
MABL: Bi-Level Latent-Variable World Model for
Sample-Efficient Multi-Agent Reinforcement Learning

Aravind Venugopal
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Stephanie Milani
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Fei Fang
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Balaraman Ravindran
Indian Institute of Technology, Madras

Chennai, Tamil Nadu, India

ABSTRACT
Multi-agent reinforcement learning (MARL) methods often suf-
fer from high sample complexity, limiting their use in real-world
problems where data is sparse or expensive to collect. Although
latent-variable world models have been employed to address this is-
sue by generating abundant synthetic data for MARL training, most
of these models cannot encode vital global information available
during training into their latent states, which hampers learning
efficiency. The few exceptions that incorporate global information
assume centralized execution of their learned policies, which is
impractical in many applications with partial observability.

We propose a novel model-basedMARL algorithm, MABL (Multi-
Agent Bi-Level world model), that learns a bi-level latent-variable
world model from high-dimensional inputs. Unlike existing models,
MABL is capable of encoding essential global information into the
latent states during training while guaranteeing the decentralized
execution of learned policies. For each agent, MABL learns a global
latent state at the upper level, which is used to inform the learn-
ing of an agent latent state at the lower level. During execution,
agents exclusively use lower-level latent states and act indepen-
dently. Crucially, MABL can be combined with any model-free
MARL algorithm for policy learning. In our empirical evaluation
with complex discrete and continuous multi-agent tasks including
SMAC, Flatland, and MAMuJoCo, MABL surpasses SOTA multi-
agent latent-variable world models in both sample efficiency and
overall performance.

KEYWORDS
Multi Agent Reinforcement Learning; Deep Reinforcement Learn-
ing; Model Based Reinforcement Learning; World Models

ACM Reference Format:
Aravind Venugopal, Stephanie Milani, Fei Fang, and Balaraman Ravindran.
2024. MABL: Bi-Level Latent-Variable World Model for Sample-Efficient
Multi-Agent Reinforcement Learning. In Proc. of the 23rd International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2024), Auck-
land, New Zealand, May 6 – 10, 2024, IFAAMAS, 13 pages.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

1 INTRODUCTION
Multi-agent reinforcement learning (MARL) offers a powerful, ver-
satile approach for addressing a variety of real-world problems that
require coordination among multiple agents, such as the control of
robot swarms [1, 23], autonomous vehicles [6], and more [18, 44].
These scenarios offer myriad challenges: agents must often learn to
behave from high-dimensional, partially observable inputs while
grappling with the issue of non-stationarity induced by other agents
simultaneously learning in the environment [22, 29]. The resulting
complexity often translates to a tremendous amount of environ-
ment interactions for learning effective policies [9]. In practical
scenarios, collecting such interaction data is resource-intensive
and time-consuming [2], underscoring the importance of sample
efficiency.

In the single-agent setting, model-based RL has shown promise
in improving sample efficiency by enabling agents to utilize pre-
dictive models of environment dynamics [4, 35, 40]. These models,
commonly referred to as world models, are often used to gener-
ate synthetic data from which agents can learn how to act. These
approaches have been shown to improve sample efficiency by reduc-
ing the number of environment interactions needed to learn good
behavior [14, 20, 25, 37]. However, they still require learning in a
high-dimensional space. In recent years, however, model-based RL
algorithms have employed latent-variable world models [12, 13, 20]
to learn low-dimensional latent states from high-dimensional in-
puts. Trajectories of latent states generated by the model are then
used for policy learning. Although this family of methods represents
the state-of-the-art in the single-agent setting, they have only re-
cently been brought to bear in MARL [41]. Yet, current approaches
[7, 19] suffer from key limitations.

In MARL, the established paradigm of centralized training with
decentralized execution (CTDE) [22, 32] offers a pragmatic balance
that enables centralized learning by allowing agents access to ad-
ditional information during training, as long as each agent only
accesses its private observation during policy execution. This para-
digm ensures scalability and practicality in scenarios where agents
have to act in a decentralized manner. We refer to the totality of
information available to an agent during training, including its pri-
vate observation, as “global information". By following the CTDE
paradigm, model-based MARL agents can utilize global information
in their models during training to enhance latent representation
learning, potentially leading to more sample-efficient learning.

However, existing multi-agent latent-variable world models are
either incapable of incorporating global information [19] or do so,

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1865

https://orcid.org/0000-0002-3093-3579
https://orcid.org/0000-0003-1150-4418
https://orcid.org/0000-0003-2256-8329
https://orcid.org/0000-0002-5364-7639
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Figure 1: Overview of how the MABL bi-level model encodes
global information into the global latent state while training
while informing the agent latent state (left), which is com-
puted from the agent’s observation during execution (right).

but fail to ensure that agents only use their own observations dur-
ing execution [7, 42]. This is because they compute latent states by
accessing the observations of all agents. Although the latter class
of approaches yields state-of-the-art sample efficiency, they per-
form centralized training with centralized execution (CTCE). This
paradigm requires a continuous transfer of inputs between agents
and a centralized controller, a transformer block [7, 42], during
execution. This, in turn, leads to increased latency, bottlenecks, and
high susceptibility to communication failures. It also makes these
approaches inapplicable to settings with partial observability and
without communication channels between agents. Moreover, these
approaches are not designed to incorporate any global information
that is available in addition to agents’ observations, and omitting
such crucial information during training can be detrimental to
learning.

To address the problem of incorporating global informationwhile
maintaining CTDE, we introduceMulti-Agent Bi-Level World Model
(MABL), the first CTDE multi-agent latent-variable world model
method that incorporates relevant global information, to train poli-
cies purely using synthetic trajectories of latent states generated
by the model. The key insights behind MABL are that for each
agent, 1. relevant global information can be encoded into a global
latent state to learn policies through centralized training, and 2.
the global latent state need not be used during execution and can
instead be used to inform the representation learning of a sepa-
rate agent-specific latent state used during decentralized execution.
Specifically, as shown in Figure 1, MABL introduces a novel bi-level
model to learn a hierarchical latent space. At the top level, the
model learns the global latent state; at the bottom level, it learns an
agent latent state, conditioned on the global latent state. MABL can
be used as an additional module with any existing MARL algorithm.
Our empirical studies on the challenging StarCraft Multi Agent
Challenge (SMAC) [32], Flatland [26], and Multi-Agent MuJoCo
(MAMuJoCo) [30] benchmarks show that MABL outperforms the
state-of-the-art in sample efficiency across a variety of discrete and
continuous multi-agent tasks.

