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ABSTRACT
In the policy-space response oracle (PSRO) framework, strategy
sets de�ning an empirical game are iteratively extended by com-
puting each player’s best response to a target pro�le. The method
for selecting a target pro�le is called a meta-strategy solver (MSS),
and a variety of MSSs have been proposed and analyzed for their
e�ectiveness in exploring the strategy space. Here we investigate
an alternative means to control strategy exploration: setting the
response objective (RO) employed in deriving a strategy for a given
target pro�le. In evaluating e�ectiveness of strategy exploration,
we consider not only rate of convergence to a solution, but also
the quality of solution(s) captured by the evolving empirical game.
We perform our study� rst in the domain of sequential bargain-
ing games, comparing the standard RO based on own payo�with
others that incorporate other players’ payo�s. We� nd that other-
regarding ROs can lead to� nding equilibrium outcomes with signif-
icantly higher social welfare than the standard objective. For other
proposed ROs, experiments demonstrate that they can di�eren-
tially a�ect the makeup and value of solutions for di�erent players.
We further test PSRO with generalized ROs in large attack-graph
games. We observe a similar impact and e�ectiveness of our ROs on
strategy exploration. Finally, we establish a theoretical relationship
between PSRO with generalized ROs and generalized weakened
�ctitious play in particular settings, and a connection between the
social welfare related RO and Berge equilibrium.
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1 INTRODUCTION
The methodology of Empirical Game-Theoretic Analysis (EGTA)
[29, 34] o�ers a comprehensive collection of techniques for game
reasoning with models based on simulation data. For multi-agent
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systems not amenable to analytic solution, EGTAprovides a simulation-
based alternative, where a selected set of strategies are evaluated,
addressing the most important strategic considerations [2]. The
challenge of e�ciently assembling a suitable collection of strate-
gies for EGTA is called the strategy exploration problem [12].
The clearest formulation of strategy exploration in EGTA is within
an iterative process, in which the creation of new strategies al-
ternates with the assessment and analysis of a game model. In
particular, the Policy Space Response Oracle (PSRO) algorithm
[13] provides a� exible framework for strategy exploration, with
new strategies generated each iteration through a best response
to a target other-players pro�le using reinforcement learning (RL).
The component responsible for determining the target pro�le is
called a meta-strategy solver (MSS), which takes an empirical game
model as input and “solves” it to produce the target. PSRO can be
viewed as generalizing some game-learning algorithms. For exam-
ple, PSRO with Nash equilibrium (NE) as MSS is essentially the
double oracle (DO) algorithm [19] with RL for computing (approx-
imate) best responses. DO incrementally adds strategies that are
best-responses to NE of the current game model, terminating once
an NE is found. The NE found by DO and its features are almost
uniquely determined given a� xed initialization and a tie-breaking
rule for best responses.

Identifying a single NE is sometimes su�cient for the goals of
game analysis, particularly in situations like two-player zero-sum
games, where NE are interchangeable. In other cases, we might
be interested in characterizing multiple equilibria, or identifying
solutions with particular features. For example, in the Traveler’s
dilemma (Table 1) [3, 7], we might prefer the pro�le (5, 5) to the
NE (1, 1) since the pro�le (5, 5) has a reasonable low regret but a
signi�cantly higher social welfare than the NE. Unfortunately, DO
and many classic learning dynamics (e.g., no-regret learning) will
always converge to the NE (1, 1) in this case.

5 4 3 2 1
5 (6,6) (3,7) (2,6) (1, 5) (0,4)
4 (7,3) (5,5) (2,6) (1, 5) (0,4)
3 (6,2) (6,2) (4,4) (1, 5) (0,4)
2 (5,1) (5,1) (5,1) (3,3) (0,4)
1 (4,0) (4,0) (4,0) (4,0) (2,2)
Table 1 The Traveler’s dilemma.

Based on this observation, we raise the question of how to steer
strategy exploration toward NE with preferred characteristics, or
more generally, a preferred game model. One natural hypothesis is
that the choice of response objectives (ROs), which are objectives
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(approximately) solved through RL at each iteration of PSRO, can
substantially impact strategy exploration and equilibrium outcomes.
For example, in the Traveler’s dilemma, we observe that optimizing
another player’s payo�, as opposed to maximizing its own payo�,
will yield strategies that make up high-welfare pro�les. Stemming
from this hypothesis, we introduce PSRO with generalized ROs.
Generalized ROs are not limited to optimizing utility against other
players’ strategies, as in the standard PSRO framework, but allows
ROs to take any forms compatible with RL and incorporate speci�ed
preferences. We propose four RO instances for PSRO with various
strategy exploration preferences and evaluate them in sequential
bargaining games and attack-graph games, comparing solutions
found according to various criteria and revealing the impact of
di�erent combinations of MSSs and ROs on strategy exploration.

