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ABSTRACT
We study facility location games with multiple groups in one dimen-

sion where an agent’s utility is not only decided by the distance

from the facility but also by their group members. The positive

effect of the interactions within a group is captured by positive
intra-group externalities. Our goal is to design a mechanism that

is non-manipulable and respects unanimity while (approximately)

optimizing an objective function. We consider three types of ma-

nipulation, misreporting only the location, misreporting only the

group membership, and misreporting both, under two social objec-

tives, the social utility and the minimum utility. For both objectives,

we achieve nearly tight bounds by either designing new mecha-

nisms or extending the existing mechanisms in terms of the first

two types of manipulation. As to the negative result, we show that

strategyproofness and unanimity are incompatible when each agent

can misreport both the location and the group membership, which

is independent of the objective functions.
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1 INTRODUCTION
Ubiquitous economic and social interpersonal situations involve

the concept of group and witness the interaction between mem-

bers within the same group [5, 17]. Consider an urban planner that

is planning to build a plaza to facilitate three surrounding neigh-

borhoods where a larger portion of the commodity price will be

refunded if there is a higher share of successful recommendations of

the commodity within the neighborhood. To maximize the overall

well-being of residents in the three neighborhoods, the planner

needs to maximize the sum of each resident’s benefit received from

the commodity itself as well as the added benefit of sharing via

intra-neighbor messaging. Moreover, sometimes instead of optimiz-

ing the overall welfare of agents, the planner also needs to consider

maximizing the minimum benefit among all residences in terms of
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the egalitarian welfare. In addition, the levels of internal interac-

tions may vary between groups in a collective scenario. Consider

the different roles that musicians play in the symphony. Solo and

ensemble sections stay united in harmony with various musical

effects: only the soloists’ own playing is audible to them while in

the ensemble, both the player and others in the same section are

audible, with the cooperation degree depending on which instru-

ment they are playing. For instance, members in Percussion play

distinct percussions individually at the same time and collaborate

less than in Strings, where members play together with the aim

of establishing diatonic harmony. To have a better radio reception,

the musicians in the ensemble want to make the position of the

microphone achieve an optimal balance corresponding to the type

of instrument between themselves and the other section members.

A simple way to model the above scenarios could be assum-

ing that there are some groups of agents and each group has an

intra-group externality, i.e., agents have positive effects on their

group members where the level of the effect is decided by a group

externality coefficient. The social designer needs to maximize the

overall welfare or the underprivileged agent’s welfare. Then there

comes a natural question:

How should a plannermake a decision, given the locations as well as
group memberships reported by the agents in the spirit of maximizing
the utilitarian or egalitarian welfare, meanwhile eliciting truthful
reporting?

The above question shares crucial components with a widely-

researched setting in algorithmic game theory: facility location

games. In this problem, each agent can be regarded as a point along

a real interval, and the goal is typically to select the location of the

facility to serve those agents. In facility location games, Li et al. [11]

first took the interaction between individual agents into considera-

tion. Zhou [18] considered the setting where an agent can decide

whether to participate in a group activity, and those who join the ac-

tivity will have interaction with other group participants, while the

utility of others depends only on the distance to the facility. How-

ever, one can see that such a binary division for agents is limited

since there are many scenarios that contain multiple groups with

potentially different coefficients of intra-group positive interaction,

such as the plaza positioning with more than two neighborhoods

and the microphone placement with diverse musical sections in a

symphony. Moreover, many common group division criteria such

as race, age, and political stance require us to consider multiple

groups. Hence, a more general setting is required to capture more

real-life applications.

1.1 Our Contribution
We study the facility location games with multiple groups where

the utility of each agent is not only decided by the distance from the

facility but also by the agents in the same group. We consider two
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utility objectives and three types of misreport. Table 1 summarizes

our results in this paper. Specifically,

• Results for maximizing the social utility:

– When we restrict the power of misreport to location only,

we extend the mechanism (GI-M) proposed by Zhou [18]

from two groups to𝑚 groups and prove the approximation

ratio of Ω(𝑚). Then we propose a newmechanism (GA-M)

with an approximation ratio of 3, where the new mecha-

nism can be viewed as putting the facility at the weighted

group median, and the weight is decided by both the group

size and the group externalities. Here we highlight our

work for the final mechanism (RGA-M), which improves

the upper bound significantly (from 3 to

√
3 ≈ 1.732).

Based on GA-M, RGA-M leverages regularization, a well-

known methodology in many other fields such as machine

learning, to avoid the situation that when agents are con-

centrated at both boundaries of the interval and there is

no significant difference between those two parts, GA-M

may locate the facility at one of the ends. We also give a

lower bound of 1.5 in this setting.

– Whenwe restrict the power of misreport to groupmember-

ship only, we present a unanimous, strategyproof mech-

anism (Middle-M) which puts the facility at the middle

point between the leftmost agent location and the right-

most agent location and exhibits an approximation ratio

of 2. Through an analysis of a particular generic profile set,

we also prove a lower bound of 2, implying that Middle-M

is the best possible.

– When we do not restrict the power of misreport, we prove

that strategyproofness and unanimity are incompatible

by constructing five interlinked profile sets in an intricate

way to make a contraction.

• Results for maximizing the minimum utility:

– When we restrict the power of misreport to location only,

we first extend the mechanism (Marginal-M) proposed by

Zhou [18] from two groups to𝑚 groups and prove an ap-

proximation ratio of 2. We highlight our work for the pro-

posed mechanism (Ternary-M), which puts emphasis on

the agent with the highest possibility to achieve minimum

utility and leverages some fixed points to avoid cognitive

bias. Ternary-M has a precise case division and improves

the approximation ratio to

√
6

3
+ 1 ≈ 1.816. We also give

a lower bound of
5

3
≈ 1.667, implying that Ternary-M is

nearly optimal.

– Whenwe restrict the power of misreport to groupmember-

ship only, we reuse Middle-M and prove an approximation

ratio of 2. We also give the lower bound of 2, implying

Middle-M is also the best possible in this setting.

– When we do not restrict the power of misreport, the nega-

tive result shown in the social utility also works here since

it is independent of objectives.

In short, due to the nature of the utility function, the upper bound

of 2 is reasonably easy to be guaranteed by simply locating the

facility at the middle point of the interval for both objectives. How-

ever, studying beyond 2-approximation faces more difficulties. We

overcome the obstacles by 1) proposing sophisticated mechanisms

with approximation ratio better than 2 (misreporting only the lo-

cation) and 2) proving tight lower bounds of 2 (misreporting only

the group membership) to show no better mechanism can be guar-

anteed. We emphasize that both directions are challenging, which

requires introducing complex situation analysis to design mecha-

nisms, employing the distinct profile set constructions to tighten

the bounds, and proposing fundamental lemmata to help bridge the

gap between group deviations and individual deviation in proofs.

Here we also show the results proposed in Zhou [18] (Table 2).

We can observe that most of our results are better than theirs (with

smaller upper bounds and larger lower bounds) though we consider

a more general setting.

