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ABSTRACT
Cooperative game theory has diverse applications in contemporary
artificial intelligence, including domains like interpretable machine
learning, resource allocation, and collaborative decision-making.
However, specifying a cooperative game entails assigning values to
exponentially many coalitions, and obtaining even a single value
can be resource-intensive in practice. Yet simply leaving certain
coalition values undisclosed introduces ambiguity regarding indi-
vidual contributions to the collective grand coalition. This ambigu-
ity often leads to players holding overly optimistic expectations,
stemming from either inherent biases or strategic considerations,
frequently resulting in collective claims exceeding the actual grand
coalition value. In this paper, we present a framework aimed at
optimizing the sequence for revealing coalition values, with the
overarching goal of efficiently closing the gap between players’
expectations and achievable outcomes in cooperative games. Our
contributions are threefold: (i) we study the individual players’ op-
timistic completions of games with missing coalition values along
with the arising gap, and investigate its analytical characteristics
that facilitate more efficient optimization; (ii) we develop methods
to minimize this gap over classes of games with a known prior by
disclosing values of additional coalitions in both offline and online
fashion; and (iii) we empirically demonstrate the algorithms’ per-
formance in practical scenarios, together with an investigation into
the typical order of revealing coalition values.
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1 INTRODUCTION
Cooperative game theory provides a versatile framework for mod-
eling coalition formation and collective payoff distributions in
multiagent interactions. Its far-reaching applications span diverse
fields, including supply chain management [16], communication
networks [19], logistics and resource allocation [12], or environ-
mental agreements [7]. However, beneath its promising facade lies
a fundamental challenge – specifying a cooperative game requires
assigning a value to each possible coalition, i.e., a subset of players,
which can be a daunting process as the number of coalitions is
exponential in the number of interacting agents.

In practice, acquiring even a single value for a single coalition can
be a resource-intensive endeavor. Take, for instance, the realm of
machine learning, where determining the value of a feature subset
that represents a coalition in the celebrated explainable approach
SHAP [13] corresponds to retraining an entire model, consuming
time and computational resources. What is more, these contribu-
tions can have ripple effects on subsequent financial outlays, such as
acquiring new training samples. In the corporate world, estimating
an employee’s contribution to collective performance may facilitate
their fair evaluation [15], but obtaining the value of a coalition may
involve the intricate process of rearranging teams of employees,
incurring operational costs and potentially causing disruptions.

Yet, simply leaving the values of many coalitions undetermined
further compounds the problem by opening the doors to ambiguity.
When dealing with incomplete information, humans tend to exhibit
a natural bias towards optimism, defined as the disposition to be
overly optimistic about the probability of positive future events and
to downplay the likelihood of negative future events [11, 25, 26, 29].
For instance, optimism bias can lead individuals to underestimate
the effort needed for retirement savings, potentially resulting in in-
sufficient funds [18], or to downplay the likelihood of catastrophic
events like natural disasters, leading to inadequate preparedness
and potentially life-threatening situations [30]. In the context of co-
operative games, where the players lack precise information about
coalition values, such optimism can lead to inflated expectations.
The individuals believe their contributions are more significant
than they objectively are. This optimism translates into unrealistic
demands for a larger share of the grand, i.e. all-agents, coalition
value, even to the point where the sum of individual claims sur-
passes the actual value of the grand coalition. For example, the
companies might sometimes demand exorbitant prices for their
data, just as employees may occasionally request wages that are
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unrealistically high. Moreover, even when players do not possess in-
herent optimism biases, strategically adopting an optimistic facade
can prove advantageous, influencing negotiations and outcomes in
cooperative games. This discrepancy creates a critical gap, which
we refer to as the cumulative utopian gap, between what the players
expect and what is feasible within the game.

To narrow this gap, we further assume the existence of an ex-
ternal principal. In the examples we mentioned, this role could be
reserved for the company manager or the machine learning engi-
neer. This principal possesses the unique ability to determine the
sequence in which coalitions are revealed, and they are provided
with a limited number of opportunities to exercise this control.
In this manner, the principal mitigates the ambiguity within the
system, thereby diminishing the utopian gap as a consequence.
Importantly, we assume that each revelation step carries a roughly
equivalent cost, ensuring that there is no inherent preference in
which coalition is unveiled next besides its effect on bridging the
gap. The primary objective of the principal hence reduces solely
to minimizing this gap under the budget constraint. Although we
do not explicitly outline the methodology for resolving situations
when a non-zero gap exists, our underlying assumption is that a
lower gap is favorable. In practical terms, a diminished gap may
have implications for reducing the bargaining power of individual
players, or in more extreme scenarios, it may limit the additional
financial incentives required by the principal to encourage players
to participate in the grand coalition.

1.1 Organization and Contributions
We begin by formally defining the framework of cooperative games,
with a particular emphasis on the Shapley value1 [24] as a mech-
anism for fairly distributing the grand coalition value among the
individual players. We then explain how to extend the framework
to encompass incomplete cooperative games, which feature missing
coalition values, a prevalent occurrence in real-world scenarios.