2 PRELIMINARIES
Multi Agent Reinforcement Learning. We consider MARL in a

partially observable Markov game [27]. The game is represented
as 𝐺 = ⟨𝑁, 𝑆,A, 𝑃, 𝑅𝑖 , {O𝑖 }, {𝑂𝑖 }, 𝛾⟩. 𝑁 = {1, . . . , 𝑛} is the set of
agents, 𝑆 the set of states, and A =

∏
𝐴𝑖 the joint action space,

where 𝐴𝑖 is the action space for agent 𝑖 . At timestep 𝑡 , agent 𝑖 ∈ 𝑁

receives an observation 𝑜𝑖𝑡 governed by the observation function
𝑂𝑖 (𝑠) : 𝑆 → O𝑖 , and chooses an action 𝑎𝑖𝑡 ∈ 𝐴𝑖 . Given the current
state 𝑠𝑡 and the agents’ joint action a𝑡 = {𝑎𝑖𝑡 }𝑛𝑖=1, the environment
transitions to the next state 𝑠𝑡+1 according to the state transition
function 𝑃 (𝑠𝑡+1 |𝑠𝑡 , a𝑡) : 𝑆×A×𝑆 → [0, 1]. Each agent then receives
a reward 𝑟 𝑖𝑡 according to its reward function 𝑅𝑖 : 𝑆 × 𝑎𝑖 → R.
Each agent takes actions according to its policy 𝜋𝑖 (𝑎𝑖𝑡 |𝜏𝑖𝑡), which
is conditioned on its action-observation history 𝜏𝑖𝑡 . Together, these
policies comprise the joint policy 𝝅 , which induces the action-value
function for each agent 𝑖 , 𝑄𝝅

𝑖
= E𝝅 [

∑∞
𝑗=0𝛾

𝑗𝑟 𝑖
𝑡+𝑗], where 𝛾 ∈ [0, 1]

is the discount factor. In model-free MARL, agents do not know 𝑃

or 𝑅 and must learn policies that maximize 𝑄 by interacting with
the environment.

Model-Based Reinforcement Learning. In contrast to model-free
methods, model-based RL methods learn an explicit model trained
to estimate the environment dynamics (i.e., state transition 𝑃 and
reward function(s) 𝑅) using self-supervised learning [14, 20, 37].
We consider the most popular style of model-based RL methods,
which follow the Dyna algorithm [37], where the model of the
environment dynamics, called a world model, is learned from real
environment interactions. To deal with high-dimensional inputs,
model-based RL algorithms have employed latent-variable world
models [12, 13, 20] that learn and generate trajectories of compact,
low-dimensional latent states 𝑧 from observations and actions, 𝑜
and 𝑎, as input during policy learning.

Latent-Variable World Models. Latent-variable world models are
implemented as sequential variational auto-encoders [17] for learn-
ing environment dynamics. More concretely, consider a partially
observable Markov decision process (POMDP) [3] described by
⟨𝑆,𝐴, 𝑃, 𝑅,O,𝑂,𝛾⟩, where the symbols mean the same as before,
except with a single agent. Given training data consisting of ob-
servation and action sequences {𝑜1, 𝑎0, . . . , 𝑜𝑇 , 𝑎𝑇−1}, we can train
the sequential variational auto-encoders with latent variables 𝑧𝑡
to maximize the probability of the data 𝑝 (𝑜1:𝑇 |𝑎0:𝑇−1). Directly
maximizing this probability is challenging, so a typical approach
is to consider the Evidence Lower Bound (ELBO) [17] for the log-
likelihood of the sequence of observations:

log𝑝 (𝑜1:𝑇 |𝑎0:𝑇−1) ≥ E𝑧1:𝑇 ∼𝑞
𝑇∑︁
𝑡=1

[
log𝑝 (𝑜𝑡 |𝑧𝑡)

−𝐷𝐾𝐿
(
𝑞(𝑧𝑡 |𝑜𝑡 , 𝑎𝑡−1)∥𝑝 (𝑧𝑡 |𝑎𝑡−1)

)]
,

where 𝐷𝐾𝐿 refers to the KL divergence. The latent-variable model
thus consists of a transition model representing the prior distribu-
tion 𝑝 (𝑧𝑡 |𝑎𝑡−1), a representation model representing the posterior
distribution 𝑞(𝑧𝑡 |𝑜𝑡 , 𝑎𝑡−1), and an observation decoder 𝑝 (𝑜𝑡 |𝑧𝑡)
to reconstruct observations 𝑜𝑡 from latent states 𝑧𝑡 . All compo-
nents are parameterized by neural networks and trained through
amortized variational inference [17]. Once trained, 𝑧𝑡 serves as
the compact latent state at time 𝑡 , and the model can be used to
generate synthetic trajectories of latent states for RL training.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1866

Figure 2: Transition dynamics components of the bi-level
latent-variable model. Shaded circled nodes represent in-
puts, unshaded circled nodes represent random variables,
and square nodes represent deterministic embeddings. The
transitionmodel and recurrentmodels are shownusing black
arrows; the representationmodel is shown using blue arrows.

3 MULTI-AGENT BI-LEVEL WORLD MODEL
We propose Multi-Agent Bi-Level world model (MABL), a novel
model-based MARL algorithm that uses a latent-variable world
model architecture. Crucially, our model leverages the insight that
vital global information — such as the observations of all agents and
any extra information available during training — does not itself
need to be used during execution, as long as we use it to inform
the representation that is used during execution. In this way, we
achieve centralized training with decentralized policy execution.

Concretely we propose a bi-level latent-variable world model.
The global latent state at the top level of the hierarchy encodes
information about the global state of the environment relevant to
the agent’s learning. The global latent state is used to inform the
learning of an agent latent state at the bottom level of the hierarchy
to encode agent-specific local information. The agent latent state
can be computed during execution time using just the agent’s ob-
servation, meaning that it is more informative (because it encodes
information derived from the global state during centralized train-
ing) but also more useful (because it can be computed and used in
a decentralized manner during execution time).

In this section, we first describe our novel bi-level world model
architecture and explain how it encodes relevant global information.
We then detail the training framework for the model and MARL
algorithm that is trained with the latent trajectories generated by
the model. Throughout this section, we describe the algorithm with
respect to an agent 𝑖 .

3.1 Bi-Level World Model
To effectively capture environment dynamics in multi-agent set-
tings, we introduce a novel bi-level architecture for the world model.
The bi-level world model embeds high-dimensional inputs into la-
tent representations to form a predictive model, as we now explain.

Themodel takes as input multi-agent trajectories of length𝑇 , rep-
resented as {𝑜𝑖𝑡 , 𝑠𝑡 , a𝑡−1, 𝑟 𝑖𝑡 }𝑇𝑡=1. The input trajectories are sampled
from a buffer, which we call the model buffer, populated through

interactions of the agents with the environment. Our model com-
prises of neural networks that serve two main functions: learning
the transition dynamics and supporting the trajectory generation
for MARL training. We refer to the former as Transition Dynamics
components and the latter as Auxiliary components. All compo-
nents are parameterized by neural networks with combined weights
𝜓 and are trained jointly. Each agent has a bi-level model, but the
parameters (𝜓) of model are shared among all agents to ensure
scalability to settings with a large number of agents.