Objective
Restrict the Power of Misreport to

Location only Group only Both

Social Utility
UB: 1.732

†
(RGA-M)

LB: 1.5

UB: 2 (MIDDLE-M)

LB: 2
∞

Min Utility
UB: 1.816

♣
(TERNARY-M)

LB: 1.667
♦

UB: 2 (MIDDLE-M)

LB: 2
∞

Table 1: A summary of our results. The exact bound of
†:
√
3, ♣:

√
6

3
+1, ♦: 5

3
. RGA-M,MIDDLE-M, and TERNARY-M are

the abbreviations of the Regularized Group-Accumulating
Mechanism, the Middle-Point Mechanism, and the Ternary
Mechanism respectively.

Objective
Restrict the Power of Misreport to

Location only Group only Both

Social Utility
UB: 3

LB: 1.2

UB: 2

LB: 2
Ω(𝑛2)

Min Utility
UB: 2

LB: 1.5

UB: 2

LB: 1.5
∞

Table 2: A summary of results in Zhou [18].

1.2 Related Work
Procaccia and Tennenholtz [14] first studied approximate mech-

anism design in facility location games, where all agents strive

for securing the facility in the closest proximity to themselves. Li

et al. [11] studied facility location games with externalities where

agents have effects on each other. However, as they did not consider

groups, they only consider the location misreporting. Moreover,

most of their results are negative so it is still a big challenge to

design mechanisms with group externalities. Zhou [18] studied

facility location games with group externalities where there is one

group activity with particular internal connections accessible to

agents, and two types of agents are separated based on whether or

not they participate in the group activity, which could be regarded

as a special case of multiple groups. Our model can be seen as the

classic facility location game with a novel agent preference struc-

ture. There are some other works with different agent preferences,

such as dual preferences [6, 21], and fractional preferences [9].

There are also some works studying facility location games with

group notions. Filos-Ratsikas and Voudouris [8] and Filos-Ratsikas

et al. [7] introduced a setting in which the facility location is se-

lected as part of a distributed process: first, agents within groups

(or districts) decide on a representative location and then the mech-

anism, oblivious to the actual locations of the agents, decides on

a location from the set of representatives. Zhou et al. [20] studied
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mechanism design in facility location games with group-fair objec-

tives. Zhou et al. [19] studied facility location games with altruistic

agents, in which one of the agent cost functions is defined as the

sum of the distance in a group, which can be viewed as the special

case where all group externalities are equal to 1. On the other hand,

they considered overlapping groups where each agent can belong

to multiple groups and studied both the classical and the group-fair

social objectives. Hence, our work and theirs do not degenerate to

each other.

More works in facility location games can be found in a recent

survey [4]. Moreover, many other fields in both economy and com-

puter science study externalities, such as cake cutting [3, 12], fair

allocation [10, 13], and matching [15, 16].

1.3 Paper Organization
The remainder of the paper is organized as follows. We first define

the formulation of the problem in Section 2. Then, we study the case

for the objective of maximizing the social utility and maximizing

the minimum utility in Section 3 and Section 4 respectively. Finally,

we conclude our work and discuss the open questions in Section 5.

Due to the space limit, some proofs are omitted.

2 PRELIMINARIES
Let 𝑁 = {1, 2, · · · , 𝑛} be a set of agents where all agents are located
on a normalized closed interval 𝐼 = [0, 1]. Each agent 𝑖 ∈ 𝑁 has

a location 𝑥𝑖 and belongs to a group 𝑔𝑖 ∈ [𝑚]. A collection of

agents with 𝑔𝑖 = 𝑗 is denoted as 𝐺 𝑗 , so we have

⋃
𝑗∈[𝑚] 𝐺 𝑗 = 𝑁

and 𝐺 𝑗1 ∩ 𝐺 𝑗2 = ∅ for all 𝑗1 ≠ 𝑗2. Let𝑚𝑒𝑑 (𝑆) be the agent with
the median location in the set 𝑆 ⊆ 𝑁 , tie-breaking by selecting

the leftmost. We denote the profile of agent 𝑖 as 𝑟𝑖 = (𝑥𝑖 , 𝑔𝑖 ) and
denote the profile set as r = {𝑟1, · · · , 𝑟𝑛}. A mechanism is a function

𝑓 which maps profile set r to a facility location 𝑦 ∈ 𝐼 . We take

𝑑 (𝑎, 𝑏) = |𝑎 − 𝑏 | to represent the distance between 𝑎 and 𝑏.

The externality factor within the group 𝐺 𝑗 is denoted by 𝛼 𝑗 ∈
[0, 1]. To perfectly model the benefits that an individual derives

from the facility and the interaction within a group, we utilize

utility function. The cost function corresponds to the loss incurred

by group members, which cannot model our setting precisely.

We take an agent 𝑖’s individual value to be 𝑣 (𝑦, 𝑥𝑖 ) = 1−𝑑 (𝑦, 𝑥𝑖 ).
The utility of agent 𝑖 is defined as

𝑢𝑖 (𝑦, r) = 𝑣 (𝑦, 𝑥𝑖 ) + 𝛼𝑔𝑖
∑︁

𝑘∈𝐺𝑔𝑖
;𝑘≠𝑖

𝑣 (𝑦, 𝑥𝑘 ),

implying that the utility of an agent will be decided by not only

using the facility (the first term), but also interacting with their

group members (the second term).

Each agent is rational and tries to maximize their utility. Our

goal is to design mechanisms that are non-manipulable and re-

spect unanimity while (approximately) optimizing an objective

function. Here we use ex-post strategyproofness to represent non-

manipulability, which has been widely considered in mechanism

design [2] and facility location games [1].

Definition 1. A mechanism 𝑓 is ex-post strategyproof if an
agent can never benefit by reporting a false profile, given the true
profiles of the other agents. More formally, given any profile set
r = {𝑟1, ..., 𝑟𝑛} and any profile set r′ = {𝑟 ′

1
, ..., 𝑟 ′𝑛} reported by 𝑛

rational agents. We have 𝑢𝑖 (𝑓 (r), r) ≥ 𝑢𝑖 (𝑓 (𝑟 ′𝑖 , r−𝑖 ), r) where r−𝑖 is
a collection of true profiles of 𝑛 agents except agent 𝑖 .

To simplify the description, we use strategyproof (SP) instead
of ex-post strategyproof in the remaining part of this paper. We

can further discuss the three cases shown below.

(1) Restrict the power of misreport to locations only.

(2) Restrict the power of misreport to group memberships only.

(3) Do not restrict the power of misreport.

Definition 2. A mechanism 𝑓 is unanimous if for every profile
r with location 𝑥1 = 𝑥2 = ... = 𝑥𝑛 = 𝑥 , 𝑓 (r) = 𝑥 .

We consider two utility-oriented objectives, maximizing the so-

cial utility, which is defined as

𝑠𝑢 (𝑦, r) =
∑︁
𝑖∈𝑁

𝑢𝑖 (𝑦, r),

and maximizing the minimum utility, which is defined as

𝑚𝑢 (𝑦, r) = min

𝑖∈𝑁
𝑢𝑖 (𝑦, r) .

We measure the performance of 𝑓 by approximation ratio.

Definition 3. We say a mechanism 𝑓 has an approximation
ratio of 𝜌 for a certain objective if there exists a number 𝜌 such
that for any profile set r, the objective value achieved by the optimal
location is within 𝜌 times the objective value achieved by 𝑓 .

When there are two groups with 𝛼1 = 0 and 𝛼2 = 𝛼 , our setting

can be viewed as the setting where each agent is either in the

group or alone, which coincides with Zhou [18]. We will use this

observation to derive one of our negative results.