Sequential bargaining games involve two players engaging in a
process to negotiate a deal over items. These games commonly ex-
hibit multiple equilibria of varying preference, thus making them an
especially interesting environment for investigating our questions.
A natural preference in sequential bargaining games for strategy
exploration is to� nd equilibria with higher social welfare. We ex-
plore two methods to encode this preference into ROs by adding
to the standard RO a term based on the Nash bargaining product
and a term that trades o� deviation payo� for other players’ utili-
ties, respectively. Our research shows that both methods can yield
equilibria with signi�cantly higher social welfare than other PSRO
variants, regardless of the MSSs employed. In addition, we demon-
strate that our other ROs can achieve their intended purposes and
e�ectively reduce or enlarge the utility di�erence among players
in equilibria. We further investigate the impact of generalized ROs
in attack-graph games, where we obtain similar observations on
the impact and e�cacy of our ROs for strategy exploration, as in
bargaining games.

Besides learning toward NE with particular features, PSRO with
generalized ROs can also steer strategy exploration to solution
concepts other than NE. As an example, we specify an MSS-RO
combination for PSRO, enabling the computation of Berge equi-
librium (BE) [5], a solution concept widely used in the study of
social science. Compared to prior methods that compute BE by
enumerating all pro�les [8], our method is scalable and enables
BE computation in large games. Finally, we connect PSRO with
generalized ROs with generalized weakened� ctitious play (GWFP)
[14] and show that PSRO with certain ROs share the convergence
properties of GWFP.

Contributions of this study include:

(1) PSRO with generalized ROs: a generalization of PSRO frame-
work for controlling strategy exploration through customized
ROs;

(2) Introduction of four variant RO forms and a comprehensive
analysis of PSRO with these ROs in sequential bargaining
games and attack-graph games; Our key observation is that
the choice of ROs can substantially improve the quality of
strategy exploration and equilibrium outcomes;

(3) A demonstration that PSRO with generalized ROs can be
employed to compute Berge equilibrium;

(4) A theoretical connection between PSRO with generalized
ROs and GWFP.

2 RELATEDWORK
Some classic learning dynamics and a few PSRO variants involve
modi�cations in the best response operation for varies purposes
(e.g., regularization). Compared to prior literature, our work sys-
tematically investigates the e�ectiveness of ROs combined with
disparate MSSs for guiding strategy exploration toward preferred
game games.

2.1 Variant Objectives in Classic Learning
Dynamics

The best response operation is a well-established technique used
in classic game-learning dynamics, such as� ctitious play (FP) [6],
weakened FP [30], GWFP [14], and iterated best response. Some
of these dynamics involve modi�cations in the best response tar-
gets (i.e., ROs). For example, the smooth FP method [10] perturbs
best responses by a smooth and positive de�nite function (e.g., the
Gibbs Entropy). This perturbation is not intended to steer strategy
exploration toward a particular equilibrium but aims to achieve
convergence through a concave regularizer.

2.2 Variant Objectives in PSRO
Following the� rst PSRO paper [13], PSRO have been signi�cantly
advanced in recent years, with various newly developed MSSs.
For example, Wang et al. [32] employed a mixture of NE and uni-
form, which essentially randomizes over whether to apply DO or
�ctitious play (FP) on a given PSRO iteration. Wright et al. [35] pro-
posed history-aware PSRO that� ne-tunes the best response against
out-of-equilibrium but recently seen opponents’ strategies. Marris
et al. [17] proposed maximum welfare coarse correlated equilib-
rium (MWCCE) and maximum Gini coarse correlated equilibrium
(MGCCE) as MSSs for computing correlated equilibria. Wang and
Wellman [33] proposed an MSS called regularized replicator dy-
namics (RRD), which mitigates the over�tting problem [13] by reg-
ularizing the equilibrium search process based on a regret criterion.
McAleer et al. [18] proposed to use minimum regret constrained
pro�le [12, 31] as an MSS for PSRO for two-player zero-sum games.