3.1.1 Transition Dynamics Components. We first describe the
Transition Dynamics components, as illustrated in Figure 2. They
are the recurrent models, the representation model, the transition
model, and the observation model:

Recurrent Models:

Global: ℎ𝑔,𝑖𝑡 = 𝑓

𝑔,𝑖

𝜓
(ℎ𝑔,𝑖𝑡 |ℎ𝑔,𝑖

𝑡−1, 𝑧
𝑔,𝑖

𝑡−1, a𝑡−1)

Agent: ℎ𝑎,𝑖𝑡 = 𝑓
𝑎,𝑖

𝜓
(ℎ𝑎,𝑖𝑡 |ℎ𝑎,𝑖

𝑡−1, 𝑧
𝑎,𝑖
𝑡−1, 𝑎𝑡−1)

Representation Model:
(Posterior Distribution)

{
Global: 𝑧𝑔,𝑖𝑡 ∼ 𝑞𝜓 (𝑧

𝑔,𝑖
𝑡 |𝑠𝑡 , 𝑧𝑎,𝑖𝑡 , ℎ

𝑔,𝑖
𝑡)

Agent: 𝑧𝑎,𝑖𝑡 ∼ 𝑞𝜓 (𝑧𝑎,𝑖𝑡 |𝑜𝑖𝑡 , ℎ
𝑎,𝑖
𝑡)

Transition Model:
(Prior Distribution)

{
Global: 𝑧𝑔,𝑖𝑡 ∼ 𝑝𝜓 (𝑧

𝑔,𝑖
𝑡 |ℎ𝑔,𝑖𝑡)

Agent: 𝑧𝑎,𝑖𝑡 ∼ 𝑝𝜓 (𝑧𝑎,𝑖𝑡 |ℎ𝑎,𝑖𝑡 , 𝑧
𝑔,𝑖
𝑡)

Observation Model: 𝑜𝑖𝑡 = 𝑝𝜓 (𝑜𝑖𝑡 |ℎ
𝑎,𝑖
𝑡 , 𝑧

𝑎,𝑖
𝑡) .

Recurrent Models. To accurately learn multi-agent environment
dynamics, the latent states should not only capture information
about the current state of the environment but also past states
and actions, especially in partially observable settings. The goal of
the recurrent models is to capture this relevant historical informa-
tion with deterministic embeddings. The global recurrent model
propagates information about past environment states and joint
actions through its embeddings ℎ𝑔,𝑖𝑡 . In contrast, the agent recurrent
model captures information about the action-observation history
of the agent through ℎ𝑎,𝑖𝑡 . Both recurrent models are implemented
as Recurrent Neural Networks (RNNs) [24], and the embeddings
are computed as hidden states of the RNNs.

Representation Model. The representation model learns the over-
all posterior distribution, which we factorise into global and agent
posterior distributions over the global (𝑧𝑔,𝑖𝑡) and agent (𝑧𝑎,𝑖𝑡) latent
states, as they are potentially easier to learn. We implement the
posterior latent states as vectors of multiple categorical variables
as in [13].

Transition Model. The role of the transition model is to predict
future global and agent latent states without access to the envi-
ronment global state and the agent observation that causes them.
This way, the transition model can be used to generate synthetic
trajectories for policy learning. Specifically, it learns the overall
prior distribution over global (𝑧𝑔,𝑖𝑡) and agent (𝑧𝑎,𝑖𝑡) latent states,
factorised into global and agent prior distributions, similar to the
posterior. One key difference between the posterior latent states
and the prior latent states is that 𝑧𝑔,𝑖𝑡 is conditioned on 𝑠𝑡 and 𝑧𝑎,𝑖𝑡
is conditioned on 𝑜𝑖𝑡 . As with the representation model, the prior
latent states are vectors of multiple categorical variables.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1867

Observation Model. The observation model outputs a prediction
of the current observation 𝑜𝑖𝑡 , given the agent embedding ℎ𝑎,𝑖𝑡 and
the agent posterior latent state 𝑧𝑎,𝑖𝑡 . It is required to train the bi-level
model using amortized variational inference.

Benefits of Bi-Level Structure. At each timestep 𝑡 , the agent prior
latent state 𝑧𝑎,𝑖𝑡 is conditioned on the global prior latent state 𝑧𝑔,𝑖𝑡 in a
top-down fashion. Simultaneously, the global posterior latent state
𝑧
𝑔,𝑖
𝑡 is conditioned on the agent prior latent state 𝑧𝑎,𝑖𝑡 in a bottom-up
fashion. This conditioning ensures a flow of information between
the top and bottom levels of the latent-variable model, leading to a
structured hierarchy of latent states. We design the representation
model to enable inference of the agent posterior latent 𝑧𝑎,𝑖𝑡 during
execution without computing 𝑧𝑔,𝑖𝑡 . The latent-variable model thus
incorporates relevant global information without violating CTDE.

3.1.2 Auxiliary Components. The goal of our model is to gen-
erate synthetic trajectories for MARL training. At a minimum, to
learn how to act using synthetic trajectories, MARL agents addition-
ally require feedback in terms of reward and knowledge of whether
a state is terminal [12, 13]. Furthermore, in some environments,
the availability of actions changes at each timestep [7]. As a result,
we include auxiliary components in our model for predicting these
values over trajectories.

The auxiliary components are implemented as neural networks,
one each for predicting the reward, episode termination, and avail-
able actions at each timestep 𝑡 . We predict rewards using a reward
predictor network that outputs a continuous value 𝑟 𝑖𝑡 . Empirically,
we find that feeding just 𝑧𝑎,𝑖𝑡 and ℎ𝑎,𝑖𝑡 to the reward predictor results
in better overall performance. The termination predictor predicts
whether the current state is terminal or not by outputting 𝛾𝑖𝑡 , a
binary value that is 1 if the episode terminates at time 𝑡 . The avail-
able action predictor predicts 𝐴𝑠,𝑖𝑡 , a vector of size 𝐴, each value
of which denotes whether that action is available at time 𝑡 . Both
the termination and available action predictors are implemented as
Bernoulli distributions, and take as input, 𝑧𝑎,𝑖𝑡 , 𝑧

𝑔,𝑖
𝑡 , ℎ

𝑎,𝑖
𝑡 and ℎ𝑔,𝑖𝑡 .