Corollary 1. Neither putting the facility at the median agent
location nor putting the facility at the leftmost agent location is strat-
egyproof.

Moreover, there are two useful lemmata to assist in proving most

of lower bounds in Section 3 and Section 4.

Lemma 1. If a mechanism is strategyproof, the agents with 𝛼 = 0 at
the same location cannot benefit even if they misreport their locations
or group memberships simultaneously.

Proof. We denote the set of agents with 𝛼 = 0 at the same

location as 𝑆 ⊆ 𝑁 with true profiles 𝑟1, ...𝑟𝑠 . Let r−𝑆 denote a

collection of true profiles of𝑛 agents except for agents in 𝑆 . Consider

a series of profile sets r𝑖 (0 ≤ 𝑖 ≤ 𝑠) where 𝑠−𝑖 agents with 𝑟𝑖+1, ..., 𝑟𝑠
in 𝑆 misreport their locations or groupmemberships simultaneously.

We have

r𝑖 = {𝑟1, ..., 𝑟𝑖 , 𝑟 ′𝑖+1, ..., 𝑟
′
𝑠 } ∪ r−𝑆 ,

r𝑖−1= {𝑟1, ..., 𝑟𝑖−1, 𝑟 ′𝑖 , ..., 𝑟
′
𝑠 } ∪ r−𝑆 .

Therefore r𝑖−1 could be regarded as the agent 𝑖 in r𝑖 misreporting

the profile to 𝑟 ′
𝑖
. From the definition of strategyproofness, we have

𝑢𝑖 (𝑓 (r𝑖 ), r𝑖 ) ≥ 𝑢𝑖 (𝑓 (r𝑖−1), r𝑖 ). By integrating all the inequalities

achieved by 𝑖 ∈ [0, 𝑠], we further have

𝑢𝑠 (𝑓 (r𝑠 ), r𝑠 ) ≥ 𝑢𝑠 (𝑓 (r𝑠−1), r𝑠 ) = 𝑢𝑠−1 (𝑓 (r𝑠−1), r𝑠−1)
≥𝑢𝑠−1 (𝑓 (r𝑠−2), r𝑠−1) = . . . = 𝑢1 (𝑓 (r0), r0) .
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Combining with𝑢𝑠 (𝑓 (r𝑠 ), r𝑠 ) = . . .= 𝑢1 (𝑓 (r𝑠 ), r𝑠 ) and𝑢𝑠 (𝑓 (r0), r0)
= . . .= 𝑢1 (𝑓 (r0), r0), we have 𝑢𝑖 (𝑓 (r𝑠 ), r𝑠 ) ≥ 𝑢𝑖 (𝑓 (r0), r0) for each
𝑖 ∈ [0, 𝑠], which completes the proof. □

Lemma 2. If a mechanism is strategyproof, the agents in the same
group with 𝛼 ≥ 0.5 cannot benefit even if they

(1) misreport their locations without crossing their group median
location simultaneously, or

(2) are at the same location and misreport group memberships
simultaneously

Proof. We denote the set of agents within the same group 𝐺 𝑗
with 𝛼 𝑗 ≥ 0.5 as 𝑆 ⊆ 𝐺 𝑗 with true profiles 𝑟1, ...𝑟𝑠 . Let r−𝑠 denote a
collection of true profiles of 𝑛 agents except for agents in 𝑆 . Then

we consider a series of profile sets which is defined similarly to

Lemma 1, where r𝑖−1 could be regarded as the agent 𝑖 in r𝑖 mis-

reporting profile to 𝑟 ′
𝑖
. Firstly, we observe that all agents in 𝐺 𝑗

can obtain their maximum utility if the facility is located at the

group median location 𝑥𝑚𝑒𝑑 (𝐺 𝑗 ) . Since both conditions included

in Lemma 2 imply that the group median location will not move

during the misreporting, our goal is to prove 𝑑 (𝑓 (r𝑠 ), 𝑥𝑚𝑒𝑑 (𝐺 𝑗 ) ) ≤
𝑑 (𝑓 (r0), 𝑥𝑚𝑒𝑑 (𝐺 𝑗 ) ). Guaranteed by strategyproofness we first have

𝑢𝑖 (𝑓 (r𝑖 ), r𝑖 ) ≥ 𝑢𝑖 (𝑓 (r𝑖−1), r𝑖 ), implying 𝑑 (𝑓 (r𝑖 ), 𝑥𝑚𝑒𝑑 (𝐺 𝑗 ) ) ≤ 𝑑 (𝑓
(r𝑖−1), 𝑥𝑚𝑒𝑑 (𝐺 𝑗 ) ). By integrating all the inequalities achieved by

𝑖 ∈ [0, 𝑠], we finally have 𝑑 (𝑓 (r𝑠 ), 𝑥𝑚𝑒𝑑 (𝐺 𝑗 ) ) ≤ 𝑑 (𝑓 (r0), 𝑥𝑚𝑒𝑑 (𝐺 𝑗 ) ),
which completes the proof. □

In the following sections, we first investigate maximizing the

social utility, and then focus on maximizing the minimum utility.

3 SOCIAL UTILITY
In this section, we first study the setting where each agent can

only misreport their location, then we look at the setting where

each agent can only misreport their group membership. Finally, we

derive a negative result when each agent can misreport both.

3.1 Misreport only the location
In this subsection, we adopt the mechanism proposed by Zhou [18]

in a direct way to our setting, and analyze its weakness. To overcome

that weakness, we propose a new mechanism with a significantly

lower approximation ratio. However, that new mechanism is also

flawed. Finally, we refine that new mechanism which gives the

nearly best possible performance compared with the lower bound.

First, let us revisit the mechanism proposed by Zhou [18]. As

we mentioned, their setting could be regarded as two groups with

group externalities 𝛼1 = 0 and 𝛼2 = 𝛼 , respectively. They put the

facility at 𝑥𝑚𝑒𝑑 (𝐺2 ) if 𝛼 |𝐺2 |2 − 𝛼 |𝐺2 | + |𝐺2 | ≥ |𝐺1 |; otherwise, they
put the facility at 𝑥𝑚𝑒𝑑 (𝐺1 ) . A simple way to adapt it to our setting

is taking 𝛼 𝑗 |𝐺 𝑗 |2 − 𝛼 𝑗 |𝐺 𝑗 | + |𝐺 𝑗 | as the parameter of each group

𝑗 , and put the facility at the median agent of the group with the

largest parameter.

Group-ImposingMechanism (GI-M). Given any profile set r, put
the facility at 𝑦 = 𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) where 𝑗

∗ = argmax𝑗∈[𝑚] {𝛼 𝑗 |𝐺 𝑗 |2 −
𝛼 𝑗 |𝐺 𝑗 | + |𝐺 𝑗 |}, tie-breaking by selecting the smallest 𝑗 .

Here we show how bad GI-M is rather than showing its exact ap-

proximation ratio, but this is sufficient to show how far apart GI-M

is from Group-Accumulating Mechanism (GA-M) and Regularized

Group-Accumulating Mechanism (RGA-M) to be proposed.

Proposition 1. Group-Imposing Mechanism has an approxima-
tion ratio of at least Ω(𝑚) when group memberships are public.