Afterward, we delve into our main contributions. Central to our
study is the introduction of superadditive utopian games, designed
to incorporate players’ optimism biases, resulting in the emergence
of the cumulative utopian gap. We establish fundamental theoretical
properties of the utopian gap, including its monotonicity, additivity,
and circumstances under which it becomes zero. Additionally, we
offer an alternative geometric interpretation of the utopian gap,
viewing it as a quantification of the remaining uncertainty within
the space of potential true cooperative games, considering the coali-
tion values that have been determined thus far.

Building upon these foundations, we formulate both offline and
online problems for the principal aiming to minimize the utopian
gap, offering a suite of heuristic and approximative algorithms for
each scenario. Our empirical analysis provides valuable insights
into algorithms’ performance and the coalitions typically revealed
early in the online and offline setups. Importantly, our findings
also illustrate the non-linear nature of the utopian gap’s decrease
with the number of revealed coalition values, offering nuanced

1While our work draws from the properties of the Shapley value, it is important to
note that our findings extend beyond the scope of cooperative game theory alone. For
example, they have potential applicability within the theory of capacities [6], where
the Shapley value carries alternative interpretations. For a broader generalization of
our approach, please refer to the related work section.

perspectives on what a principal can expect at various stages of
the revelation process. Our results further indicate that for specific
classes of monotone supermodular games, the gap can be nearly
completely reduced by revealing just O(𝑛) coalitions. This stands in
contrast to the general requirement of exploring all possible values
to minimize it to zero, as demonstrated in our appendix [28].

1.2 Related Work
To the best of our knowledge, there is no existing research directly
addressing the reduction of ambiguity in the context of coopera-
tive game theory. Nevertheless, the process of querying coalition
values can be seen as an online construction of a compact function
representation, an approach supported by promising results in the
field of cooperative game theory [2–4, 14]. These results indicate
the feasibility of such an approach, with some efforts demonstrat-
ing a substantial exponential reduction in the number of values
required to represent superadditive functions. A comprehensive
survey and detailed presentation of many of these findings can be
found in Chalkiadakis’ book [5]. While tailored representations
have achieved significant reductions in specific cases [10], no gen-
eral approach for constructing such representation when given a
subclass of games has been identified.

Our work adopts an approach reminiscent of active learning [22],
where an algorithm actively queries an oracle for labels to new data
points to construct the most informative dataset, particularly in
situations where labeling is resource-intensive. In our context, we
seek coalition values that minimize the utopian gap. To approximate
the optimal querying strategy based on this concept, we employ
reinforcement learning [27].

2 PRELIMINARIES
Here, we present fundamentals of cooperative games (the reader is
encouraged to see [17] for a more extensive introduction). First, we
define cooperative games, introduce their classes and the Shapley
value. Then we talk about the generalized model of incomplete
games where only some values of the game are known. We define
sets of S𝑛-extensions and the lower/upper games. These notions
delimit possible values of S𝑛-extensions of incomplete games.

Definition 2.1. A cooperative game is an ordered pair (𝑁, 𝑣) where
𝑁 = {1, . . . 𝑛} and 𝑣 : 2𝑁 → R is the characteristic function of the
cooperative game. Further, 𝑣 (∅) = 0.

It is convenient to view the characteristic function 𝑣 as a point
in 2𝑛-dimensional space. We say a cooperative game (𝑁, 𝑣) is
• additive if for every 𝑆 ⊆ 𝑁 ,

𝑣 (𝑆) =
∑︁
𝑖∈𝑆

𝑣 ({𝑖}), (1)

• superadditive if for every 𝑆,𝑇 ⊆ 𝑁, 𝑆 ∩𝑇 = ∅,
𝑣 (𝑆) + 𝑣 (𝑇 ) ≤ 𝑣 (𝑇 ∪ 𝑆) (2)

• supermodular if for every 𝑆 ⊆ 𝑁 \ {𝑖, 𝑗},
𝑣 (𝑆 ∪ { 𝑗}) − 𝑣 (𝑆) ≤ 𝑣 (𝑆 ∪ {𝑖, 𝑗}) − 𝑣 (𝑆 ∪ {𝑖}). (3)

By S𝑛 and C𝑛 , we denote the sets of superadditive, respectively
supermodular games on |𝑁 | = 𝑛 players. Further we refer to 𝑆 ⊆ 𝑁

as a coalition and 𝑁 as the grand coalition. The following definition

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1848



contains one of the most studied solution concepts in cooperative
game theory, which models fair distribution of the value of the
grand coalition [24].

Definition 2.2. The Shapley value 𝜙 : R2𝑛 → R𝑛 of a cooperative
game (𝑁, 𝑣) is defined for 𝑖 ∈ 𝑁 as

𝜙𝑖 (𝑣) B
∑︁

𝑆⊆𝑁 \{𝑖 }

|𝑆 |!( |𝑁 | − |𝑆 | − 1)!
|𝑁 |!

