods are used to model the different end-uses.
It comprises hourly energy demand profiles for multiple appliances
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at the household level – heating/air-conditioning (HVAC), lighting,
dishwashing, cooktops/oven, clothes washer and dryer, refrigera-
tor, vacuum, computers, and TV. Household-level metadata (e.g.,
income) is also available. The published data is shown to be repre-
sentative of real-world energy use data.

Thanks to the availability of detailed datasets that preserve con-
sumer privacy, we now have the ability to combine Stelamch et
al. [39] survey conclusions with the digital twin [40]. This is an
important step towards micro-level policy recommendations for
social good problems supported by large-scale simulations and ML.
Initialization of the simulation: We run the simulation for flat
rate tariff with no behavior changes, which we call the Business
as Usual (BAU) scenario. In addition, we also execute four initial
simulations to provide a seed set to the active learning algorithm.

4.3 Process overview
While Figure 1 provides a conceptual overview of our framework,
Figure 2 provides details of the simulation process and the iterative
steps. Remember that the goal of the simulation is to find a range of
fair prices in a 2D parameter space of peak and non-peak prices for
residential electricity consumers. The simulation takes the inputs
of energy data and a TOU price signal. Each agent responds to
the TOU price signal and generates a new energy demand profile.
If the collective simulation output for all agents satisfies fairness
constraints, we label the TOU price signal as ‘fair’ or ‘unfair’. One
can observe that this particular problem instance can be formulated
as a classification problem. Thus, we can learn a decision boundary
in the 2D pricing parameter space that can separate fair and unfair
prices. Also, note that such social simulations take a long time
to execute. Thus, it will take a long time to find all possible fair
and unfair pricing signals if the parameter space is not navigated
intelligently. Therefore, we employ active learning to facilitate
efficient navigation of the parameter space and use the simulation
as an ‘oracle’ in the active learning process, as follows (Fig. 2).

(1) Create a small “seed-set” of simulation runs to initialize the
active learning process.

(2) Label the simulation output and add it to the training set.
(3) Train the active learning model on the simulation outputs.
(4) Choose the next TOU pricing signal using the active learning

acquisition function.
(5) Execute the simulation with the new pricing signal as input.
(6) Compute the flexibility factor for each agent that determines

the household’s ability to shift appliances’ use outside peak
hours. (Refer to models described in Section 4.4).

(7) Execute the individual agents’ decision for shifting each
peak-time appliance use occurrence to non-peak hours sub-
ject to household constraints.

(8) Generate the new energy demand profiles for all agents.
(9) Calculate monthly bills and peak time metrics for agents.
(10) Go to step 2.

4.4 Simulation design
In order to find the decision boundary that transitions from fair
to unfair pricing, we propose an active learning based framework
that embeds computational agent-based simulation to model agent
behaviors for shifting activities from peak hours to non-peak hours

and to navigate the parameter space with ease by minimizing the
number of executions of expensive simulations. This is made possi-
ble by using a high-resolution digital twin of household appliance
energy data from the literature [40]. Agent-based models (ABM)
and detailed synthetic data provide us the flexibility to represent a
household as an independent agent and model their inclination to-
wards shifting individual appliance demands outside of peak hours.
This also gives us the freedom to design fairness constraints at
agent-level. Figure 2 describes the detailed steps for learning the
fairness boundary in the TOU pricing parameter space3.

Let 𝑐peak, 𝑐npeak be the price vector selected by active learning
that is input to the simulation. The simulation engine models agent
behaviors in response to a price vector and household constraints.
First, a flexibility factor is computed for each household 𝑖 that quan-
tifies the agent’s ability to shift peak-time activities outside peak
hours. Next, based on an activity shift priority (adopted from Stel-
mach et al. [39]) and the TOU vector, we calculate the probability of
shifting an activity from peak to non-peak hours. Depending upon
the occupancy schedule (at 15-minute intervals), flexibility factor,
the presence of smart technologies, household (i.e. agent) prefer-
ences, and probability of shifting activity, the new activity schedule
is generated by our appliance scheduling model. Then, the energy
models simulate new hourly residential energy demand profiles.
Thus, the simulation generates new energy demand profiles with
appliance shifts and peak demands and updated monthly energy
bills. The classifier is trained on labeled data generated at the 𝑟 th
iteration of active learning. Here, we use a random forest classifier.
Active learning uses the updated classifier to select the most infor-
mative price point using uncertainty sampling acquisition function
(e.g., “smallest-margin” uncertainty sampling [38]). This process
is run a fixed number of times or until there is no change in the
learned boundary between two rounds.