One may wonder whether another tie-breaking rule can improve

GI-M. In fact, we can slightly decrease the externality factors’ val-

ues of those groups whose agents are at 1 to get the same result,

which is independent of tie-breaking rules. Moreover, a constant

approximation ratio might be guaranteed if there is always a pow-
erful group, i.e., a group covering a majority of agents with a larger

externality factor.

Although GI-M cannot guarantee a constant approximation ratio,

we can also leverage the idea from it. As we know, social utility is a

kind of utilitarian welfare function that focuses on the overall wel-

fare. It would be better to put the facility somewhere in the middle.

Thus, we cannot treat the parameters of each group independently.

Instead, we can look at those groups from the left to the right, and

accumulate these parameters until they reach a certain value.

Group-Accumulating Mechanism (GA-M). Given any pro-
file set r, without loss of generality we assume that 𝑥𝑚𝑒𝑑 (𝐺1 ) ≤
𝑥𝑚𝑒𝑑 (𝐺2 ) ≤ · · · ≤ 𝑥𝑚𝑒𝑑 (𝐺𝑚 ) . Put the facility at 𝑦 = 𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) such
that 𝑗∗ is the smallest index that satisfies∑︁

𝑗∈[ 𝑗∗ ]
(𝛼 𝑗 |𝐺 𝑗 |2 − 𝛼 𝑗 |𝐺 𝑗 | + |𝐺 𝑗 |)

≥ 1

2

∑︁
𝑗∈[𝑚]

(𝛼 𝑗 |𝐺 𝑗 |2 − 𝛼 𝑗 |𝐺 𝑗 | + |𝐺 𝑗 |).

Before showing the approximation ratio, we first propose a

lemma.

Lemma 3. Given any profile set r, the social utility achieved by 𝑦
is equivalent to

∑
𝑖∈𝑁 (1 + 𝛼 ( |𝐺𝑔𝑖 | − 1))𝑣 (𝑦, 𝑥𝑖 ).

Proposition 2. Group-Accumulating Mechanism is unanimous,
strategyproof, and has an approximation ratio of 3 when group mem-
berships are public.

Compared with GI-M, GA-M achieves a constant approximation

ratio of 3. However, GA-M is also flawed since putting the facility

at
1

2
can guarantee an approximation ratio of 2 (but it does not

satisfy unanimity). So far, the outputs of our mechanisms are re-

stricted to the agent locations. It will significantly help improve

the approximate ratio if we can leverage the non-agent locations,

especially when the agents are concentrated at both boundaries of

the interval, and there is no significant difference between those

two parts, where putting the facility at one of the ends will incur a

lousy performance easily. Taking into account the above situation,

and inspired by the regularization term, a well-known technique to

prevent overfitting in machine learning and many other fields, we

introduce a weighted fixed point to prevent the mechanism from

outputting an extreme solution when the above situation occurs.

Regularized Group-Accumulating Mechanism (RGA-M).

Given any profile set r, without loss of generality we assume that
𝑥𝑚𝑒𝑑 (𝐺1 ) ≤ 𝑥𝑚𝑒𝑑 (𝐺2 ) ≤ · · · ≤ 𝑥𝑚𝑒𝑑 (𝐺𝑚 ) . Let 𝐶 ( 𝑗) = |𝐺 𝑗 | (1 +
𝛼 𝑗 ( |𝐺 𝑗 | − 1)) and 𝐾 ( 𝑗) = 𝐶 (1) + · · · + 𝐶 ( 𝑗). We define 𝑗𝑚𝑖𝑑 =
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argmax𝑗∈[𝑚] {𝑥𝑚𝑒𝑑 (𝐺 𝑗 ) ≤
1

2
}. Put the facility at



𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) where 𝑗
∗= arg min

𝑗∈[𝑚]
{𝐾 ( 𝑗) ≥ 1

2

((1 + 𝜆)𝐾 (𝑚))}

———if 𝐾 ( 𝑗𝑚𝑖𝑑 ) > 1

2

((1 + 𝜆)𝐾 (𝑚));
1

2

——if
1

2

((1 − 𝜆)𝐾 (𝑚)) ≤ 𝐾 ( 𝑗𝑚𝑖𝑑 ) ≤ 1

2

((1 + 𝜆)𝐾 (𝑚));

𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) where 𝑗
∗= arg min

𝑗∈[𝑚]
{𝐾 ( 𝑗) ≥ 1

2

((1 − 𝜆)𝐾 (𝑚))}

———otherwise.

Here we briefly discuss how 𝜆 affects the output of RGA-M. If

𝜆 = 0, RGA-M is the same as GA-M. When 𝜆 > 1, RGA-M always

outputs the facility at
1

2
, implying we need to restrict 𝜆 to [0, 1)

to satisfy unanimity. Different from GA-M, if 𝑦 is on the left of
1

2
,

implying the majority of agents are on the left since 𝐾 ( 𝑗∗) is at
least

1

2
((1 + 𝜆)𝐾 (𝑚)), which is larger than

1

2
𝐾 (𝑚). The case where

𝑦 is on the right of
1

2
is similar, implying the majority of agents are

on the right. Moreover, RGA-M outputs
1

2
when the agents on both

sides are more balanced.

Theorem 1. Regularized Group-AccumulatingMechanism is unan-
imous, strategyproof when 𝜆 ∈ [0, 1), and has an approximation ratio
of
√
3 ≈ 1.732 for maximizing the social utility when group member-

ships are public, by setting 𝜆 = 2

√
3 − 3 ≈ 0.464.

Proof. When all agents are at the same location, 𝐾 ( 𝑗𝑚𝑖𝑑 ) is
equal to either 𝐾 (𝑚) > 1

2
((1 + 𝜆)𝐾 (𝑚)) or 0 < 1

2
((1 − 𝜆)𝐾 (𝑚)),

RGA-M outputs the facility at the agent location, satisfying una-

nimity.

For each agent in𝐺 𝑗∗ , the only way to change the facility location

is to misreport their location to the opposite side of 𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) ,
which eventually leads the facility to be farther away from both

their true location and the original group median. Their utility

decreases after misreporting therefore the agent in 𝐺 𝑗∗ has no

incentive to misreport the location. As for each agent in𝐺 𝑗 ( 𝑗 ≠ 𝑗∗),
misreporting to make their group 𝑗∗ is the only way to change the

facility location, which puts this agent into a situation similar to

the case of 𝐺 𝑗∗ , i.e., moving the facility to be farther away from

both their location and their original group median.

Now, we show the approximation ratio of RGA-M. Given any

profile set r, we denote the optimal solution for maximizing the

social utility as 𝑦∗ and the facility location output by mechanism

RGA-M as 𝑦. Without loss of generality, we assume that 𝑦 ≤ 𝑦∗.
We first move all the agents in (𝑦,𝑦∗) to 𝑦∗ since the approxima-

tion ratio will not decrease. Let 𝐾1 be the set of the agents within

[𝑦∗, 1], 𝐾2 be the set of agents within [0, 𝑦] after the movement.

Let 𝑑 denote the distance between 𝑦 and 𝑦∗. We further divide the

scenario into two cases based on the relative locations of 𝑦 and
1

2
.

Case 1: We first consider the case where 𝑦 > 1

2
, as shown in

Figure 1.