Though not used to generate trajectories, our model also includes
an action decoder neural network to reconstruct each agent’s action
𝑎𝑖𝑡 as an auxiliary component. As described in prior work [7, 16],
the action decoder encourages the model to encode agent-specific
information into the latent states. It does so by maximizing mutual
information between each agent’s latent state and its action. The
auxiliary components are:

Reward Predictor: 𝑟 𝑖𝑡 ∼ 𝑝𝜓 (𝑟 𝑖𝑡 |𝑧
𝑎,𝑖
𝑡 , ℎ

𝑎,𝑖
𝑡)

Termination Predictor: 𝛾𝑖𝑡 ∼ 𝑝𝜓 (𝛾𝑖𝑡 |𝑧
𝑎,𝑖
𝑡 , 𝑧

𝑔,𝑖
𝑡 , ℎ

𝑎,𝑖
𝑡 , ℎ

𝑔,𝑖
𝑡)

Available Action Predictor: 𝐴
𝑠,𝑖
𝑡 ∼ 𝑝𝜓 (𝐴𝑠,𝑖𝑡 |𝑧𝑎,𝑖𝑡 , 𝑧

𝑔,𝑖
𝑡 , ℎ

𝑎,𝑖
𝑡 , ℎ

𝑔,𝑖
𝑡)

Action Decoder: 𝑎𝑖𝑡 ∼ 𝑝𝜓 (𝑎𝑖𝑡 |𝑧
𝑎,𝑖
𝑡 , 𝑧

𝑔,𝑖
𝑡 , ℎ

𝑎,𝑖
𝑡 , ℎ

𝑔,𝑖
𝑡) .

3.2 Training the Model
Having described the bi-level model architecture, we now explain
the loss function used to train the model. We train all components of
our model jointly with the loss L(𝜓). The loss is a sum of multiple
terms. We write the total loss L(𝜓) as:

L(𝜓) = LELBO + L𝑟𝑡 + L𝛾𝑡 + L
𝐴̂𝑡

+ L𝑎𝑡 .

The first term is the ELBO loss LELBO, which trains the transi-
tion dynamics components to maximize the ELBO under the data
generating distribution 𝑝 (𝑜𝑖1:𝑇 |a0:𝑇−1) using amortized variational
inference. We provide a detailed derivation of the ELBO in Appen-
dix A. We write it as:

LELBO = −
𝑇∑︁
𝑡=1

log𝑝𝜓 (𝑜𝑖𝑡 |𝑧
𝑎,𝑖
𝑡 , ℎ

𝑎,𝑖
𝑡)

+ 𝐷𝐾𝐿

(
𝑞𝜓 (𝑧𝑎,𝑖𝑡 |𝑜𝑖𝑡 , ℎ

𝑎,𝑖
𝑡) | |𝑝𝜓 (𝑧𝑎,𝑖𝑡 |ℎ𝑎,𝑖𝑡 , 𝑧

𝑔,𝑖
𝑡)

)
+ 𝐷𝐾𝐿

(
𝑞𝜓 (𝑧

𝑔,𝑖
𝑡 |𝑠𝑡 , 𝑧𝑎,𝑖𝑡 , ℎ

𝑔,𝑖
𝑡) | |𝑝𝜓 (𝑧

𝑔,𝑖
𝑡 |ℎ𝑔,𝑖𝑡)

)
.

The first term in LELBO corresponds to maximizing the log like-
lihood of the observations, given 𝑧𝑎,𝑖𝑡 and ℎ𝑎,𝑖𝑡 . The second and third
terms together minimize the KL divergence (𝐷𝐾𝐿) between the
overall prior and posterior distributions, 𝑝𝜓 (.) and 𝑞𝜓 (.). We have
two KL divergence terms as we factorize the overall prior and pos-
terior distributions into global and agent distributions. To ensure
that the distributions are learnt effectively, we use KL balancing
[13].

The remaining terms in L(𝜓) train the auxiliary components to
maximize the log likelihoods of their corresponding targets, given
the latent states from the representation model and the determinis-
tic embeddings from the recurrent models. These are:

Reward: L𝑟𝑡 = −
𝑇∑︁
𝑡=1

log𝑝𝜓 (𝑟 𝑖𝑡 |𝑧
𝑎,𝑖
𝑡 , ℎ

𝑎,𝑖
𝑡)

Termination: L𝛾𝑡 = −
𝑇∑︁
𝑡=1

log𝑝𝜓 (𝛾𝑖𝑡 |𝑧
𝑎,𝑖
𝑡 , 𝑧

𝑔,𝑖
𝑡 , ℎ

𝑎,𝑖
𝑡 , ℎ

𝑔,𝑖
𝑡)

Available action: L
𝐴̂𝑡

= −
𝑇∑︁
𝑡=1

log𝑝𝜓 (𝐴𝑠,𝑖𝑡 |𝑧𝑎,𝑖𝑡 , 𝑧
𝑔,𝑖
𝑡 , ℎ

𝑎,𝑖
𝑡 , ℎ

𝑔,𝑖
𝑡)

Action decoder: L𝑎𝑡 = −
𝑇∑︁
𝑡=1

log𝑝𝜓 (𝑎𝑖𝑡 |𝑧
𝑎,𝑖
𝑡 , 𝑧

𝑔,𝑖
𝑡 , ℎ

𝑎,𝑖
𝑡 , ℎ

𝑔,𝑖
𝑡) .

3.3 Learning Multi-Agent Behavior
A benefit of our method is that model learning is independent of
the MARL algorithm used for policy learning. This allows us to
use any off-the-shelf value-based or actor-critic MARL algorithm.
In this section, we explain how we can train a generic actor-critic
MARL algorithm using latent trajectories generated by our model.

Each agent is equipped with a policy, or actor, 𝜋𝑖
𝜃
, which is

implemented as a neural network with parameters 𝜃 and trained to
maximize the MARL objective. The actor outputs an action:

𝑎𝑖𝑡 ∼ 𝜋𝜃 (𝑎𝑖𝑡 |𝑧
𝑎,𝑖
𝑡 /𝑧𝑎,𝑖𝑡 , ℎ

𝑎,𝑖
𝑡) .

MABL infers 𝑧𝑎,𝑖𝑡 solely from its current observation and its agent
embedding (ℎ𝑎,𝑖𝑡), facilitating decentralized policy execution. Each
agent is also equippedwith a critic𝑉 𝑖

𝜙
that is represented by a neural

network with parameters 𝜙 and estimates the value function:

𝑉 𝑖𝑡 ∼ 𝑉 𝑖
𝜙
(𝑧𝑖𝑡 , ℎ

𝑎,𝑖
𝑡 , ℎ

𝑔,𝑖
𝑡) .