(
𝑣 (𝑆 ∪ {𝑖}) − 𝑣 (𝑆)

)
. (4)

The Shapley value is linear and efficient, which captures the fact
that exactly 𝑣 (𝑁 ) is distributed among the players. Specifically,∑︁

𝑖∈𝑁
𝜙𝑖 (𝑣) = 𝑣 (𝑁 ). (5)

The characteristic function 𝑣 is represented by 2𝑛 real values.
In many applications, however, obtaining all the values might be
too expensive. To deal with this problem, K ⊆ 2𝑁 is introduced in
the definition of an incomplete game which represents only coali-
tions with known value. In our application, we model obtaining
new information about the unknown (but well defined) values by
extending the set K . Therefore, we view K as a ‘masking set’ ap-
plied to some complete game and use the characteristic function
of that complete game in our definition.2 Another distinction from
the standard definition is that we require knowledge of at least
minimal information3

K0 B {∅, 𝑁 } ∪ {{𝑖} | 𝑖 ∈ 𝑁 }. (6)

Definition 2.3. An incomplete cooperative game is (𝑁,K, 𝑣) where
𝑁 = {1, . . . , 𝑛}, K0 ⊆ K ⊆ 2𝑁 , 𝑣 : 2𝑁 → R is the characteristic
function, and 𝑣 (∅) = 0. We say that (𝑁, 𝑣) is the underlying game
of (𝑁,K, 𝑣). Further, an incomplete cooperative game (𝑁,K, 𝑣) is
minimal if K = K0.

If further properties of the underlying game are assumed, one
may impose restrictions on values of 𝑆 ∉ K even though they are
not known exactly. The property we consider is superadditivity,
which is natural in many situations and common throughout the
literature on exchange economies, cost-distribution problems, or
supermodular optimization [14, 17].4 Under this assumption and
based on partial knowledge represented by K , one can describe
the set of candidates for the underlying game. The set consists of
extensions of the partial set function, which satisfy superadditivity.

Definition 2.4. Let (𝑁,K, 𝑣) be an incomplete cooperative game.
Then (𝑁,𝑤) is a S𝑛-extension of (𝑁,K, 𝑣) if (𝑁,𝑤) ∈ S𝑛 and

𝑣 (𝑆) = 𝑤 (𝑆), 𝑆 ∈ K . (7)

We say (𝑁,K, 𝑣) is S𝑛-extendable if it has a S𝑛-extension and we
denote the set of S𝑛-extensions by S𝑛 (K, 𝑣).

Since the set of S𝑛-extensions is given by a system of linear
inequalities, it forms a convex polyhedron in R2𝑛 . Furthermore,
assuming non-negativity of the values, set S𝑛 (K, 𝑣) can be tightly

2This is in contrast with the standard definition where only 𝑣 : K → R is used.
3In the standard definition, only ∅ ∈ K is required [2, 14].
4The immediacy of this property is not always guaranteed. For instance, SHAP may
not consistently yield a superadditive game. However, within this particular context,
the property is observed, for example, in uncorrelated models within an ensemble.

enclosed by an hyper-rectangle given by the so called lower/upper
games [14]. Specifically, the lower game (𝑁, 𝑣) of (𝑁,K, 𝑣) is

𝑣K (𝑆) B max
𝑆1,...,𝑆𝑘 ∈K⋃

𝑖 𝑆𝑖=𝑆
𝑆𝑖∩𝑆 𝑗=∅

𝑘∑︁
𝑖=1

𝑣 (𝑆𝑖 ), (8)

and the upper game (𝑁, 𝑣) of (𝑁,K, 𝑣) is
𝑣K (𝑆) B min

𝑇 ∈K :𝑆⊆𝑇
𝑣 (𝑇 ) − 𝑣 (𝑇 \ 𝑆) . (9)

Within this specific context, we restate the following established
results that will hold importance for our later findings.

Theorem 2.5. Let (𝑁,K, 𝑣) be an S𝑛-extendable incomplete game
with non-negative values. Then for every S𝑛-extension (𝑁,𝑤) of
(𝑁,K, 𝑣) it holds

𝑣K (𝑆) ≤ 𝑤 (𝑆) ≤ 𝑣K (𝑆), ∀𝑆 ⊆ 𝑁 . (10)
Further, ∀𝑆 ∉ K , there are S𝑛-extensions (𝑁,𝑤1), (𝑁,𝑤2) such that

𝑤1 (𝑆) = 𝑣K (𝑆) and 𝑤2 (𝑆) = 𝑣K (𝑆) .

Proof. The first part of the theorem is equivalent to Theorem
1 in [14]. The second part follows from Theorem 3 in [14], which
states that any cooperative game with a characteristic function
defined for a non-empty coalition 𝑆 as

𝑣𝑆 (𝑇 ) B
{
𝑣K (𝑇 ) 𝑆 ⊆ 𝑇,
𝑣K (𝑇 ) 𝑆 ⊈ 𝑇

(11)

is an S𝑛-extension. For 𝑆 ∉ K , choose 𝑤1 = 𝑣𝑁 and 𝑤2 = 𝑣𝑆 . □

Note that the hyper-rectangle given by lower/upper games might
contain non-superadditive games.