0 11

2

y y*

Figure 1: 𝑦 > 1

2
.

Combined with Lemma 3, we have

𝑠𝑢 (𝑦∗, r)−𝑠𝑢 (𝑦, r)=(
∑︁
𝑖∈𝐾1

(1+𝛼𝑔𝑖 ( |𝐺𝑔𝑖 | − 1))−
∑︁
𝑖∈𝐾2

(1+𝛼𝑔𝑖 ( |𝐺𝑔𝑖 | − 1)))𝑑

≤(
∑︁

𝑗∗+1≤ 𝑗≤𝑚
𝐶 ( 𝑗) + 1

2

∑︁
1≤ 𝑗≤ 𝑗∗

𝐶 ( 𝑗))𝑑 − 1

2

∑︁
1≤ 𝑗≤ 𝑗∗

𝐶 ( 𝑗)𝑑.

From the definition of RGA-M, we further have

𝑠𝑢 (𝑦∗, r) − 𝑠𝑢 (𝑦, r) ≤
∑︁

𝑗∗+1≤ 𝑗≤𝑚
𝐶 ( 𝑗)𝑑

=(𝐾 (𝑚) − 𝐾 ( 𝑗∗))𝑑 ≤ 1

2

((1 + 𝜆)𝐾 (𝑚))𝑑.

Hence, we have the approximation ratio

𝜌 =
𝑠𝑢 (𝑦∗, r)
𝑠𝑢 (𝑦, r) ≤ 1 + ((1 + 𝜆)𝐾 (𝑚))𝑑

2𝑠𝑢 (𝑦, r) .

When there are half of agents in 𝐺 𝑗 ( 𝑗 ∈ [1, 𝑗∗]) at 0, half of agents
in 𝐺 𝑗 ( 𝑗 ∈ [1, 𝑗∗]) at 1, and all of the agents in 𝐺 𝑗 ( 𝑗 ∈ [ 𝑗∗ + 1,𝑚])
at 1, the minimum 𝑠𝑢 (𝑦, r) is achieved,

𝑠𝑢 (𝑦, r) ≥ 1

2

∑︁
1≤ 𝑗≤ 𝑗∗

𝐶 ( 𝑗) (1 − 𝑦) + 1

2

∑︁
1≤ 𝑗≤ 𝑗∗

𝐶 ( 𝑗)𝑦

+
∑︁

𝑗∗+1≤𝑖≤𝑚
𝐶 ( 𝑗)𝑦

=
1

2

∑︁
1≤𝑖≤ 𝑗∗

𝐶 ( 𝑗) +
∑︁

𝑗∗+1≤𝑖≤𝑚
𝐶 ( 𝑗)𝑦.

Since 𝑦 ≥ 1

2
and 𝑑 ≤ 1

2
, we have the approximation ratio

𝜌 ≤ 1 + ((1 + 𝜆)𝐾 (𝑚))𝑑
2( 1

2

∑
1≤ 𝑗≤ 𝑗∗ 𝐶 ( 𝑗) +

∑
𝑗∗+1≤ 𝑗≤𝑚 𝐶 ( 𝑗)𝑦)

≤ 1+
1

2
((1 + 𝜆)𝐾 (𝑚))∑

1≤ 𝑗≤ 𝑗∗ 𝐶 ( 𝑗) +
∑
𝑗∗+1≤ 𝑗≤𝑚 𝐶 ( 𝑗)

≤ 1+ 1 + 𝜆
2

.

Case 2: Nowwe consider the second case where𝑦 ≤ 1

2
, as shown

in Figure 2.

0 1

y*y

Figure 2: 𝑦 ≤ 1

2
.

Similar to the first case, we have

𝑠𝑢 (𝑦∗, r) − 𝑠𝑢 (𝑦, r) ≤
∑︁

𝑗∗+1≤ 𝑗≤𝑚
𝐶 ( 𝑗)𝑑

=(𝐾 (𝑚) − 𝐾 ( 𝑗∗))𝑑 ≤ 1

2

((1 − 𝜆)𝐾 (𝑚))𝑑,

and the approximation ratio

𝜌 =
𝑠𝑢 (𝑦∗, r)
𝑠𝑢 (𝑦∗, r) ≤ 1 + ((1 − 𝜆)𝐾 (𝑚))𝑑

2𝑠𝑢 (𝑦, r) .

When there are half of agents in 𝐺 𝑗 ( 𝑗 ∈ [1, 𝑗∗]) at 0, half of agents
in 𝐺 𝑗 ( 𝑗 ∈ [1, 𝑗∗]) at 1, and all of the agents in 𝐺 𝑗 ( 𝑗 ∈ [ 𝑗∗ + 1,𝑚])
at 1, the minimum 𝑠𝑢 (𝑦, r) is achieved,

𝑠𝑢 (𝑦, r) ≥ 1

2

∑︁
1≤ 𝑗≤ 𝑗∗

𝐶 ( 𝑗) (1 − 𝑦) + 1

2

∑︁
1≤ 𝑗≤ 𝑗∗

𝐶 ( 𝑗)𝑦

+
∑︁

𝑗∗+1≤𝑖≤𝑚
𝐶 ( 𝑗)𝑦

=
1

2

∑︁
1≤𝑖≤ 𝑗∗

𝐶 ( 𝑗) +
∑︁

𝑗∗+1≤𝑖≤𝑚
𝐶 ( 𝑗)𝑦.
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Since 𝑦 ≥ 0 and 𝑑 ≤ 1, we have the approximation ratio

𝜌 ≤ 1 + ((1 − 𝜆)𝐾 (𝑚))𝑑
2( 1

2

∑
1≤ 𝑗≤ 𝑗∗ 𝐶 ( 𝑗) +

∑
𝑗∗+1≤ 𝑗≤𝑚 𝐶 ( 𝑗)𝑦)

≤ 1 + (1 − 𝜆)𝐾 (𝑚)∑
1≤ 𝑗≤ 𝑗∗ 𝐶 ( 𝑗)

≤ 1 + 2 − 2𝜆

1 + 𝜆 .

Finally, we have the approximation ratio

𝜌 ≤ max{1 + 1 + 𝜆
2

, 1 + 2 − 2𝜆

1 + 𝜆 },

which is at most

√
3 ≈ 1.732 by setting 𝜆 = 2

√
3 − 3. □

Then we give the lower bound of this setting.

Theorem 2. Any deterministic unanimous, strategyproof mecha-
nism has an approximation ratio of at least 1.5 for maximizing the
social utility when group memberships are public.

3.2 Misreport only the group membership
In this subsection, we put the facility at the middle point between

the location of the leftmost agent and the location of the rightmost

agent.

Middle-Point Mechanism (Middle-M). Put the facility at 𝑦 =
1

2
(min𝑖∈𝑁 {𝑥𝑖 } +max𝑖∈𝑁 {𝑥𝑖 }).
Theorem 3. Middle-PointMechanism is unanimous, strategyproof,

and has an approximation ratio of 2 for maximizing the social utility
when locations are public.

Theorem 4. Any deterministic unanimous, strategyproof mech-
anism has an approximation ratio of at least 2 for maximizing the
social utility when locations are public.