As the critic is centralized, its input is a concatenation of the global
latent state and the agent latent state, which we represent by 𝑧𝑖𝑡 . As

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1868

Algorithm 1MABL: Learning a Multi-Agent Bi-Level World Model
1: Initialize shared actor 𝜋𝜃 , critic 𝑉𝜙 , bi-level model 𝑀𝜓 and

model buffer D
2: for 𝑛 ∈ 𝑁 episodes do ⊲ Environment Interaction
3: Collect an episode of environment data using 𝜋𝜃
4: Store data in D
5: for𝑚 ∈ 𝑀 model training steps do ⊲ Model Training
6: Draw BM sequences uniformly from D
7: Train model𝑀𝜓 on BM via loss L(𝜓)
8: end for
9: for 𝑟 ∈ 𝑅 policy learning steps do ⊲ MARL Training
10: Draw BR sequences uniformly from D
11: Generate latent trajectoriesDL from BR using𝑀𝜓 , 𝜋𝜃
12: Compute MARL objective on DL
13: Update 𝜋𝜃 and 𝑉𝜙 using the MARL objective
14: end for
15: end for

in [7], the critic includes a self-attention mechanism [39]. The actor
and critic network parameters are shared by all agents to facilitate
faster training in tasks that involve large numbers of agents [46].

If we were to instead use a value-based MARL algorithm (e.g, Q-
MIX [31]), for policy learning, each agent’s critic can be represented
by 𝑄𝑖 (𝑧𝑎,𝑖𝑡 , ℎ

𝑎,𝑖
𝑡) and the global critic can be represented by:

𝑄𝑡𝑜𝑡 (𝑄1 (𝑧𝑎,1𝑡 , ℎ
𝑎,1
𝑡), ..., 𝑄𝑛 (𝑧𝑎,𝑛𝑡 , ℎ

𝑎,𝑛
𝑡), 𝑧𝑔,1𝑡 , ..., 𝑧

𝑔,𝑛
𝑡).

The trajectories used for training consist of latent states gener-
ated by the model. We now detail the iterative procedure [11, 33]
outlined in Algorithm 1 that we use for training MABL.

First, the MARL agents interact with the environment to collect
real environment data (Lines 3 and 4). These trajectories are stored
in the model bufferD to use for model training. Second, the bi-level
model is trained using trajectories sampled from D (Lines 5-8). We
then freeze the weights of the bi-level model in preparation for
MARL training.

Third, the MARL training occurs using synthetic trajectories
of length 𝐻 generated by the model (Lines 9-14). Specifically, B𝑅
sequences in the form of states, observations, and previous joint
actions are drawn from D (Line 10). From each tuple of state, ob-
servations, and previous joint actions in a sequence, corresponding
global and agent latent states are then computed by the represen-
tation model. For 𝐻 − 1 timesteps that follow, at each timestep,
𝑡 , the agents choose a joint action a𝑡 according to their policies.
The transition model and recurrent models then predict the next
latent states 𝑧𝑎,𝑖

𝑡+1 and 𝑧
𝑔,𝑖

𝑡+1. This process is repeated to generate
trajectories of latent states of length 𝐻 starting from each tuple.
Then, the auxiliary components of the model take as input the
necessary components to predict rewards, termination conditions,
and available actions to generate latent trajectories D𝐿 of the form
{𝑧𝑎,𝑖1 , 𝑧

𝑔,𝑖

1 , 𝑧
𝑎,𝑖
2:𝐻 , 𝑧

𝑔,𝑖

2:𝐻 , ℎ
𝑎,𝑖
1:𝐻 , ℎ

𝑔,𝑖

1:𝐻 , 𝑟
𝑖
1:𝐻 , 𝛾

𝑖
1:𝐻 , 𝐴

𝑖
1:𝐻 }

𝑛

𝑖=1.
Finally, the MARL algorithm is trained on D𝐿 (Lines 12 and 13)

following the CTDE paradigm. We choose the popular actor-critic
MARL algorithm Multi-Agent PPO (MAPPO) [46] for policy learn-
ing, as it has achieved strong results in various multi-agent tasks.

4 EXPERIMENTAL EVALUATION
In this section, we present an empirical study of the sample effi-
ciency of MABL against state-of-the-art algorithms on three chal-
lenging benchmarks: SMAC [32], Flatland [26], and MAMuJoCo
[30]. First, we perform a comparative evaluation of MABL against
other CTDE multi-agent latent-variable world models. On observ-
ing strong performance gains, we then ask whether MABL would
perform similarly to or better than even CTCE multi-agent latent-
variable world models whose agents have access to the observations
of all other agents during execution. Since MABL is a CTDEmethod,
it is at a natural disadvantage in such a comparison. We then per-
form ablation studies to examine the attributes of the bi-level model
that lead to MABL’s performance gains. In summary, our empirical
analysis is aimed at answering the following questions:

RQ1: Does MABL lead to better sample efficiency compared to
the state-of-the-art CTDE multi-agent latent-variable world
models?

RQ2: Does MABL lead to comparable sample efficiency com-
pared to the state-of-the-art CTCEmulti-agent latent-variable
world models?

RQ3: Is the bi-level latent-variable model responsible for the
improved sample efficiency? If so, what features of the model
lead to these improvements?

Environments. We briefly describe the three benchmarks we use
(SMAC, Flatland, and MAMuJoCo) and provide a detailed descrip-
tion in the Appendix B.3. For the SMAC benchmark, we conduct
experiments on two Easy maps (2s vs 1sc and 3s vs 4z), one Hard
map (3s vs 5z), and two Super Hard maps (Corridor and 3s5z vs 3s6z).
We defer comparison plots for the 2s vs 1sc to Appendix B.4, as it
is the easiest task across all environments and serves as a sanity
check.

The Flatland benchmark is a discrete action-space 2D grid en-
vironment that simulates train traffic on a railway network. Each
agent controls a train and receives a positive reward on reaching its
destination and penalties for colliding with other agents or being
late. We conduct experiments with the 5 and 10 agent variants.
Both SMAC and Flatland have discrete action spaces. We also eval-
uate our algorithm on MAMuJoCo [30], a continuous multi-agent
robotic control benchmark where each agent controls a portion
of the joints that together control the robot. We conduct experi-
ments on the 2-agent Humanoid and 2-agent Humanoid Standup
environments.

Experimental Details. Because we aim to investigate improve-
ments in sample efficiency, we adopt the low data regime estab-
lished in prior work [7, 12, 15, 42]. In our experiments, we train
each algorithm across 3 independent runs with the same number of
environment steps. We ensure that each algorithm that uses world
models also generates the same number of synthetic samples for
training. In our comparisons, we use the same MARL algorithm,
MAPPO, for policy learning. We detail the hyperparameters, neural
network architecture, and implementation specifics in Appendix B
and make our code available here.

Baselines. We compare MABL against state-of-the-art CTDE and
CTCE baselines. The CTDE baselines are Dreamer-v2 [13] and

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1869

Figure 3: Comparisons against CTDE baselines across all environments. Curves show the mean over 3 independent runs, and
shaded regions show the minimum and maximum scores. X axis shows the number of steps in the environment; Y axis denotes
the win-rate for SMAC, and the reward for Flatland and MAMuJoCo. Plots are smoothed using exponential moving average.
MABL not only achieves better overall performance than the baselines, but does so more rapidly, underscoring its sample
efficiency.