3 OPTIMISM BIAS AND ITS MINIMIZATION
The uncertainty arising fromK in an incomplete cooperative game
allows each player to speculate about their payment. As players
experience the bias towards optimism, they can consider every
S𝑛-extension of the incomplete game and choose the one which
benefits them the most. Such extension can be easily derived based
on the properties of the Shapley value.

Definition 3.1. Let (𝑁,K, 𝑣) be a S𝑛-extendable incomplete co-
operative game and 𝑖 ∈ 𝑁 . Then player 𝑖’s utopian game is (𝑁, 𝑣𝑖 ),
where

𝑣𝑖 (𝑆) B
{
𝑣K (𝑆) 𝑖 ∈ 𝑆,
𝑣K (𝑆) 𝑖 ∉ 𝑆.

(12)

Proposition 3.2. Let (𝑁,K, 𝑣) be a S𝑛-extendable incomplete
game. Then the utopian game (𝑁, 𝑣𝑖 ) ∈ S𝑛 (K, 𝑣) for every 𝑖 ∈ 𝑁 .

Proof. From (8), (9), it is immediate (𝑁, 𝑣𝑖 ) extends (𝑁,K, 𝑣).
Further, as mentioned earlier, Theorem 3 in [14] states that any co-
operative game with a characteristic function (11) is superadditive.
We obtain the result by setting 𝑆 = {𝑖}. □

When each player demands the payoff given to them in their
utopian game, it leads to an efficiency violation due to the players’
cumulative demands surpassing the value of 𝑣 (𝑁 ). We refer to
the disparity between the players’ expectations and the attainable
outcome as the cumulative utopian gap.
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Definition 3.3. Let (𝑁, K̂, 𝑣) be a S𝑛-extendable incomplete co-
operative game and K = K̂ \ K0. Then the cumulative utopian gap
of (𝑁, K̂, 𝑣) is

G(𝑁,𝑣) (K) B
∑︁
𝑖∈𝑁

(
max

𝑤∈S𝑛 ( K̂,𝑣)
𝜙𝑖 (𝑤)

)
− 𝑣 (𝑁 ) . (13)

Due to the properties of utopian games, the cumulative utopian
gap can be expressed in terms of individual 𝑣𝑖 ’s. As a consequence,
one can express the gap as an affine combination of difference
between the values of the upper and the lower functions.

Proposition 3.4. Let (𝑁, K̂, 𝑣) be an S𝑛-extendable incomplete
game. Then the cumulative utopian gap is

G(𝑁,𝑣) (K) =
∑︁
𝑖∈𝑁

𝜙𝑖 (𝑣𝑖 ) − 𝑣 (𝑁 ) =
∑︁
𝑆⊆𝑁

𝛼𝑆ΔK̂ (𝑆) − 𝑣 (𝑁 ), (14)

where 𝛼𝑆 =
|𝑆 |!( |𝑁 |− |𝑆 | )!

|𝑁 |! and ΔK̂ (𝑆) = 𝑣 K̂ (𝑆) − 𝑣 K̂ (𝑆).

Proof Sketch. Notice from (4) and the definition of S𝑛 (K̂, 𝑣)
that 𝜙𝑖 (𝑤) is bounded from above by∑︁

𝑆⊆𝑁 \{𝑖 }

|𝑆 |!( |𝑁 | − |𝑆 | − 1)!
|𝑁 |! (𝑣 K̂ (𝑆 ∪ {𝑖}) − 𝑣 K̂ (𝑆)),

which is exactly 𝜙𝑖 (𝑣𝑖 ). The proof of the second equality is merely
a technicality left for the appendix [28]. □

Now, we shall demonstrate several key properties of the utopian
gap, starting with its non-negativity.

Proposition 3.5. Let (𝑁, K̂, 𝑣) be an S𝑛-extendable incomplete
game. Then G(𝑁,𝑣) (K) ≥ 0. Moreover, G(𝑁,𝑣) (K) = 0 if and only if
S𝑛 (K̂, 𝑣) is a singleton.

Proof. Non-negativity follows from the fact that for (𝑁, 𝑣) ∈
S𝑛 (K̂, 𝑣) it holds that∑︁

𝑖∈𝑁
𝜙𝑖 (𝑣𝑖 ) ≥

∑︁
𝑖∈𝑁

𝜙𝑖

(
𝑣 K̂

)
= 𝑣 (𝑁 ) . (15)

The inequality in (15) is strict if and only if there is more than one
S𝑛-extension as 𝜙𝑖 (𝑣𝑖 ) > 𝜙𝑖 (𝑣 K̂ ) for at least one 𝑖 ∈ 𝑁 . □

Note that the set of extensions can be non-trivial even if we are
missing any single value of the underlying game, see the appen-
dix [28].