Proof. Given any unanimous, strategyproof mechanism, con-

sider a profile set rwhere all the agents’ locations 𝑥1 = · · · = 𝑥 𝑛
2

= 0

and 𝑥 𝑛
2
+1 = · · · = 𝑥𝑛 = 1 (𝑛 is an even number). Suppose that all

agents at 0 belong to 𝐺1 and all agents at 1 belong to 𝐺2 where

𝛼1 = 𝛼2 = 0. Due to symmetry, we assume that 𝑓 (r) ∈ [ 1
2
, 1]. Then

we consider another profile set r′ where for all 𝑛
2
agents at 0, 𝑔𝑖 = 3,

and 𝛼3 = 1. Guaranteed by Lemma 1, the utility of each agent 𝑖 at

0 satisfies 𝑢𝑖 (𝑦, r) ≥ 𝑢𝑖 (𝑦, r′). Then we further have 𝑓 (r′) ≥ 𝑓 (r).
Finally, we have the approximation ratio

𝜌 =
𝑠𝑢 (0, r′)

𝑠𝑢 (𝑓 (r′), r′) ≥
∑
𝑖∈𝐺3

|𝐺𝑔3 |𝑣 (0, 𝑥𝑖 )∑
𝑖∈𝐺2

𝑣 ( 1
2
, 𝑥𝑖 ) +

∑
𝑖∈𝐺3

|𝐺𝑔3 |𝑣 ( 12 , 𝑥𝑖 )

=
( 𝑛
2
)2

𝑛
2

1

2
+ ( 𝑛

2
)2 1

2

=
2

2

𝑛 + 1

𝑛 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 ∞
−−−−−−−−−−−−−−→ 2.

□

3.3 Misreport both the location and preference
In this subsection, we will show that strategyproofness and una-

nimity are incompatible.

Theorem 5. There does not exist any unanimous and strategyproof
mechanism when each agent can misreport both the location and the
group membership.

Proof. Given any unanimous, strategyproof mechanism 𝑓 , we

prove the theorem by analyzing a series of profile sets with the

same constant 𝑘 (𝑘 ≥ 2), and 𝛼1 = 𝛼2 = 1.

Firstly, we consider a profile set r1 where 𝑘 agents have 𝑟1
𝑖
=

(0, 1), 𝑘 + 1 agents have 𝑟1
𝑖
= (1, 1). Note that all agents have the

same utility 𝑘 (1−𝑦)+(𝑘+1)𝑦 = 𝑘+𝑦, where𝑦 is the facility location.
The mechanism 𝑓 has to output 𝑓 (r1) = 1. Otherwise, all agents at 0

can benefit by misreporting their locations to 1, making the facility

move from [0, 1) to 1 guaranteed by unanimity, in contradiction to

Lemma 2.

Secondly, consider another profile set r2 where 𝑘 agents have

𝑟2
𝑖

= (0, 1), 𝑘 − 1 agents have 𝑟2
𝑖

= (1, 1) and two agents have

𝑟2
𝑖
= (1, 2), 𝛼1 = 𝛼2 = 1. In this profile set, 𝑓 (r2) should be equal to

1. Otherwise, two agents in 𝐺2 can benefit by misreporting their

group memberships to 𝐺1, making the profile set the same as r1,
which makes the facility move from 𝑓 (r2) ∈ [0, 1) to 𝑓 (r1) = 1, in

contradiction to Lemma 2.

Continuing with the profile set r2, we consider a profile set r3

where 2𝑘−1 agents have 𝑟3
𝑖
= (0, 1) and two agents have 𝑟3

𝑖
= (1, 2),

which is shown in Figure 3. We then have 𝑓 (r3) = 1. Otherwise,

given the profile set r2, 𝑘 − 1 agents in 𝐺1 at 𝑥 = 1 can benefit by

misreporting their locations to 0, which makes the facility move

from 𝑓 (r2) = 1 to 𝑓 (r3) ∈ [0, 1), in contradiction to Lemma 2.

0 1

𝑓 (r3)

Legends:

: agent in 𝐺1

: agent in 𝐺2

k

k-1

Figure 3: Profile set r3

Fourthly, consider a profile set r4 where 2𝑘 − 1 agents have

𝑟4
𝑖
= (0, 2), two agents have 𝑟4

𝑖
= (1, 2). We have 𝑓 (r4) = 1. Oth-

erwise, given the profile set r3, all agents at 𝑥 = 0 can benefit by

misreporting their group memberships to 𝐺2, which makes the

facility move from 𝑓 (r3) = 1 to 𝑓 (r4) ∈ [0, 1), in contradiction to

Lemma 2.

Lastly, consider a profile set r5 where 2𝑘 + 1 agents have 𝑟5
𝑖
=

(0, 2). We have 𝑓 (r5) = 1. Otherwise, given the profile set r4, two
agents at 1 can benefit by misreporting their locations to 0, which

makes the facility move from 𝑓 (r4) = 1 to 𝑓 (r5) ∈ [0, 1), in contra-

diction to Lemma 2.

Finally, we have the scenario where all agent locations are 0

while the facility location is 1, which contradicts the definition of

unanimity. Therefore, we finish the proof that when misreporting

both locations and group memberships is allowed, there does not

exist any mechanism with a bounded approximation ratio that

satisfies both strategyproofness and unanimity simultaneously. □

Remark 1. Intuitively, one may consider the dictatorship mech-
anism which empowers an agent to decide where to locate the fa-
cility could satisfy strategyproofness. However, though ordinarily a
dictator’s misreporting does not increase their utility and fulfill strat-
egyproofness, we demonstrate that agents other than the dictator can
profit by misreporting, leading to the conclusion that the dictatorship
mechanism is not an exception to our setting. Consider the following
profile set where one agent has the profile (𝑥1, 1) with 𝑎1 = 1 and two
agents have the profile (𝑥2, 2). Assume that we empower the agent
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in 𝐺1 to decide the facility location. Then it is easy to derive that
two agents in 𝐺2 can move the facility from 𝑥1 to 𝑥2 by misreport-
ing their group memberships to 𝐺1, in contradiction to mechanism
strategyproofness.

While strategyproofness and unanimity cannot be satisfied si-

multaneously, the problem will be easy if only one property is

desired. If we only design a strategyproof mechanism, putting facil-

ity at
1

2
can guarantee a 2-approximation ratio. If we only design a

unanimous mechanism, we can just put the facility at the optimal

location in every profile set.

4 MINIMUM UTILITY
In this section, we first study the setting where each agent can only

misreport their location, then we look at the setting where each

agent can only misreport group membership. When misreporting

both the location and the group membership is allowed, strate-

gyproofness and unanimity, as we discussed in the section on social

utility, are also incompatible in this minimum utility objective since

those two properties are independent of the objective functions.

4.1 Misreport only the location
In this subsection, we first extend the mechanism proposed in Zhou

[18] to the multiple groups setting. We say that two points 𝑎, 𝑏 are

on the same side if 𝑎, 𝑏 ≤ 1

2
or 𝑎, 𝑏 ≥ 1

2
, and an agent is a marginal

agent if their location is closest to
1

2
. Recall that the mechanism

in Zhou [18] is mapping all agents in 𝐺2 with 𝛼2 = 𝛼 to 𝑥𝑚𝑒𝑑 (𝐺2 ) ,
then putting the facility at the location of the marginal agent if all

agents are on the same side; otherwise, putting the facility at
1

2
.