Most of these works follow the standard PSRO framework, where
the learning player optimizes its own payo� against other players’
strategies (i.e., the original RO), though a few have considered some
variants of the standard RO. One such example is the method called
diverse PSRO [27], which includes a diversity measure de�ned
through a determinantal point process in the response objective.
Liu et al. [16] proposed the uni�ed diversity measure (UDM), as
a way to capture a variety of diversity metrics including e�ective
diversity [2], expected cardinality [27], and population diversity
[26]. Muller et al. [22] employed an MSS based on U-Rank [25] and
proposed a preference-based objective to ensure the convergence
of PSRO to U-Rank. Li et al. [15] deployed Monte Carlo tree search
(MCTS) as the best response oracle using di�erent values (e.g.,
social welfare) to update values of nodes along the sample path in
the back-propagation step of MCTS. The employment of di�erent
back-propagation values can also be viewed as modi�cations in
ROs.
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3 PRELIMINARIES
A normal-form game G = (# , ((8 ), (D8 )) comprises a� nite set of
players # indexed by 8 , a non-empty set of strategies (8 for player
8 2 # , and a utility function D8 :

Œ
92# ( 9 ! R for player 8 2 # .

A mixed strategy f8 is a probability distribution over strategies
in (8 , with f8 (B8 ) denoting the probability player 8 plays strategy B8 .
We adopt conventional notation for the other-agent pro�le: f�8 =Œ

9<8 f 9 . Let �(·) represent the probability simplex over a set. The
mixed strategy space for player 8 is given by �((8 ). Similarly,�(() =Œ

82# �((8 ) is the mixed pro�le space.
Player 8’s best response to pro�le f is the set of strategies yield-

ing maximum payo�for 8 ,� xing other-player strategies:

br8 (f�8 ) ⌘ argmax
f 08 2�((8 )

D8 (f08 ,f�8 ).

Let br (f) ⌘Œ
82# br8 (f�8 ) be the overall best-response correspon-

dence for a pro�le f . A Nash equilibrium (NE) is a pro�le f⇤ such
that f⇤ 2 br (f⇤).

Player 8’s regret for pro�le f in game G is given by

dG8 (f) ⌘ max
B08 2(8

D8 (B08 ,f�8 ) � D8 (f8 ,f�8 ).

Regret captures the maximum player 8 can gain in expectation by
unilaterally deviating from its mixed strategy in f to an alternative
strategy in (8 . An NE has zero regret for every player. A pro�le is
said to be an n-Nash equilibrium (n-NE) if no player can gainmore
than n by unilateral deviation. We de�ne the regret of a strategy
pro�le f as the sum over player regrets:

dG (f) ⌘
’
82#

dG8 (f).

A restricted game G(#- is a projection of full game G, in which
players choose from restricted strategy sets -8 ✓ (8 . An empirical
game Ĝ is a model of true game G where payo�s are estimated
through simulation. Thus, Ĝ(#- = (# , (-8 ), (D̂8 )) denotes an em-
pirical game model where D̂ is an estimated projection of D onto
the strategy space - .

PSRO is presented below as Algorithm 1 (with line 7). In PSRO,
each player is initialized with a set of strategies -8 and the utilities
for pro�les in the pro�le space- are simulated, resulting in an initial
empirical game Ĝ(#- . At each iteration of PSRO, a meta-strategy
solver extracts a pro�le from the empirical game Ĝ(#- as the best
response target pro�le f . Then each player (i.e., the learning player)
computes a best response B08 against other players’ strategies f�8
in the pro�le f . This is achieved by� xing other players’ strategies
f�8 , enabling the environment to become stationary to the learning
player for computing an optimal strategy. The best response B08 will
be added to its strategy set-8 in the empirical game. This procedure
will repeat until certain stopping criterion has been satis�ed (e.g., a
�xed number of iterations).

A response objective for player 8 in PSRO is a function of strat-
egy pro�les, denoted as RO8 (f). For example, in standard PSRO
described above, the RO can be written as RO8 (f) = D8 (B08 ,f�8 ) and
maximizing it over B08 gives player 8 a best response against f�8 .
Since MSSs and ROs may have a coupled impact on strategy explo-
ration and are not interchangeable, for simplicity, we refer to the
choice of a pair of an MSS and an RO as an MSS-RO combination.