4.4.1 Agent flexibility - ability to shift peak activities. Many exter-
nal variables (e.g., temperature, irradiance), household behaviors
(e.g., cooking every day at 5 pm), building characteristics, demo-
graphics, and socioeconomic indicators determine how energy is
used in a household. Nudging agents to modify when and how
to use electricity in response to price fluctuations is challenging
because all households may not respond to the change to the same
degree. In addition, it may require negotiating with the agent and/or
frequently compromising household practices. Thus, we can say
that an agent’s flexibility to adapt to a price change is contingent
upon the rate of change from flat rate tariff, and the variables men-
tioned above. There have been limited attempts at quantification
of how much people will adapt their behaviors to TOU pricing,
e.g., [39]. We define a simple model based on income and monthly
bill (with no behavior change) to quantify the flexibility of a house-
hold to a price vector to move peak activities to non-peak hours in
terms of an ability to shift factor 𝑠𝑖 , given as

𝑠𝑖 =
1

1 + 𝑒𝑧𝑖
where 𝑧𝑖 =

𝑣𝑖 + 𝑏𝑖
100

− 1. (9)

3The peak demand reduction graphic in Figure 2 is taken from Omnes
Energy blog:http://www.omnesenergy.com/blog/2016/8/18/peak-demand-reduction-
with-energy-storage-1
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Figure 2: Framework for learning fairness in dynamic pricing (specifically TOU) using household-level behavior-induced
agent-based modeling and active learning. Two objectives are considered for exploring the fairness of Time Of Use pricing in
LMI and non-LMI communities: savings through the monthly bill and peak demand reduction.

𝑣𝑖 is the income percentile and 𝑏𝑖 is the monthly bill of ℎ𝑖 for the
TOU price vector [𝑐peak, 𝑐npeak] with no behavior change.

Let𝒜 be the set of activities/appliances observed during the peak
period. The peak activities of interest are cooking, showering/bath,
dishwasher, laundry, heating/cooling, vacuuming, lights, and device
use such as TV. Of these peak activities, agents place the highest
preference for shifting dishwasher and laundry activities [33, 39]
during peak time. The preference order and probability of shifting
an appliance outside of peak hours are adapted from Stelmach et
al. [39]. These probabilities are recorded for a 30% increase in peak
price. We adjust the probabilities to reflect changes in peak price
when a new TOU price point is selected by active learning. This
information is used in scheduling appliances. Let the probability of
shifting an appliance/activity 𝑎 𝑗 ∈ 𝒜 outside peak hours for the
TOU price vector [𝑐peak, 𝑐npeak] be P(𝑎 𝑗 ).

P(𝑎 𝑗 ) =
𝑐peak × P(𝑎 𝑗 )

𝑐
(10)

P(𝑎 𝑗 ) is the probability of shifting appliance 𝑎 𝑗 at flat rate 𝑐 .

4.4.2 Appliance scheduling. In this section, we focus on how agents
respond to TOU pricing via load-shifting and load reduction strate-
gies. This implies that appliances used in peak time are scheduled
outside of peak hours for the same day based on the probability of
shift for a TOU price vector. A data-driven behavior change algo-
rithm is designed for scheduling appliances in a household for a
TOU price vector chosen by active learning.

First, a 15-minute interval household occupancy sequence is
constructed. The occupancy sequence records 3 states for each
individual in the synthetic household for each 15-minute interval
of the day. The recorded occupant states are away, awake - at
home, and asleep - at home. This is easily constructed using the
synthetic energy dataset. Next, we extract the existing schedule of

appliances/activities in the households from the synthetic energy
use data. Then, the probability of shifting each of the peak activities
of interest is re-calibrated for a new price point based on the data
found in [39] and Equation 10. Based on literature referred to in
the Background section, some dynamic pricing trials have reported
that households equipped with smart technology such as smart
thermostats/appliances may be more responsive to dynamic pricing
signals. Thus, we take into account the presence of smart technology
(e.g., smart thermostats) in synthetic households. In this work, we
focus on shifting/reducing energy demand from appliances such as
dishwasher, laundry appliances (washer+dryer), heater/AC (HVAC),
lighting, and cooking.