Next, we extend the mechanism as follows.

Marginal-Point Mechanism (Marginal-M). Given any profile
set, map all agents in 𝐺 𝑗 from their own locations to 𝑥𝑚𝑒𝑑 (𝐺 𝑗 ) . Put
the facility at the location of the marginal agent after mapping if all
agents are on the same side; otherwise, putting the facility at 1

2
.

Proposition 3. Marginal-Point Mechanism is unanimous, strat-
egyproof, and has an approximation ratio of 2 for maximizing the
minimum utility when group memberships are public.

Since Marginal-Point Mechanism does not leverage the group

externalities and simply categorizes cases, it is not surprising that

it achieves a large approximation ratio. In addition, we observe that

the minimum utility is usually achieved by an agent in a smaller

group with a smaller group externality. Hence, we propose the

following mechanism.

Ternary Mechanism (Ternary-M). Given any profile set, map
all the agents to the respective ideal locations (either their own location
or the location of their groupmedian) where they can obtain their max-
imumutilities. Consider𝐺 𝑗∗ where 𝑗∗=argmin𝑗∈[𝑚] {1+𝛼 ( |𝐺 𝑗 |−1)},
tie-breaking by selecting the smallest 𝑗 . Put the facility 𝑦 at
1. 𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) , if 𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) ∈ [

√
6 − 2, 3 −

√
6];

2. 3 −
√
6, if 𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) ∈ (3 −

√
6, 1] and there exists an agent in

[0, 3 −
√
6];

3. the agent location closest to 3 −
√
6, if 𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) ∈ (3 −

√
6, 1] and

there is no agent in [0, 3 −
√
6].

We apply a similar categorization to 𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) ∈ [0,
√
6 − 2) as

𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) ∈ (3 −
√
6, 1], due to their symmetry about 1

2
.

Theorem 6. Ternary Mechanism is unanimous, strategyproof, and

has an approximation ratio of
√
6

3
+ 1 ≈ 1.816 for maximizing the

minimum utility when group memberships are public.

Proof Sketch. If all agents are at the same location, Ternary-M puts

the facility at 𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) or the location of the agent with the ideal

location closest to 3 −
√
6 or

√
6 − 2, which satisfies unanimity. For

strategyproofness, we use symmetry-based analysis for the case

of 𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) in different intervals. We conclude that in each case,

any misreporting eventually leads the facility location to remain

unchanged or move farther away from that agent’s ideal location

(i.e., leads their utility to remain unchanged or decrease), regardless

of whether a case transition occurs or not.

Then we show the approximation ratio through a discussion

of four subcases divided by the location of 𝑦 and the agent who

achieves the minimum utility. We denote the facility location as

𝑦 and the optimal facility location as 𝑦∗. In the first two subcases

𝑦 ∈ [
√
6−2, 3−

√
6], without loss of generality we assume that 𝑦∗ ≤𝑦.

Subcase 1-1: 𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) ∈ [
√
6−2, 3−

√
6] and𝑚𝑢 (𝑦, r) is achieved

by an agent in 𝐺 𝑗∗ . We have the minimum utility achieved by 𝑦∗ is
less than or equal to the utility of every agent in 𝐺 𝑗∗ . Hence, our

analysis can focus on group𝐺 𝑗∗ only. By using the fact that 𝑦 is the

median of𝐺 𝑗∗ , we show an approximation ratio of

1− 3−
√
6

2

1−(3−
√
6)≈1.612.

Subcase 1-2: 𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) ∈ [
√
6−2, 3−

√
6] and𝑚𝑢 (𝑦, r) is achieved

by an agent in 𝐺 𝑗+ ( 𝑗+ ∈ [𝑚], 𝑗+ ≠ 𝑗∗). The minimum utility

achieved by 𝑦∗ is less than or equal to the utility of every agent in

𝐺 𝑗∗ and in 𝐺 𝑗+ . If 𝑦
∗
is closer to 𝑦, we use the utility of an agent

in 𝐺 𝑗+ to amplify 𝑚𝑢 (𝑦∗, r). The largest approximation ratio is

achieved when all agents in 𝐺 𝑗+ are at 0. If 𝑦∗ is closer to 0, we use

the utility of an agent in 𝐺 𝑗∗ to amplify𝑚𝑢 (𝑦∗, r). Then we focus

on groups𝐺 𝑗∗ and𝐺 𝑗+ . The largest approximation ratio is achieved

when all agents in 𝐺 𝑗+ are at 0, half of the agents in 𝐺 𝑗∗ are at 𝑦
∗

and half of them are at 𝑦. Finally, we have the approximation ratio

of

√
6

3√
6−2 ≈ 1.816.

0 1𝑦∗ 𝑦

|𝐺 𝑗∗ |
2

|𝐺 𝑗+ |

: agent in 𝐺 𝑗+

Legends:

: agent in 𝐺 𝑗∗

Figure 4: A worst case of Subcase 1-2.

Subcase 2-1: 𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) ∈ (3 −
√
6, 1] and there exists an agent

with an ideal location in [0, 3 −
√
6]. If𝑚𝑢 (𝑦, r) is achieved by an

agent within [0, 𝑦], we can use the similar analysis as subcases

1-1 and 1-2 to show a 1.816-approximation ratio. If 𝑚𝑢 (𝑦, r) is
achieved by an agent within (𝑦, 1], the profile set that achieves

the largest approximation ratio satisfies that all agents in 𝐺 𝑗∗ are

at 1 and 𝑦∗ = 1. Finally we conclude the approximation ratio of√
6

3
+ 1 ≈ 1.816.
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Subcase 2-2: 𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) ∈ (3 −
√
6, 1] and there is no agent with

an ideal location in [0, 3 −
√
6]. If 𝑦∗ ≤ 𝑦, we have the optimal

solution since all locations on the left of 𝑦 achieve a minimum

utility less than 𝑦. If 𝑦∗ > 𝑦, we can use the similar analysis as

subcase 2-1 to show an approximation ratio of 1.816.

For the case where 𝑥𝑚𝑒𝑑 (𝐺 𝑗∗ ) ∈ [0,
√
6− 2), we can use the same

analysis to show the approximation ratio. Finally, we complete the

proof that Ternary-M has an approximation ratio of 1.816. □

We introduce a lemma before giving the lower bound.

Lemma 4. Given any unanimous and strategyproof mechanism 𝑓 ,
there exists a case profile set r where 𝑘 agents have the profile (𝑥1, 1),
𝑘 agents have the profile (𝑥2, 2), 𝛼1 = 𝛼2 = 1 and 𝑥2 − 𝑥1 > 1

2
, for

which 𝑓 (r) ∈ [𝑥1, 𝑥1 + 𝜖] ∪ [𝑥2 − 𝜖, 𝑥2].

Proof. Firstly, we prove that 𝑦 should not be outside of the

interval [𝑥1, 𝑥2]. If 𝑦 > 𝑥2, consider the case where agents at 𝑥1
misreport their locations to 𝑥2 sequentially. In each misreporting,

the facility location output by any unanimous and strategyproof

mechanism 𝑓 cannot be 𝑥2, due to the strategyproofness. Hence, we

finally have the scenario where all agents are at 𝑥2 but 𝑦 > 𝑥2, in

contradiction to unanimity. A similar analysis also holds for 𝑦 < 𝑥1.