Algorithm 1 PSRO, parametrized by solver MSS
Input: Initial strategy sets -
1: Estimate Ĝ(#- by simulating f 2 -
2: Initialize target f  MSS(Ĝ(#- )
3: for PSRO iteration g = 1, 2, . . . ,T do
4: for player 8 2 # do
5: for many RL training episodes do
6: Sample a pro�le B�8 ⇠ f�8
7: Standard PSRO: Train best response oracle B08 against

B�8
8: PSRO with Generalized ROs: Train a RL agent B08

against B�8 to optimize RO8 (B08 , B�8 )
9: end for
10: -8  -8 [ {B08 }
11: end for
12: Update Ĝ(#- by simulating missing pro�les over -
13: Compute response target f  MSS(Ĝ(#- )
14: end for
15: Return Ĝ(#-

4 PSROWITH GENERALIZED RESPONSE
OBJECTIVES

We introduce PSRO with generalized ROs in Algorithm 1 (with line
8), which generalizes the standard PSRO by allowing ROs to be
customized for each player. The customized ROs will be (approxi-
mately) solved through RL at each iteration of PSRO and details for
this optimization is described in Appendix A.2. Our key observation
for generalized ROs is that ROs will substantially steer strategy
exploration toward preferred equilibria, or more broadly, empiri-
cal game models. We demonstrate this by� rst proposing four RO
instances for PSRO with various strategy exploration preferences
and then accessing their impacts in sequential bargaining games
and attack-graph games.

In Table 2, we describe� ve ROs considered in this work.1 In
each, the learning player 8 maximizes the RO over B08 2 (8 , respond-
ing to the� xed other-player strategy f�8 . First is the Original
RO—standard in PSRO—which maximizes 8’s own utility against
f�8 (i.e., the deviation payo� ). Our� rst variant RO is named the
Nash Product Response Objective (NPRO), which trades o�the
deviation payo� for the Nash product (i.e., the product of players’
utilities). It is well-known that maximizing the Nash product will
yield the Nash bargaining solution [23]. By replacing the Nash prod-
uct with other players’ utilities, we obtain our second variant RO,
called Social Welfare Response Objective (SWRO). When U = 0.5,
SWRO reproduces social welfare (i.e., the sum of players’ utilities).
Our next RO, the Social Equity Response Objective (SERO), aims
to balance utilities among players. SERO penalizes the deviation
payo� by the di�erence in utilities among players. The� nal RO,
Minimizing Opponent Response Objective (MORO), seeks to
explicitly minimize other-player utility, while also maximizing de-
viation payo�.

1The ROs in Table 2 are de�ned for two-player games, soD�8 (B08 ,f�8 ) is a scalar. Some
ROs like SWRO can be generalized straightforward for |# | players.
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RO Name Formula

Original Response Objective D8 (B08 ,f�8 )
Nash Product Response Objective UD8 (B08 ,f�8 ) + (1 � U)D8 (B08 ,f�8 )D�8 (B08 ,f�8 )
Social Welfare Response Objective UD8 (B08 ,f�8 ) + (1 � U)D�8 (B08 ,f�8 )
Social Equity Response Objective UD8 (B08 ,f�8 ) � (1 � U) |D8 (B08 ,f�8 ) � D�8 (B08 ,f�8 ) |
Minimizing Opponent Response Objective UD8 (B08 ,f�8 ) � (1 � U)D�8 (B08 ,f�8 )

Table 2 Five response objective forms. U 2 [0, 1] is a weighting parameter.

5 SEQUENTIAL BARGAINING GAMES
Sequential bargaining games represent a broad class of situa-
tions where two parties attempt to reach a deal through a series of
proposals and counter-proposals [11, 28]. Variations of this model
have been applied extensively, to scenarios including negotiations
between nations in trade agreements, and private individuals bar-
gaining over salaries. Sequential bargaining is a salient domain for
EGTA due to its strategic complexity, and ubiquity in practice. These
games also commonly exhibit multiple equilibria of varying prefer-
ence, thus making them an especially interesting environment for
studying how strategy exploration can a�ect which equilibria are
captured by alternative paths of empirical game models.

5.1 Game Setup
We consider a non-zero-sum incomplete-information bargaining
game, in which two players alternatively make o�ers to reach a
deal over  types of items within time horizon ) . The item of type
: has": units available. For each bargaining instance,": is drawn
from a uniform distribution, and revealed to both players. Each
player has a private per-unit valuation for each item type, drawn
independently from a speci�ed distribution. Also for each instance
the players are assigned independently drawn disagreement values,
from player-speci�c distributions.