Proposition 3.6. The cumulative utopian gap G is in the set K
(1) monotonically non-increasing, i.e., for any 𝑆 ∈ 2𝑁

G(𝑁,𝑣) (K) ≥ G(𝑁,𝑣) (K ∪ {𝑆}), (16)

(2) subadditive, i.e., for K,L ⊆ 2𝑁 , K ∩ L = ∅,
G(𝑁,𝑣) (K) + G(𝑁,𝑣) (L) ≥ G(𝑁,𝑣) (K ∪ L) . (17)

Proof. To show (16), for an incomplete game (𝑁, K̂, 𝑣) and a
coalition 𝑆 ⊆ 𝑁 , consider the projection of S𝑛 (K̂, 𝑣) ⊆ R2𝑛 onto
the axis, which is given by 𝑆 . By Theorem 2.5 and supermodularity
of the set of S𝑛-extensions, such projection is [𝑣 K̂ (𝑆), 𝑣 K̂ (𝑆)]. By
Proposition 3.4 and the definition of 𝜙𝑖 (𝑣𝑖 ), an 𝜀 change in 𝑣 K̂ (𝑆)
leads to

𝜀 · |𝑆 | · ( |𝑆 | − 1)!( |𝑁 | − |𝑆 |)!
|𝑁 |!

change in G, and an 𝜀 change in 𝑣 (𝑆) leads to

−𝜀 · |𝑆 | · |𝑆 |!( |𝑁 | − |𝑆 | − 1)!
|𝑁 |!

change in G. This means that G is increasing in 𝑣 K̂ (𝑆) and de-
creasing in 𝑣 K̂ (𝑆). As S𝑛 (K̂ ∪ {𝑆}, 𝑣) ⊆ S𝑛 (K̂, 𝑣), the projection of
S𝑛 (K̂∪{𝑆}, 𝑣) on axis 𝑆 is contained in the projection S𝑛 (K̂∪{𝑆}, 𝑣)
on axis 𝑆 , which implies (16). Finally, from non-negativity and
monotonicity follows (17). □

Finally, let us touch on the geometric interpretation of the utopian
gap. As stated in Theorem 2.5, the upper and lower games de-
fine a hyper-rectangle which tightly bounds the set of extensions
S𝑛 (K̂, 𝑣). Since the utopian gap is a linear function of the values
of the lower/upper games, it can be seen as a “measure” of the size
of S𝑛 (K̂, 𝑣). Uncertainty in each coalition is additionally weighted
according to its contribution to the Shapley value.

3.1 Principal’s Optimization Problems
A large utopian gap makes it difficult to distribute payoff, as each
player tends to their utopian game. The more we know about the
underlying game, the smaller the cumulative utopian gap gets, being
zero for a game with a single S𝑛-extension. However, to obtain all
the necessary unknown values might be too expensive, since there
are exponentially many of them.

To minimize the utopian gap, we hence assume the existence
of a non-affiliated party who we refer to as the principal. Her task
is to choose which coalitions should be investigated to reduce the
utopian gap the most. We further assume the principal holds a level
of expertise that guides the selection process. This expertise is for-
malized as a prior distribution over a set of potential characteristic
functions. For example, in a medical context, a doctor acting as the
principal might seek to assess a patient’s response to a combination
of drugs (represented as a coalition) and base their expectations
on past clinical experience. Similarly, a machine learning engineer
could rely on their prior knowledge of feature importance gained
from previous problem-solving experiences. Consequently, we as-
sume that each problem instance can be viewed as a sample drawn
from this known prior distribution, denoted as F . To put bluntly,
the principal is aware of the prior distribution, but not of the specific
instance of the underlying game.

There are two basic approaches to choosing which coalitions
to investigate, online and offline. In the online approach, the prin-
cipal operates sequentially, utilizing information from previously
revealed coalition values.

Definition 3.7 (Online Principal’s Problem). Let 𝑡 ∈ N,F , suppF ⊆
S𝑛 be a distribution of superadditive games. ThenK∗𝑡 ⊆ 2𝑁 \K0 is
a solution of the online principal’s problem of size 𝑡 if

K∗𝑡 ∈ argmin
K𝑡 ⊆2𝑁 \K0, |K𝑡 |=𝑡

{
E

𝑣∼F

[
G(𝑁,𝑣) (K𝑡 )

]}
, (18)

whereK𝜏 , 𝜏 ≤ 𝑡 is such thatK𝜏 = K𝜏−1∪{𝑆𝜏 }, 𝑆𝜏 = 𝜋 (𝑁,K𝜏−1, 𝑣),
and 𝜋 is a policy function that chooses 𝑆𝜏 based on the known values
of 𝑣 , i.e. values of coalitions in K𝜏−1.

In contrast, the offline approach entails a lack of such information.
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Definition 3.8 (Offline Principal’s Problem). Let 𝑡 ∈ N,F , suppF ⊆
S𝑛 be a distribution of superadditive games. ThenK∗𝑡 ⊆ 2𝑁 \K0 is
a solution of the offline principal’s problem of size 𝑡 if

K∗𝑡 ∈ argmin
K⊆2𝑁 \K0, |K |=𝑡

{
E

𝑣∼F

[
G(𝑁,𝑣) (K)

]}
. (19)

3.2 Algorithms Solving the Principal’s Problems
In this section, we discuss various methods for finding (approxi-
mate) solutions to the principal’s problems defined above. We defer
further details about all algorithms to the appendix [28].