MAPPO [46]. Dreamer-v2 is a state-of-the-art single-agent model-
based RL algorithm, which we implement as a multi-agent algo-
rithm by learning a latent-variable world model independently for
each agent. Including MAPPO trained solely on real environment
data as a baseline serves to examine the effectiveness of our model-
based baselines, all of which train MAPPO on synthetic latent
trajectories. The CTCE baselines are MAMBA [7] and MAG [42],
which are the current state-of-the-art in MARL with latent-variable
world models. MAMBA [7] uses a transformer encoder block to
aggregate observations of all agents to compute latent states for
each agent, which are then input to agent policy networks. Because
MAMBA requires the transformer block to compute latent states
during execution, each agent requires access to the inputs of other
agents during execution, resulting in centralized policy execution.
MAG [42] is a recent work that builds upon MAMBA to achieve
state-of-the-art sample efficiency on SMAC. MAG has one world
model per agent, with a separate set of model parameters per agent.
It uses the same model architecture as MAMBA, inheriting the
CTCE property from it. The difference from MAMBA is that the
world models are now trained jointly to interact with each other,
taking into account the long-term joint effect of local predictions
at each step to generate trajectories with lower cumulative errors
[42]. We provide a conceptual comparison of all model-based MARL
algorithms we consider in Appendix B.5.

4.1 Performance Comparison: CTDE methods
We now compare MABL with CTDE baselines. In Figure 3, we
present the performance of MABL and CTDE baselines on the
entirety of the low data regime. In Table 1, we summarize the final
performance of all algorithms over the last 15k environment steps.

These results show that, except on the Easy 2s vs 1sc SMAC map,
MABL consistently outperforms all CTDE baselines in terms of
sample efficiency by large margins, answering RQ1. On the Easy 2s

vs 1sc map, the win-rate of MABL is close to the best-performing
baseline MAPPO while Dreamer-v2 fails to learn a good policy. In
addition, MABL initially achieves a high win-rate of 80% nearly 2x
faster than MAPPO on this task (Appendix B.4). The performance
gains of MABL are significant in challenging SMAC environments
such as Corridor and 3s5z vs 3s6z, as well as HumanoidStandup,
demonstrating MABL’s capability to handle complex tasks.

The superior overall score and sample efficiency of MABL reveals
the benefit of incorporating global information into the representa-
tion learning of latent-variable world models.

4.2 Performance Comparison: CTCE Methods
Given the surprisingly strong performance of MABL compared
with CTDE baselines, we now compare MABL against state-of-the-
art CTCE methods. CTCE methods access global information at
execution time, putting our method at a disadvantage.

ShouldMABL perform comparably or better than CTCEmethods,
it would suggest that the bi-level model captures more pertinent
information in its latent states for policy learning than existing
state-of-the-art techniques.

We plot the performance of MABL compared to CTCE baselines
in Figure 4. Surprisingly, from Table 1 and Figure 4, we observe that
MABL achieves superior or comparable sample efficiency to both
MAMBA andMAG on all benchmarks. MABL outperformsMAMBA
on all environments except on the Easy 2s vs 1sc SMACmap and the
Super Hard 3s5z vs 3s6z map. MABL and MAMBA achieve nearly
a 100% win-rate on 2s vs 1sc. On 3s5z vs 3s6z, both algorithms
achieve a win-rate of nearly 20% after just 450k environment steps.

We see a similar trend in performance when comparing MABL
and MAG. MABL outperforms MAG on Flatland, MAMuJoCo, and
all SMAC maps — except 2s vs 1sc, where both algorithms achieve
nearly perfect performance, and the Super Hard Corridor map,
where they exhibit similar levels of performance. Overall, MABL

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1870

CTDE CTCE
Benchmark Map/Environment Steps MABL Dreamer-v2 MAPPO MAMBA MAG

SMAC

2s vs 1sc 100k 92±7 37±40 98±3 94±7 87±23
3s vs 4z 100k 83±18 4±11 0 24±23 30±32
3s vs 5z 200k 31±30 14±24 0 2±8 5±13
Corridor 450k 52±31 5±16 0 31±30 55±27
3s5z vs 3s6z 450k 19±17 0 0 19±27 16±23

Flatland 5 agents 100k 51±27 40±26 22±22 29±27 19±19
10 agents 450k 31±19 22±20 18±16 29±27 13±14

MAMuJoCo Humanoid 200k 550±90 304±23 429±36 328±27 423±104
HumanoidStandup 800k 106k±29k 54k±11k 30k±0.3k 83k±30k 76k±22k

Table 1: Comparison of the average win-rate (% for SMAC)/reward, and standard deviation in win-rate/reward over the last 15k
environment steps across environments. Numbers in bold indicate the highest mean performance among all CTDE methods.
Except on the Easy 2s vs 1sc map, MABL outperforms CTDE baselines on all environments. MABL also either outperforms or
performs similarly to the best CTCE baseline on all tasks.

Figure 4: Comparisons against CTCE baselines across all environments. Curves represent the mean over 3 independent runs,
and shaded regions show the minimum and maximum scores. X axis shows the number of environment steps; Y axis denotes
the win-rate for SMAC and the reward for Flatland and MAMuJoCo. Plots are smoothed using exponential moving average.
MABL either matches or outperforms the CTCE baselines across all environments.

either matches or outperforms even state-of-the-art CTCE methods,
answering RQ2 in the affirmative.

A surprising observation is that the CTDE baselines perform
better overall than the CTCE baselines on the 5-agent Flatland
task. This result suggests that, in relatively less complex environ-
ments where each agent’s observation has enough information
to learn good behavior, simpler algorithms like Dreamer-v2 may
excel in representation learning compared to MAMBA or MAG.
The results also show that CTCE baselines perform more effective
representation learning than the CTDE baselines on more com-
plex environments. However, MABL demonstrates consistent high
performance across all environments, pointing to improved repre-
sentation learning compared to both CTDE and CTCE baselines. In
the next section, we investigate this further through an ablation
study.

4.3 Ablation Study
Given the performance of MABL compared to both CTDE and
CTCE methods, we now seek to understand the attributes of MABL
model that contribute most to these gains in sample efficiency.
Suspecting that better representation learning using the bi-level
model leads to these gains, we ablate two attributes of our model.

First, we ablate the global latent state. Our model learns a bi-level
latent space and is capable of encoding global information into the
upper-level global latent state. To understand the importance of the
global latent state for policy learning, we remove the upper level.
The model we obtain is the same as Dreamer-v2 and learns only
the agent latent state with access to the observation of the agent.
In our plots, we refer to this variant as Dreamer-v2.