For every appliance, behavior change rules are defined based
on the existing dynamic pricing trial literature [39]. The agent
adopts behavior change only if the probability condition is satisfied.
Dishwasher and laundry activities are scheduled outside peak hours
only when the occupants are in the house and awake. However,
if these appliances are smart technology enabled, the house can
schedule dishwasher and laundry activities anytime outside peak
hours. If HVAC is indicated as a peak activity, then, the occupants
change the indoor thermostat setting by 2◦F depending upon the
season (e.g., the thermostat setting will increase by 2◦F in summer)
to reduce HVAC energy demand in peak hours. Similarly, if the
lighting is indicated in peak activities, then, the household turns
off any 2 bulbs during the peak period to reduce the peak time
consumption. If a cooking activity needs to be shifted outside peak
hours, then, it is shifted to either 1 hour before peak time or 2 hours
after peak time as long as the occupants are at home and awake. If
any electronic devices need to be shifted outside peak hours, then,
these activities are randomly shifted to other timeslots when the
occupant is at home. The energy demand modeling component
computes the new energy demand schedules.
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Figure 3: Summary of results from the three experiments. The top row represents three decision boundaries learned by active
learning based on the two fairness criteria across income-segregated agents. The plot in the second row represents disagreement
in the parameter space across the three experiments. The region that satisfies both the fairness criteria is denoted by green.
The other (unfair) regions in the parameter space are denoted by different colors and a small caption beside them. Thus, if the
power company were to design a fair TOU pricing for Rappahannock such that it achieves the utility’s goal of peak demand
reduction and fair distribution of monthly bills for the consumers, then, it would have to be a pricing point in the green region.

5 RESULTS AND DISCUSSION
Three experiments are conducted to explore fairness in designing a
TOU scheme. The goal of the experiments is to learn three distinct
decision boundaries in the peak and non-peak pricing 2-D parame-
ter space that represents a TOU pricing scheme. The experiments
are set up for the Rappahannock region in the state of Virginia,
USA. It has approximately 3700 households. They are divided into
two groups based on the area median income (AMI) of Virginia –
LMI and non-LMI. LMI stands for Low-to-moderate income and is
defined as 80% of AMI. For Virginia, the LMI threshold is a house-
hold annual income of $60,000. Approx. 600 out of 3700 households
in Rappahannock are categorized as LMI. The remaining are catego-
rized as non-LMI. The Business As Usual (BAU) scenario indicates
that the agents do not change their appliance use behavior and the
pricing is set to a flat-rate pricing scheme. In this setup, the flat rate
is 0.11 $/kWh. Peak time is enforced between 5pm to 8pm.

Experiment 1. This experiment learns the decision boundary
based on reference dependency and fair transition principles to
discern where the monthly bill increases for agents in the LMI
community when compared to the flat-rate pricing monthly bill
without any behavior change. The decision boundary is based on
fairness criterion 1.

Experiment 2. This experiment finds a decision boundary similar
to the first experiment (i.e., based on fairness criterion 1), but for
agents in the non-LMI community.

Experiment 3.This experiment examines the benefit for the power
company in terms of peak demand reduction in the TOU pricing
parameter space. A decision boundary is learned to separate the
parameter space into 2 parts: the unfair region where the average
peak demand reduction across agents is ≤ 1 kWh and the fair region
corresponds to the average peak reduction ≥ 1 kWh (see Eq 8).

The top row in Figure 3 shows the fairness decision boundaries
realized by active learning for experiments 1, 2, and 3. The blue-
colored region indicates fair pricing and the red-colored region
represents unfair pricing for each experiment. The red and blue
dots in these plots indicate the price points chosen by the active
learning method to be evaluated by the simulation. The first plot
shows the decision boundary for fair pricing for Experiment 1. LMI
agent responses are recorded and the fairness of a price point is
determined based on fairness criterion 1. The second figure is simi-
lar to the first, except that the response of non-LMI agents is used.
Note, the non-LMI agents benefit slightly more than LMI commu-
nity agents (refer to the blue area). The last figure in the row shows
the Experiment 3 decision boundary in the pricing parameter space
where an average of 1kWh/household peak demand reduction is
achieved. It is observed that as the peak price increases, households
become more flexible to shift activities outside peak hours.

It is clear that the decision boundaries for the experiments across
multiple fairness criteria are distinct. It will be useful if one can
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combine these separate results to analyze commonalities and dif-
ferences in the decision space. We use a metric to combine these
different results. A disagreement metric is defined for this purpose.
If𝑀 is the total number of points generated in the parameter space,
and𝑀0 is the number of points that are labeled as 𝐿0. A similar def-
inition applies to𝑀1. To calculate the disagreement metric, count
the number of points𝑀′ that are labeled differently across multiple
scenarios. Then, the disagreement is𝑀′/𝑀 . The plot in the bottom
row of Figure 3 highlights four distinct regions in the parameter
space using the disagreement metric. Note, the region colored green
(intersection of the blue region across three experiments) denotes
the fair pricing region, i.e., it satisfies both the fairness criteria. The
other partially fair and unfair regions in the parameter space are
highlighted in different colors to indicate their meanings. Addi-
tional results and energy demand profiles before and after fair TOU
pricing is implemented are attached in the Appendix.