3.2.1 Offline Algorithms. At each step 𝑡 , the Offline Optimal
algorithm chooses coalitions {𝑆𝑖 }𝑡𝑖=1 which minimize the expected
utopian gap under F . We estimate the expectation w.r.t. F in
Eq. (19) by 𝜅 samples, see Algorithm 1.

Algorithm 1: Offline Optimal
Input: distribution of superadditive functions F , number of

steps 𝑡 , number of samples 𝜅
1 K ← 2𝑁 \ K0
2 𝐺 ← {} // trajectories and their average gap

3 for S ⊆ K : |S| = 𝑡 do // for each trajectory
4 𝜇 ← 0
5 for 𝑗 ∈ {1, . . . , 𝜅} do // approximate expectation
6 𝑣 ∼ F
7 𝜇 ← 𝜇 + G(𝑁,𝑣) (S)
8 𝜇 ← 𝜇/𝜅
9 𝐺 [S] ← 𝜇

10 {𝑆𝑖 }𝑡𝑖=1 ← argminS⊆K : |S |=𝑡 𝐺 [S]
11 return {𝑆𝑖 }𝑡𝑖=1

A computationally less demanding variant of the Offline Opti-
mal is the Offline Greedy algorithm. It chooses the next coalition
𝑆𝑡 such that, given the previous trajectory {𝑆𝑖 }𝑡−1

𝑖=1 , it minimizes
the expected utopian gap. Consequently, it can perform no better
than the Offline Optimal. We again estimate the expectation in
Eq. (19) by 𝜅 samples, see Algorithm 2.

3.2.2 Online Algorithm. In comparison to the offline problem, solv-
ing the online problem poses a significantly greater challenge. Intu-
itively, one key reason is that an algorithm for the online problem
must compute (or approximate) a restriction of F that remains con-
sistent with the values it has uncovered in prior steps. However, this
can be particularly challenging, especially in case the only access
to F is through sampling. To tackle the online problem and derive
an approximate solution, we employ reinforcement learning [27],
specifically, the proximal policy optimization (PPO) [20].

At each step 𝜏 , PPO receives values of coalitionsK𝜏−1 = {𝑆𝑖 }𝜏−1
𝑖=1

it uncovered in the past and chooses the next coalition 𝑆𝜏 . To get a
strategy which efficiently minimizes the utopian gap, we define the
reward (which is maximized by the PPO algorithm) as the negative
expected utopian gap averaged over 𝜏 ≤ 𝑡 .

As previously mentioned, the greedy algorithm is significantly
more computationally efficient, with a linear complexity in the

Algorithm 2: Offline Greedy
Input: distribution of superadditive functions F , number of

steps 𝑡 , number of samples 𝜅
1 {𝑆𝑖 }𝑡−1

𝑖=1 ← Offline Greedy(F , 𝑡 − 1)
2 K ← 2𝑁 \ (K0 ∪ {𝑆𝑖 }𝑡−1

𝑖=1 )
3 𝐺 ← {} // trajectories & their average gap

4 for 𝑆 ∈ K do // for each trajectory
5 𝜇 ← 0
6 for 𝑗 ∈ {1, . . . , 𝜅} do // approximate expectation
7 𝑣 ∼ F
8 𝜇 ← 𝜇 + G(𝑁,𝑣) ({𝑆𝑖 }𝑡−1

𝑖=1 ∪ {𝑆})
9 𝜇 ← 𝜇/𝜅

10 𝐺 [𝑆] ← 𝜇

11 𝑆𝑡 ← argmin
𝑆∈K 𝐺 [𝑆]

12 return {𝑆𝑖 }𝑡𝑖=1

number of coalitions, while the optimal variant exhibits an expo-
nential time complexity. A question which naturally arises is under
which conditions the local greedy search can reliably yield a glob-
ally optimal solution. While our empirical observations indicate
similar performance between both approaches, the greedy method
is not optimal in general. To illustrate, we provide a simple example
in the appendix [28], where the local search fails to identify the
optimum. However, it is known that, if the optimized function is
supermodular, the locally optimal steps are guaranteed to yield a
(1− 1/𝑒)-approximation of the global optimum [8, Proposition 3.4].
In our case, the utopian gap is supermodular for all small games.

Proposition 3.9. For |𝑁 | ≤ 4, the gap of an incomplete S𝑛-
extendable game is supermodular.

Proof Sketch. For |𝑁 | = 3, the gap is modular due to invari-
ant bounds post-revelation. For |𝑁 | = 4, the supermodularity is
demonstrated through a more technical case analysis. □

However, already for |𝑁 | = 5, it can be shown the gap is not
supermodular for several significant subsets of superadditive games,
such as totally monotonic games (a subset of convex games, which
under the name belief measures forms the foundation on the evidence
theory [9, 23]), symmetric games (often studied for their robust
properties with respect to solution concepts [17]), or graph games
(games with a compact structure represented by 𝑂 (𝑛2) values with
application in scenarios where only bilateral collaboration between
players occurs [5]).