Second, we suspect that learning one global latent state per agent
enables better representation learning, as the model can more read-
ily incorporate information relevant to each agent into its global

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1871

Figure 5: Training curves of ablation studies, smoothed using an exponential moving average. X axis denotes the number of
environment steps. Shaded regions show the maximum and minimum win-rate. MABL outperforms all ablations, implicating
the crucial role of the bi-level model.

latent state. To test this, we modify the upper level of the model
such that we learn a single shared global latent state instead of
𝑁 separate ones. Because each of the 𝑁 lower-level agent latent
states is conditioned on the single global latent, the model cannot
encode relevant global information for each agent into the agent’s
respective global latent. We call the resulting variant MABL-SG
(Single Global).

We perform ablation studies on one SMAC map from each level
of difficulty: 3s vs 4z (Easy), 3s vs 5z (Hard), and Corridor (Super
Hard). We visualize the training curves in Figure 5. On all maps,
MABL achieves greater sample efficiency than the two variants.
Because Dreamer-v2 exhibits the lowest performance overall, we
believe that the bi-level model’s ability to incorporate global in-
formation through the global latent state is most responsible for
MABL’s gains in sample efficiency. The decreased performance
of MABL-SG compared to MABL supports our hypothesis that
learning per-agent global latents, as opposed to a single shared
global latent, improves policy learning. We suspect that the use
of a single, shared global latent facilitates the encoding of noisy
and irrelevant information, which impedes performance. Taken
together, the superior performance of MABL highlights the crucial
role of the bi-level model. In particular, these experiments suggest
that the bi-level model successfully incorporates relevant global
information into the global latent and learns a structured hierarchy
of latent states, answering RQ3.

5 RELATEDWORK
The majority of work in MARL focuses on the model-free set-
ting [8, 22, 28]. Despite their impressive performance, model-free
MARL algorithms often suffer from a high sample complexity. Sev-
eral approaches have been developed to address this issue. One
line of work [31, 34, 36, 45] uses the insight of value decomposi-
tion [5]: value functions can be decomposed into simpler functions
which can be learned more easily. Another line of work focuses
on actor-critic methods [8, 22, 30, 46] that learn a centralized critic
conditioned on global state and joint action. Because we can use
any model-free MARL algorithm for learning multi-agent policies
in latent space, these techniques are complementary to our contri-
butions.

In MARL, latent-variable models have shown promise in learn-
ing the reward function in inverse RL [10] and representations
of competing agents’ strategies [43]. We focus on latent-variable
world models in MARL. While prior work [19] uses a multi-step

latent-variable world model in 2-player games to predict future joint
observations and actions, it is only applicable in 2-agent scenarios,
does not generate synthetic data, and does not follow the CTDE
paradigm. Only recently have latent-variable world models been
used to learn environment dynamics in Markov games to improve
sample efficiency [7, 42]. These approaches are based on direct
extensions of single-agent methods that use latent-variable world
models [13]. The dynamics of each agent is learned as though the
agent is in a POMDP, and deep learning architectures, specifically,
the transformer [21, 39], aggregate latent states from all agents to
reduce non-stationarity and model errors [7, 42].

However, latent-variable models designed this way cannot be
used for decentralized execution, as they require access to all obser-
vations to predict latent states. They also cannot incorporate any
additional global information available during training In multi-
agent tasks such as the global state in SMAC, for example, which is
crucial to learn successful behaviors from latent states.

6 CONCLUSION
We presented a novel model-based MARL algorithm, MABL, that
learns policies purely using latent trajectories generated by a bi-
level latent-variable world model. Our model effectively learns
environment dynamics in multi-agent tasks by factorizing the latent
space into a high-level global latent state and a low-level agent
latent state. We evaluated MABL across a variety of tasks in SMAC,
Flatland and MAMuJoCo. MABL, which is a CTDE method, greatly
outperforms state-of-the-art CTDE baselines in sample efficiency
on all environments except for the simplest SMAC map, 2s vs 1sc.
MABL either outperforms or performs similarly to even state-of-
the-art CTCE baselines in sample efficiency across all environments.
While we achieve gains in sample efficiency, the learned latent states
are not interpretable. To deploy our method in a real-world scenario,
future work should involve improving representation learning to
achieve interpretability of the latent space.

7 ACKNOWLEDGEMENTS
This research was supported in part by NSF IIS-2046640 (CAREER).
We thank NVIDIA for providing computing resources. We thank
Robert Bosch Center for Data Science and AI for supporting author
Aravind Venugopal’s Post-Baccalaureate Fellowship for part of the
duration of this work. We thank Rex Chen for his contributions
towards setting up the computational resources for the experiments.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1872

REFERENCES
[1] Adrian K Agogino and Kagan Tumer. 2012. A multiagent approach to managing

air traffic flow. Autonomous Agents and Multi-Agent Systems 24, 1 (2012), 1–25.
[2] J Andrew Bagnell and Jeff G Schneider. 2001. Autonomous helicopter control

using reinforcement learning policy search methods. In Proceedings 2001 ICRA.
IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164),
Vol. 2. IEEE, 1615–1620.

[3] Anthony R Cassandra, Leslie Pack Kaelbling, and Michael L Littman. 1994. Acting
optimally in partially observable stochastic domains. In Aaai, Vol. 94. 1023–1028.

[4] Dane Corneil, Wulfram Gerstner, and Johanni Brea. 2018. Efficient model-based
deep reinforcement learning with variational state tabulation. In International
Conference on Machine Learning. PMLR, 1049–1058.

[5] Thomas G Dietterich. 2000. Hierarchical reinforcement learning with the MAXQ
value function decomposition. Journal of artificial intelligence research 13 (2000),
227–303.

[6] Joris Dinneweth, Abderrahmane Boubezoul, René Mandiau, and Stéphane Espié.
2022. Multi-agent reinforcement learning for autonomous vehicles: A survey.
Autonomous Intelligent Systems 2, 1 (2022), 27.

[7] Vladimir Egorov and Aleksei Shpilman. 2022. Scalable Multi-Agent Model-Based
Reinforcement Learning. arXiv preprint arXiv:2205.15023 (2022).

[8] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shi-
mon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 32.

[9] Sven Gronauer and Klaus Diepold. 2022. Multi-agent deep reinforcement learning:
a survey. Artificial Intelligence Review (2022), 1–49.

[10] Nate Gruver, Jiaming Song, Mykel J Kochenderfer, and Stefano Ermon. 2020.
Multi-agent adversarial inverse reinforcement learning with latent variables.
In Proceedings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems. 1855–1857.

[11] David Ha and Jürgen Schmidhuber. 2018. World models. arXiv preprint
arXiv:1803.10122 (2018).

[12] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. 2019.
Dream to Control: Learning Behaviors by Latent Imagination. In International
Conference on Learning Representations.