Nowwe focus on showing that for any given 𝑞 ∈ 𝑁 +
, there exists

a profile set r where 𝑘 agents have the profile (𝑥1, 1), 𝑘 agents have

the profile (𝑥2, 2), 𝛼1 = 𝛼2 = 1, and 𝑥2−𝑥1 = ( 𝑞+3
2
)𝜖 (𝑥2 > 𝑥1), such

that all the possible 𝑦 output by any unanimous and strategyproof

mechanism satisfies 𝑦 ≤ 𝑥1 + 𝜖 or 𝑦 ≥ 𝑥2 − 𝜖 .
By utilizing mathematical induction, firstly we construct the

base in which 𝑥2 − 𝑥1 = 2𝜖 , i.e., 𝑞 = 1. It is obvious that [𝑥1, 𝑥1 +
𝜖] ∪ [𝑥2 − 𝜖, 𝑥2] covers the whole interval [𝑥1, 𝑥2].

Secondly, we show the induction step in terms of two different

ranges of 𝑦. We first consider the case where 𝑦 ∈ [𝑥1, 𝑥1 + 𝜖] and
suppose that the lemma holds for the given 𝑞 (𝑞 ≥ 1). Combined

with the next profile set where 𝑘 agents have the profile (𝑥1, 1) and
𝑘 agents have the profile (𝑥2 + 1

2
𝜖, 2), which could be regarded as

𝑘 agents originally at 𝑥2 in the previous profile misreporting their

locations to 𝑥 ′
2
= 𝑥2 + 1

2
𝜖 sequentially, increasing the distance to

𝑥 ′
2
−𝑥1 = ( (𝑞+1)+3

2
)𝜖 . We first observe that when there are less than

𝑘
2
agents at 𝑥 ′

2
, the ideal facility location for each agent in 𝐺2 is

𝑥2. Otherwise, the ideal facility location for each agent in 𝐺2 is 𝑥
′
2
.

Therefore, we denote 𝑦𝑖 as the facility location after 𝑖 agents in 𝐺2

misreport to 𝑥 ′
2
(1 ≤ 𝑖 ≤ 𝑘) and further have 𝑑 (𝑦𝑖 , 𝑥2) ≥ 𝑑 (𝑦𝑖−1, 𝑥2)

when 𝑖 ≤ ⌈𝑘
2
⌉ and 𝑑 (𝑦𝑖 , 𝑥 ′

2
) ≥ 𝑑 (𝑦𝑖−1, 𝑥 ′

2
) when 𝑖 > ⌈𝑘

2
⌉, due to

the strategyproofness. From both inequalities we can conclude that

𝑦𝑖 ≤ 𝑥2 − 𝑞+3
2
𝜖 + 𝜖 = 𝑥1 + 𝜖 or 𝑦𝑖 ≥ 𝑥2 + 𝑞+1

2
𝜖 > 𝑥 ′

2
for all 𝑖 ∈ [𝑘].

Combined with 𝑦𝑘 ∈ [𝑥1, 𝑥 ′
2
], we have 𝑦𝑘 ∈ [𝑥1, 𝑥1 + 𝜖].

If 𝑦 ∈ [𝑥2 − 𝜖, 𝑥2], combined with the next profile set where 𝑘

agents have the profile (𝑥1 − 1

2
𝜖, 1) and 𝑘 agents have the profile

(𝑥2, 2), which could be regarded as 𝑘 agents originally at 𝑥1 in

the previous profile misreporting their locations to 𝑥 ′
1
= 𝑥1 − 1

2
𝜖

sequentially, increasing the distance to 𝑥2 − 𝑥 ′
1
= ( (𝑞+1)+3

2
)𝜖 . Then

we can use a similar analysis as the case 𝑦 ∈ [𝑥1, 𝑥1 + 𝜖] to show

the mechanism will output the facility within [𝑥2 − 𝜖, 𝑥2].
Since 𝑥1 and 𝑥2 in the base case are on the opposite side of

1

2
,

and either 𝑥1 moves to the left or 𝑥2 moves to the right in every

induction step. The termination condition of induction is that one

of the two points reaches the boundary after movements, implying

that 𝑥2 − 𝑥1 > 1

2
. □

Theorem 7. Any deterministic unanimous, strategyproof mecha-
nism has an approximation ratio of at least 5

3
≈ 1.667 for maximizing

the minimum utility when group memberships are public.

Proof Skecth.We construct the profile set r′ where 2𝑘+1 agents have
the profile (𝑥1, 1), 𝑘 agents have the profile (𝑥2′ , 2), 𝑘 + 1 agents

have the profile (𝑥2, 2), 𝑥2′ =
(2𝑘+1)𝑥1+(𝑘+1)𝑥2

3𝑘+2 , 𝛼1 = 𝛼2 = 1 and

𝑥2 − 𝑥1 ≥ 1

2
+ 𝜖 . The mechanism has to output the facility within

[0, 𝑥2 − 𝜖) to achieve an approximation ratio smaller than
5

3
. Then

𝑘 agents at 𝑥2′ can benefit by misreporting locations to 𝑥2, moving

the facility location to [𝑥2−𝜖, 𝑥2], in contradiction to Lemma 2. □

4.2 Misreport only the group membership
Theorem 8. Middle-PointMechanism is unanimous, strategyproof,

and has an approximation ratio of 2 for maximizing the minimum
utility when locations are public.

Theorem 9. Any deterministic unanimous, strategyproof mech-
anism has an approximation ratio of at least 2 for maximizing the
minimum utility when locations are public.

Proof. Assume for contradiction that there exists a unanimous,

strategyproof mechanism with an approximation ratio smaller than

2. Consider a profile set r where 𝑘 − 1 agents have the profile (0, 1),
𝑘 − 1 agents have the profile (1, 2), one agent has the profile (0, 2),
one agent has the profile (1, 1), 𝛼1 = 𝛼2 = 1 and 𝑘 ≥ 3. Due to

symmetry, let 𝑓 (r) ≥ 1

2
. Then we consider another profile set r′

where one agent with the profile (0, 1) in r misreports their group

membership to𝐺3 with 𝛼3 = 0. Then the optimal facility location of

r′ is 0, which achieves the minimum utility of 1. If the mechanism

is to achieve an approximation ratio better than 2, the facility must

be located in [0, 1
2
), implying 𝑓 (r′) < 𝑓 (r). In such a case, the agent

with (0, 1) can benefit by misreporting group membership to 𝐺3,

which contradicts strategyproofness. □

5 CONCLUSION AND FUTUREWORK
We study approximate mechanism design in facility location games

with multiple groups where an agent’s utility is derived from using

the facility and interacting with their group members. We design

desirable mechanisms with (almost) tight bounds or prove the in-

compatibility of strategyproofness and unanimity for each setting.

There are many open questions suggested by our analysis. An

immediate direction is to further strengthen the results of misre-

porting the location only. Moreover, we study the setting where

intra-group externalities are positive. It is also reasonable to study

the negative condition, i.e., a competitive relationship among the

agents within the same group. Our work could be extended to social

networks where an agent cares about the 𝑞 distant neighborhood.

We also believe that group externalities can bring more possibilities

to some other fields, e.g., in resource allocation, agents can obtain

additional utility by sharing goods among themselves.
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