5.1 Structural validation
All the datasets employed in the simulation framework are obtained
from trustworthy sources and have been validated with ground
truth data. The flat rate tariff, peak, and non-peak price ranges
used in the simulation are adapted from power company websites.
The digital twin of the energy dataset used in this work has been
extensively validated at two different time scales and across repre-
sentative regions of the U.S. using ground truth datasets [40, 41].

The data on the preference and probability of shifting different
appliances outside peak hours is adapted from a survey conducted
by Stelmach et al. [39] based on 337 households in California who
were to be a part of the TOU pricing program. The survey ques-
tions were designed with concepts from social practice theory and
focused on household practices and activities that understand the
agent’s appliance usage during peak times and how these affect
overall energy use. This gives us an insight into household’s prefer-
ences who would opt for a TOU pricing scheme. We use the survey
findings to inform our calculations of agents’ flexibility factors. It
supports how agents will respond to price signals and if or how
they change their behaviors.

The literature cited in the Background Section does not consider
fairness in dynamic pricing. Thus, it is challenging to validate our
results using ground truth data. There is also a general lack of data
in the literature about user behavior toward nudges when respond-
ing to dynamic prices over a period of time. Our framework uses
digital twins and surveys from the literature to show that modeling
agent behaviors to dynamic price nudges is possible and reveals a
reduction in both: monthly bills and peak reduction. These findings
have been reported by dynamic pricing trials as well (mentioned
in Background section). In addition, the simulation shows that it is
possible for a fair TOU pricing scheme to achieve both goals.

5.2 Discussion
Designing agent-based simulations for reasonable population size
(e.g., city, state) without consumer trial data is difficult. However,
setting up large-scale trials is a long and arduous process with added
complications such as consumer privacy. In such cases, the burden
of conducting trials in the real world can be substantially reduced
by introducing ML and simulations with domain knowledge. In

this work, a fair dynamic pricing scheme is developed under an
equal opportunity scenario by using active learning with agent-
based simulations. Our results for a rural region show different
TOU pricing thresholds for LMI and non-LMI communities to gain
benefits in terms of monthly bills and peak demand reduction. This
discussion has been extended in the Appendix.

Note that the simulation framework for analysis is flexible and
generic, such that it can be extended to other social good problems
that can be modeled by simulation functions. The active learning
process and disagreement metrics are data-independent. The agent-
based models can be switched with other appliance scheduling
models from the literature subject to data availability. Our work
showcases that comprehensive synthetic datasets can play crucial
roles in building detailed agent models. This may be increasingly
in favor of supporting economists and power companies to make
important evidence-based policy decisions. Our work is developed
using open-source data and published surveys.

Active learning provides an excellent foundation for characteriz-
ing simulation behaviors in unlabeled parameter space. The active
learning algorithm can be extended to navigate high-dimensional
spaces with appropriate visualizations. Thus, analyzing the fairness
of real-time pricing is now possible using this framework. While
techniques such as MILPs or stochastic optimization can also be
used in place of active learning, they become slower as the number
of data points as well as dimensions grow.

In future work, different fairness metrics can be employed by
using household characteristics other than income to compute indi-
vidual benefits (e.g., reduction in energy burden), and by including
real-time pricing (RTP) and/or demand details at the utility level
such as Electric Reliability Council of Texas (ERCOT). These types
of metrics are used in incentive design trials where behavior change
is induced by nudging consumers through communication channels
such as emails or text messages just before the peak time pricing
starts and advertising the possible savings that can be achieved. As
summers become more extreme every year, one can study the ef-
fects of implementing dynamic pricing under such extreme weather
scenarios to examine the vulnerability of households in terms of
comfort violation (e.g., indoor thermostat setting).

6 CONCLUSION
In this work, fairness constructs are formulated for implementing
residential dynamic pricing schemes after studying principles of
rate design from economic and social theory. An agent-based frame-
work is developed for simulating households’ responses to dynamic
pricing signals through load reduction and load shift strategies.
Then, we integrate this agent-based simulation in an active learn-
ing framework to efficiently navigate the pricing parameter space.
Our results show that fair pricing schemes can be designed that
satisfy primary goals of residential consumers and utilities.
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