During each time step C  ) , one player makes an o�er and the
other player decides whether to accept or reject it. O�ers are made
in vector form, representing the quantities of each item requested
by the player (e.g., (3, 1, 1) requests 3 units of the� rst item and 1
unit each of the second and third items). If a deal is reached, the
players receive a sum of their private values for the items in the
o�er, discounted by a factor of WC . If no deal is reached, they receive
their disagreement values.

5.2 Experimental Results
In sequential bargaining games, a natural consideration for the
bargaining outcome is social welfare. Under the PSRO framework,
it means that an empirical game model that incorporates equilibria
with greater social welfare will be more desirable than others. In
our� rst experiment, we show that PSRO with NPRO and SWRO
can yield such game models compared to other PSRO variants. Our
experimental results support the claim that ROs can substantially
impact strategy exploration and equilibrium outcomes.

Speci�cally, we run PSRO with a combination of� ve MSSs (RRD,
Nash equilibrium, uniform, MWCCE, and MGCCE) and three ROs
(the original RO, the NPRO, and the SWRO), producing� fteen
MSS-RO combinations in total (seven combinations are explained

in Fig. 1 while the remaining eight are depicted in Figs. 2 and 3).
PSRO with each MSS-RO combination will generate a sequence of
empirical games. We evaluate the quality of solutions in the termi-
nal empirical game for each combination. Our comparisons follow
a consistency criterion [31], which states that whereas empirical
games can be generated by di�erent MSS-RO combinations, they
should be evaluated based on measures of interest (e.g., regret, so-
cial welfare) applied to the same solution concept. For our purposes,
we choose to compare the social welfare of the same solution con-
cepts across the generated empirical games. We select� ve solution
concepts for evaluation (shown in Table 3), re�ecting the quality of
solutions in the empirical games from di�erent angles. For example,
NE, MWCCE, andMGCCE represent the common solution concepts
whilst the uniform re�ects the average performance of strategies
in the empirical game.

In Fig. 1, we� rst show the impact of NPRO and SWRO on strat-
egy exploration by replacing the original RO in Nash with them,
respectively. Speci�cally, each color represents an MSS-RO com-
bination (if the RO is the original RO, it is omitted for simplicity),
and seven empirical games were generated in total, one for each
combination. Then the social welfare (averaged over 15 random
seeds) of the same conceptacross the seven empirical games were
bundled. For example, in the Max SW group (i.e., the left-most bun-
dle), we plot the maximal social welfare in pure strategy pro�les
for each of the seven empirical games. Moreover, in the NE SW
group, the social welfare of NE of each empirical game is listed for
comparison.

From Fig. 1, we observed that the Nash-NPRO combination gener-
ates the greatest social welfare across all� ve solution concepts than
other variants and Nash-SWRO is ranked second. By comparing
Nash with Nash-NPRO and Nash-SWRO, we noticed a signi�cant
increase in social welfare for equilibria in the resulting empirical
games after replacing the original RO with NPRO or SWRO. This
observation veri�es our concern for DO (i.e., PSRO with Nash)
that it can stop at an NE with arbitrary features, and shows that
either NPRO or SWRO can steer strategy exploration toward solu-
tions with higher social welfare. As discussed later, our observation
remains valid, regardless of the MSSs employed. It is worth men-
tioning that Nash-SWRO achieves the highest social welfare with a
weighting parameter U = 0.8, as opposed to the setting U = 0.5 that
exactly captures social welfare. In other words, there is a bene�t
to considering the other-agent value in constructing a response
strategy, but not to the same degree as one’s own value.
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Solution Concept Description

Max SW maximum social welfare across pure strategy pro�les
NE SW social welfare of Nash equilibrium
Uniform SW social welfare of a uniform distribution over strategies
MWCCE SW social welfare of maximum social welfare coarse correlated equilibrium
MGCCE SW social welfare of maximum Gini coarse correlated equilibrium

Table 3 Five solution concepts used for evaluation.

Figure 1 Social Welfare of PSRO with various MSS-RO combinations. Each color represents an MSS and each bundle of colors
shows the SW of a given solution concept in the corresponding empirical games. Max SW is the maximum SW among pure
strategy pro�les.