Observation. For |𝑁 | = 5, there exist a totally monotonic game,
convex game, symmetric superadditive game, and graph game for
which the utopian gap is not supermodular.

For even larger games, we can formualate a precise criterion to
ascertain the non-supermodularity of the utopian gap.

Proposition 3.10. For |𝑁 | ≥ 6, the gap of an incomplete S𝑛-
extendable game is not supermodular if there exist 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁 such
that 𝑣 (𝑖 𝑗) ≤ 𝑣 ( 𝑗𝑘) ≤ 𝑣 (𝑘𝑙), where 𝑣 (𝑆) = 𝑣 (𝑆) −∑

𝑖∈𝑆 𝑣 ({𝑖}), and

𝑣 (𝑘𝑙) <
[(
𝑛

2

) (
𝑛

⌊𝑛/2⌋

)−1 (
2𝑛−3 − 𝑛 + 2

)
− 1

]
𝑣 (𝑖 𝑗). (20)
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Figure 1: The utopian gap as a function of number of revealed coalitions (i.e. steps of the Principals problem) for different
algorithms. We show factory(5) (left), and supermodular(5) (right) games. All algorithms outperform the Random benchmark
considerably. The greedy versions of each algorithm exhibit similar performance to the optimal variants. The PPO algorithm is
initially close to the offline algorithms, and uses the online information to approach the oracle algorithms.

Proof Sketch. We rephrase the supermodularity condition (3)
in relation to the utopian gap, and demonstrate that this condition
is never met when Eq. (20) holds for the pairs in some {𝑖, 𝑗, 𝑘, 𝑙}. □

This criterion allows to construct examples also for all earlier
mentioned classes of games. The proofs and examples are avail-
able in the appendix [28]. Despite these findings, empirically, the
greedy algorithm demonstrates similar performance to its optimal
counterpart, as illustrated in the following section.

4 EMPIRICAL EVALUATION
Finally, we demonstrate the performance of our algorithms on prac-
tical examples. We outline the domains used for the evaluation,
introduce baseline methods for comparison, detail the algorithmic
setups, and conduct a comprehensive analysis of the gathered re-
sults. All the details that could not be accommodated within the
main text have been addressed in the relevant appendices [28].

4.1 Experimental Domains
We conduct our experiments on two representative families of
cooperative games. Their main difference is the degree to which
the values of different coalitions are correlated.

For the tightly correlated scenario, we use a simple model of a
factory. The set of players 𝑁 , |𝑁 | ≥ 2 consists of a single factory
owner 𝑜 and 𝑛 − 1 identical workers. The value of a coalition 𝑆 is

𝑣 (𝑆) =
{
|𝑆 | − 1 if 𝑜 ∈ 𝑆,
0 otherwise.

(21)

In words, each worker contributes equally to the value of a coalition
as long as he has somewhere to work. It is easy to verify that
the resulting game is superadditive. We denote the distribution of
factory games of 𝑛 players where the owner is selected uniformly at
random as factory(𝑛). We show that the gap is not supermodular
already for factory(5) in the appendix [28].

The second family is the broad class of supermodular games.
These games are among the most studied in the cooperative game

theory [9]. In our context, the problem of identifying a subset
of coalitions which represents a supermodular function well has
been studied in a broader context of set functions [21]. In [1], the
authors derived an efficient algorithm for uniform sampling of
monotone supermodular functions. We refer to the distribution of
corresponding games of 𝑛 players as supermodular(𝑛).

We conduct further experiments on several other classes of coop-
erative games as well, and present these results in the appendix [28].
We observe similar trends as those presented here in the main text.

4.2 Benchmarks
We compare our algorithms introduced in the previous section to
three baselines: a random algorithm and two oracle algorithms. The
random algorithm selects the next coalition uniformly at random.
We refer to it in the results as Random. Next, we introduce two
oracle methods that are not deployable in practice because they as-
sume the knowledge of the underlying true characteristic function.
However, they provide an upper bound on what an optimal online
algorithm could possibly achieve.

The Oracle Optimal algorithm operates similarly to Offline
Optimal, with the key difference being that it leverages an oracle to
acquire values of the underlying game (𝑁, 𝑣) before making the next
coalition selection. Consequently, Oracle Optimal can harness
complete knowledge of the underlying game to minimize the gap
effectively. Its pseudocode as Algorithm 3 is in the appendix [28].

Similar to the Offline Greedy, the Oracle Greedy algorithm
selects next coalition 𝑆𝑡 such that, in combination with the previous
trajectory {𝑆𝑖 }𝑡−1

𝑖=1 , it minimizes the utopian gap. It also uses the
oracle to gather all information about the underlying game (𝑁, 𝑣).
Its pseudocode is depicted as Algorithm 4 in the appendix [28].