[13] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. 2020.
Mastering atari with discrete world models. arXiv preprint arXiv:2010.02193
(2020).

[14] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. 2019. When to Trust
Your Model: Model-Based Policy Optimization. Advances in Neural Information
Processing Systems 32 (2019), 12519–12530.

[15] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H
Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski,
Sergey Levine, et al. 2019. Model-based reinforcement learning for atari. arXiv
preprint arXiv:1903.00374 (2019).

[16] Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua
Bengio, Devi Parikh, and Dhruv Batra. 2019. Learning dynamics model in re-
inforcement learning by incorporating the long term future. arXiv preprint
arXiv:1903.01599 (2019).

[17] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[18] Maryam Kouzehgar, Malika Meghjani, and Roland Bouffanais. 2020. Multi-agent
reinforcement learning for dynamic ocean monitoring by a swarm of buoys. In
Global Oceans 2020: Singapore–US Gulf Coast. IEEE, 1–8.

[19] Orr Krupnik, Igor Mordatch, and Aviv Tamar. 2020. Multi-agent reinforcement
learning with multi-step generative models. In Conference on Robot Learning.
PMLR, 776–790.

[20] Alex Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. 2020. Stochastic
Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model.
Advances in Neural Information Processing Systems 33 (2020).

[21] Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. 2022. A survey of
transformers. AI Open (2022).

[22] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
2017. Multi-agent actor-critic for mixed cooperative-competitive environments.
arXiv preprint arXiv:1706.02275 (2017).

[23] Laëtitia Matignon, Laurent Jeanpierre, and Abdel-Illah Mouaddib. 2012. Coor-
dinated multi-robot exploration under communication constraints using decen-
tralized markov decision processes. In Twenty-sixth AAAI conference on artificial
intelligence.

[24] Larry Medsker and Lakhmi C Jain. 1999. Recurrent neural networks: design and
applications. CRC press.

[25] Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. 2023.
Model-based reinforcement learning: A survey. Foundations and Trends® in

Machine Learning 16, 1 (2023), 1–118.
[26] Sharada Mohanty, Erik Nygren, Florian Laurent, Manuel Schneider, Christian

Scheller, Nilabha Bhattacharya, Jeremy Watson, Adrian Egli, Christian Eichen-
berger, Christian Baumberger, et al. 2020. Flatland-RL: Multi-agent reinforcement
learning on trains. arXiv preprint arXiv:2012.05893 (2020).

[27] George E Monahan. 1982. State of the art—a survey of partially observable
Markov decision processes: theory, models, and algorithms. Management science
28, 1 (1982), 1–16.

[28] Kamal K Ndousse, Douglas Eck, Sergey Levine, and Natasha Jaques. 2021. Emer-
gent social learning via multi-agent reinforcement learning. In International
Conference on Machine Learning. PMLR, 7991–8004.

[29] Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V Al-
brecht. 2019. Dealing with non-stationarity in multi-agent deep reinforcement
learning. arXiv preprint arXiv:1906.04737 (2019).

[30] Bei Peng, Tabish Rashid, Christian A Schroeder de Witt, Pierre-Alexandre
Kamienny, Philip HS Torr, Wendelin Böhmer, and Shimon Whiteson. 2020.
FACMAC: Factored Multi-Agent Centralised Policy Gradients. arXiv preprint
arXiv:2003.06709 (2020).

[31] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2018. Qmix: Monotonic value function factori-
sation for deep multi-agent reinforcement learning. In International Conference
on Machine Learning. PMLR, 4295–4304.

[32] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Far-
quhar, Nantas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob
Foerster, and Shimon Whiteson. 2019. The starcraft multi-agent challenge. arXiv
preprint arXiv:1902.04043 (2019).

[33] Jürgen Schmidhuber. 1991. Curious model-building control systems. In Proc.
international joint conference on neural networks. 1458–1463.

[34] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung
Yi. 2019. Qtran: Learning to factorize with transformation for cooperative multi-
agent reinforcement learning. In International conference on machine learning.
PMLR, 5887–5896.

[35] Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, and John Langford.
2019. Model-based rl in contextual decision processes: Pac bounds and exponen-
tial improvements over model-free approaches. In Conference on learning theory.
PMLR, 2898–2933.

[36] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl
Tuyls, et al. 2017. Value-decomposition networks for cooperative multi-agent
learning. arXiv preprint arXiv:1706.05296 (2017).

[37] Richard S Sutton. 1991. Dyna, an integrated architecture for learning, planning,
and reacting. ACM Sigart Bulletin 2, 4 (1991), 160–163.

[38] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine
for model-based control. In 2012 IEEE/RSJ international conference on intelligent
robots and systems. IEEE, 5026–5033.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[40] TingwuWang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, YemingWen, Eric Lan-
glois, Shunshi Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. 2019. Bench-
marking model-based reinforcement learning. arXiv preprint arXiv:1907.02057
(2019).

[41] Xihuai Wang, Zhicheng Zhang, and Weinan Zhang. 2022. Model-based Multi-
agent Reinforcement Learning: Recent Progress and Prospects. arXiv preprint
arXiv:2203.10603 (2022).

[42] Zifan Wu, Chao Yu, Chen Chen, Jianye Hao, and Hankz Hankui Zhuo. 2023.
Models as Agents: Optimizing Multi-Step Predictions of Interactive Local
Models in Model-Based Multi-Agent Reinforcement Learning. arXiv preprint
arXiv:2303.17984 (2023).

[43] Annie Xie, Dylan Losey, Ryan Tolsma, Chelsea Finn, and Dorsa Sadigh. 2020.
Learning Latent Representations to Influence Multi-Agent Interaction. In Confer-
ence on Robot Learning.

[44] Xu Xu, Youwei Jia, Yan Xu, Zhao Xu, Songjian Chai, and Chun Sing Lai. 2020. A
multi-agent reinforcement learning-based data-driven method for home energy
management. IEEE Transactions on Smart Grid 11, 4 (2020), 3201–3211.

[45] Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong
Liu, and Hongyao Tang. 2020. Qatten: A general framework for cooperative
multiagent reinforcement learning. arXiv preprint arXiv:2002.03939 (2020).

[46] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.
2021. The surprising effectiveness of ppo in cooperative, multi-agent games.
arXiv preprint arXiv:2103.01955 (2021).

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1873

	Abstract
	1 Introduction
	2 Preliminaries
	3 Multi-Agent Bi-Level World Model
	3.1 Bi-Level World Model
	3.2 Training the Model
	3.3 Learning Multi-Agent Behavior

	4 Experimental Evaluation
	4.1 Performance Comparison: CTDE methods
	4.2 Performance Comparison: CTCE Methods
	4.3 Ablation Study

	5 Related Work
	6 Conclusion
	7 Acknowledgements
	References