Since there might exist multiple equilibria in an empirical game,
which equilibrium to select for evaluation is pivotal. We demon-
strate that this issue is less stressful given the results in our par-
ticular situation. In particular, we assume the solution concept of
interest is NE and use Nash-SWRO as an example. From Figure 1,
we can see that the social welfare of NE found by Nash-SWRO
(i.e., 12.68) is higher than that of any other combinations in Max
SW. Since the social welfare of any mixed strategy pro�le is upper
bounded by the maximal social welfare over pure strategy pro�les,
the social welfare of NE found by Nash-SWRO is determined to be
higher than the social welfare of any pro�les (including NE) found
by other MSS-RO combinations. Another way to reason about this
argument is that since the set of NE is a subset of CCE, the social
welfare of NE is upper bounded by the social welfare of MWCCE
in the corresponding empirical game, which is further bounded
by Max SW. As the social welfare of NE found by Nash-SWRO is
higher than that of MWCCE given by other MSS-RO combinations,
Nash-SWRO must result in NE with higher social welfare than
others. The same argument can be simply applied to Nash-NPRO.

In Fig. 2, we combine NPRO with each MSS and plot the social
welfare of the same� ve evaluation concepts. We observed that the
social welfare of solutions given by Nash-NPRO remains highest
across all combinations. One interesting observation is that Nash-
NPRO outperforms RRD-NPRO even though Nash performs worse
than RRD (light blue vs dark blue in Fig. 1). This observation in-
dicates that MSSs and ROs have a coupled in�uence on strategy
exploration. Our hypothesis for the reduced performance of RRD

with NPRO is that the regularization imposed by RRD is super�uous
given that NPRO already varies from Nash.

In Fig. 3, we plot the social welfare of solutions before and after
integrating NPRO and SWRO with each individual MSS. We ob-
served that the social welfare of all evaluation concepts increases
after applying either NPRO or SWRO, regardless of the MSS em-
ployed. This shows that either NPRO or SWRO alone can direct
strategy exploration and identify strategy spaces that cover solu-
tions with higher social welfare, though a proper choice of MSSs
will further raise the social welfare (i.e., Nash-NPRO yields the high-
est SW). In Appendix A.1, we provide more data that shows the
social welfare given by Nash-NPRO and Nash-SWRO is strikingly
high compared to global maximum of the full game.

Fig. 4 plots individual player utilities in the� nal NEs produced by
11 PSRO runs with di�erent MSS-RO combinations. The convex hull
of these points represent the empirical Pareto frontier of equilibria
of the bargaining game. Points with the same color are obtained
by running PSRO with di�erent random seeds. From the plot, we
observed that the equilibria given by both Nash-NPRO and Nash-
SWRO are on the frontier and appear dense while the equilibria
found by other combinations spread out in the utility space. This
means that both Nash-NPRO and Nash-SWRO can steer strategy
exploration toward preferred game models, in a relatively stable
manner. Moreover, we found that player 1 earns a higher utility than
player 2 in all equilibria found by Nash-NPRO and Nash-SWRO,
which reveals the advantage of moving� rst in these equilibria with
higher social welfare.
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Figure 2 Social welfare of PSRO with MSSs and NPRO evaluated under the same solution concepts.

(a) Nash as an MSS. (b) RRD as an MSS.

(c) MWCCE as an MSS. (d) MGCCE as an MSS.

Figure 3 Social welfare of MSSs with and without SWRO and NPRO.

To further demonstrate the impact of ROs on strategy explo-
ration, we combine Nash with SERO and list the averaged utilities
in equilibria given by some selected MSS-RO combinations in Ta-
ble 4. we observed that Nash-SERO can e�caciously reduce the
utility di�erence between two players, compared to other combina-
tions. Moreover, we noticed that Nash-SERO causes an increase in
social welfare from Nash. This rise can be attributed to the trans-
formation of SERO into a formula that accounts for the utility of
both players when D8 (B08 ,f�8 ) � D�8 (B08 ,f�8 ) � 0 and U > 0.5.

MSS-RO D1 (f⇤) D2 (f⇤) |D1 (f⇤) � D2 (f⇤) | SW

Nash-NPRO 7.82 6.11 1.71 13.93
Nash-SWRO 9.24 3.44 5.80 12.68
Nash-SERO 5.56 5.83 0.27 11.39
Nash 4.26 4.95 0.69 9.21

Table 4 A shrinkage in the utility gap caused by the SERO.
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Figure 4 NE scatters in the utility space. Each color repre-
sents an MSS-RO combination. Points with the same color
are obtained by running PSRO with di�erent random seeds.