4.3 Experimental Setup
During the training phase, we execute the PPO algorithm for a
total of 2,000,000 time-steps, which, in the case of 12-step instances,
translates to 40 iterations. In each iteration, we repeatedly collect
4,096 trajectories by sampling batches from the distribution F .
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Figure 2: Percentage of coalitions of the same size selected up to step twelve for factory(5) and each algorithm. Results show
clear preference for larger coalitions, i.e. they contribute more information about the cooperative game on average. The oracle
algorithms favor smaller coalitions earlier, suggesting the representation of a specific game can efficiently use even smaller
coalitions. PPO initially behaves similarly to the offline algorithms. At later steps, it uses the previously obtained values and its
selections resemble the oracle methods. See the appendix [28] for a plot showing individual coalitions.
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Figure 3: The utopian gap as a function of the number of
players. The figure compares expected gap of supermodular(𝑛)
when choosing coalitions randomly, and when all coalitions
of size 𝑛 − 1 are selected. Not only is the utopian gap in the
latter case small, it decreases with the number of players.

Following each iteration, we optimize the PPO surrogate objective
for 10 epochs. To ensure uniformity, we normalize the input values
𝑣 (𝑆) to a unit interval, as elaborated in the appendix [28]. For the
two optimal algorithms, we employ 𝜅 = 10 samples to estimate the
mean value in Eq. (19). See the appendix [28] for more details.

Among the algorithms we have proposed, both Offline Optimal
and Oracle Optimal come with significantly higher computational
costs (their complexity scales as O(22𝑛 )) when compared to their
more computationally efficient greedy counterparts (whichc scale
as O(2𝑛)). To provide some perspective, our evaluation for 𝑛 = 5
with twelve steps and ten samples necessitated approximately 60
hours to finish. Extrapolating, we estimate that completing the
evaluations for the remaining steps in this setup, across all ten
samples, would require roughly 200 hours. Furthermore, extending
these experiments to 𝑛 = 6 would demand over 100 years.

Hardware and Software. All experiments are conducted on a com-
putational cluster with AMD EPYC 7532 CPUs running at 2.4 GHz.
When running algorithms on five players games, we utilize 15 cores
and 12 GB of RAM. The code was implemented in Python 3.10 us-
ing pytorch 2.0, stable_baselines3 2.0, and gymnasium 0.28, and is
available at GitHub [31]. Additional details are in the appendix [28].

4.4 Results
First, we study the factory(5) distribution. Figure 1 shows the de-
pendence of the utopian gap on the number of revealed coalitions.
As expected, the oracle algorithms outperform their offline variants,
especially at the beginning. PPO is initially similar to the offline
algorithms, and later uses the online information to reach similar
values of the utopian gap as the oracle methods. The greedy algo-
rithms exhibit similar performance to their optimal counterparts.

To further illustrate which coalitions are important, Figure 2
shows the percentage of coalitions of a given size selected by each
algorithm. The offline algorithms favor the largest coalitions, sug-
gesting they carry the most information overall. The oracle algo-
rithms can gain small improvements by selecting smaller coalitions.

This signals that, for a specific game, a tailored representation
including also smaller coalitions is better.

Next, we focus on the supermodular(5) distribution. We show
the evolution of the utopian gap as a function of the number of
revealed coalitions in Figure 1. Surprisingly, the utopian gap can be
minimized very fast, by about 99% by step five. We observed similar
trends for supermodular(4) presented in the appendix [28]. In each
case, the algorithms prefered coalitions of size 𝑛 − 1, suggesting
they are the most important among the unknown coalitions. We
further evaluate the impact of the largest coalitions, by computing
the utopian gap as a function of 𝑛 when all coalitions of size 𝑛 − 1
are revealed. We compare this simple heuristic with Random in
Figure 3. The utopian gap is consistently very low and, surprisingly,
decreases with the number of players. This suggest that most of
the information about a supermodular game can be captured by
values of O(𝑛) coalitions.

5 CONCLUSION
In this paper, we study strategies for efficiently mitigating uncer-
tainty within incomplete cooperative games. We introduce the
concept of the “utopian gap”, which quantifies the disparity be-
tween players’ expectations and a realistic game outcome. We show
fundamental properties of the utopian gap that enables us to com-
pute it more efficiently. Geometrically, the utopian gap reflects the
number of potential extensions of an incomplete game. We focus on
reducing the utopian gap through well-informed queries about the
unknown values within the incomplete game, effectively construct-
ing a representation tailored to capture a maximum information
about the game in both online and offline fashion. Our findings in-
dicate that our approach significantly outperforms random queries
and approaches optimality. Particularly noteworthy is our heuristic
for supermodular games, which reduces the utopian gap by or-
ders of magnitude while requiring only O(𝑛) queries – an amount
logarithmic in the number of coalitions.

Future Work. We posit that our approach is not confined solely
to the boundaries of cooperative game theory and can be extended
to more general set functions. This extension assumes the existence
of criteria involving functions (in this work, it is the Shapley value)
that map the powerset of a set 𝑁 to subspaces of dimensions linear
in the size of 𝑁 . Still in the context of games, we see applications
of our approach within the SHAP [13] framework, as the original
formulation can only handle comparatively small models. Finally,
we would also like to strengthen our result by providing guarantees
by working within the regret minimization framework.
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