5.3 Veri�cation of NE given by Nash-NPRO and
Nash-SWRO

To con�rm that the NE given by Nash-NPRO and Nash-SWRO is
indeed a full-game NE, we compute deviation payo�s using deep
Q-network (DQN) [21]. We� nd the regrets are on the order of 10�2,
which con�rms the NE is su�ciently stable with respect to the full
game. This stability is supported by the fact that with NE as MSS,
iteratively solving ROs can be viewed as iterative n-best responses
to NE, which will result in n-NE after convergence. In our scenario,
the value of n is closely related to the weighting parameter U and a
small or an annealed U will lead to a small n .

In fact, in the context of strategy exploration, the convergence
of PSRO can be asserted as long as the empirical strategy space
encompasses a full-game NE, as veri�ed by examining the full-game
regret. Importantly, this convergence does not necessitate the best-
response target aligning with the NE. In general, achieving exact
convergence in large games is often unattainable. Consequently,
the primary focus of strategy exploration in large games revolves
around the development of new algorithms that exhibit strong
empirical performance.

6 ATTACK-GRAPH GAMES
A�ack graphs [20] are tools in cyber-security analysis employed to
model the paths by which an adversary may compromise a system.
An a�ack-graph game is a two-player general-sum game de�ned
on the attack graph where an attacker attempts to compromise a
sequence of nodes to reach goal nodes and a defender endeavors
to protect any node (e.g., deny an access). Reaching the goal nodes
within a� nite horizon provides a large bene�t for the attacker and
a substantial loss for the defender. Both o�ensive and defensive
actions are associated with a cost. The ability of the attacker to
choose any subset of feasible nodes and of the defender to defend
any subset of the nodes induces action spaces of combinatorial
size. We consider an attack-graph game instance with 100 nodes
and hence 2100 possible combinatorial actions. Since the game is
too large to analyze exhaustively, we� rst construct a particular
set of DQN strategies with 125 strategically-diverse strategies in
total, following the strategy sampling approach by Czarnecki et al.

[9]. Then we apply game-theoretic analysis to this set of strategies.
The attack-graph games often have several equilibria exhibiting
di�ering o�ensive and defensive interactions.

Figure 5 PSROwith di�erentMSS-RO combinations in attack-
graph games.

In Fig. 5, we plot the regret curves of di�erent MSS-RO com-
binations in the attack graph game. We observed that strategy
exploration with generalized ROs can a�ect the convergence speed
to an NE. In particular, Nash-SWRO converges to an NE faster than
others in this instance. Then we compute the averaged utilities
in equilibrium strategies for both players, where the defender (D)
and the attacker (A) earn utilities (D: -56.67, A: 27.50) for Nash,
(D: -13.43, A: 53.43) for Nash-SWRO, (D: -29.19, A: 47.68) for Nash-
NPRO, and (D: -84.91, A: 84.98) for Nash-MORO. An interesting
observation is that Nash-SWRO can improve both players’ utilities
in the equilibrium, though the attack-graph games appear to be
purely adversarial. Additionally, we observed that Nash-MORO can
enlarge the utility di�erence between two players and the attacker
can cause more damage to the defender.

7 THE CONNECTION OF GENERALIZED ROS
TO GWFP

We establish a theoretical connection between PSRO with gener-
alized ROs and GWFP [14]. Inspired by the fact that some PSRO
variants can be viewed as classic game-learning dynamics (e.g.,
PSRO with uniform MSS recovers FP with RL), we establish a the-
oretical connection between PSRO with generalized ROs and a
generalized version of FP, called generalized weakened FP (GWFP)
[14]. GWFP uni�es FP and weakened FP and generalizes them by
allowing perturbations in the strategy updates and by relaxing re-
strictions on the step sizes. Formally, GWFP is any process {f=}=�0
with f= 2

Œ
82# �((), where = is index of iterations for FP, such

that

f=+1 2 (1 � U=+1)f= + U=+1 (brn= (f=) +"=+1), (1)

with brn= being an n=- best response correspondence, U= ! 0 and
n= ! 0 as = ! 0, and {"=}=�1 being a sequence of perturbations
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such that, for any ) > 0,

lim
=!1 sup

:

(�����
:�1’
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����� :
:�1’
8==

U8  )
)
= 0. (2)

It is known that GWFP recovers FP by setting n= = 0,"= = 0, and
U= = 1

= for all =, and shares the same convergence property with FP
(e.g., convergence to NE in two-player zero-sum games, potential
games, and 2 ⇥ |(8 | generic games).

Intuitively, PSRO with uniform MSS and a regularizer weighted
by 1�U (e.g., the other players’ utility in SWRO) will almost surely
converge to GWFP as U ! 1 (i.e., the regularizer vanishes and the
RO will converge to the original RO) and thus sharing the same
convergence properties as GWFP. Formally, we have the following
theorem with a detailed proof in Appendix D.1.

Theorem 1. With a strictly di�erentiable concave regularizer as-
sociated with an in�nitesimal temperature parameter in ROs, PSRO
with uniform MSS and an exact RO solver belongs to the class of
GWFP.

8 PSROWITH GENERALIZED ROS FOR
COMPUTING BERGE EQUILIBRIUM

Besides learning toward NE with particular features, PSRO with
generalized ROs can also be employed as a tool for computing
other solution concepts. In particular, we focus on computing Berge
equilibrium [5], a common solution in the game-theoretic study of
philosophy and social interactions, in which each player ensures
that all other players will receive the highest payo�. We employ BE
as an MSS and introduce a generalized RO based on the de�nition
of BE. We show that PSRO with this MSS-RO combination will stop
at a full-game BE in two-player games. Compared to prior methods
that compute BE by enumerating all pro�les [8], ourmethod enables
BE computation in large games.

8.1 Berge Equilibrium
We follow the de�nition of BE from an individual perspective given
by Zhukovskii [36], though BE was� rst de�ned in terms of coali-
tions by Berge [5].

A strategy pro�le f⌫ 2 �(() is a Berge equilibrium if for
8 2 {1, 2} and all B�8 2 (�8 ,

D8 (f⌫) � D8 (f⌫8 , B�8 ). (3)

This de�nition means that for any particular player 8 , its utility
would not increase if it sticks to its own BE strategy while other
players can change their strategies. This can be viewed as the
altruism in the game playing since in a BE each player ensures the
highest payo� for all other players who are also employing their
BE strategy. Note that this is di�erent from the spirit of NE, where
players are assumed to be sel�sh and only maximize their own
payo�.

8.2 Computing Berge Equilibria with PSRO
To adapt PSRO for computing BE, we should answer the following
two questions: a) How canwe compute a BE in the current empirical
game if BE is employed as an MSS? b) Which response objective
will steer strategy exploration toward a full-game BE e�ectively?

To answer the� rst question, based on the de�nition of BE, it can
be simply proved that a BE of the empirical game can be obtained
by computing NE of the corresponding utility-swapping game,
assuming a BE of the empirical game exists. Details of the proof is
included in Appendix D.2.

Proposition 1. Given a two-player� nite gameG = ({1, 2}, ((8 ), (D8 )),
f⌫ is a BE of G if and only if it is an NE of the utility function swap-
ping game G0 = ({1, 2}, ((8 ), (I8 )), where I8 = D�8 for 8 2 {1, 2}.

Now we can con�rm that a BE exists in an empirical game since
an NE exists in the utility-swapping game [24].

Corollary 1. For two-player� nite games, a BE exists in both the
full game and the empirical game.

To answer the second question, we propose the Berge Equilib-
rium Response Objective (BERO) based on the de�nition of BE,
which simply takes the form of D�8 (B8 ,f�8 ). BERO can be viewed
as a special case of SWRO where U = 0. With BE as an MSS and
BERO, we show the Berge PSRO algorithm for computing BE in
Appendix C.

Proposition 2. With exact best response oracles, PSRO with BE as
an MSS and BERO will stop at a full-game BE in two-player�nite
games.

8.3 Revisiting the Traveler’s Dilemma
In the Traveler’s dilemma shown in Table 1, Berge PSROwill stop at
the pro�le (5, 5) with payo� (6, 6), which is a BE of this game since
if one player deviates, another player’s payo� will not increase.
We also noticed that the pro�le (5, 5) is a desired pro�le with high
social welfare and low regret in this game.

Despite the higher social welfare of BE in the Travler’s dilemma,
it is not always the case that a BE will have higher social welfare
than an NE. For example, consider a two-player game with the
utility function D8 (B8 , B�8 ) = �5B8 + B�8 where B8 2 { �1, 1} for
8 2 {1, 2}. The BE of this game is (1, 1) with social welfare -8 while
the NE is (-1, -1) with social welfare 8. This is caused by individual
irrationality of BE and can be addressed by re�nements of BE [1, 37].

9 CONCLUSION
We study the e�ectiveness of setting customized ROs for guiding
strategy exploration toward desired empirical games under the
PSRO framework. Through systematically investigating various
MSS-RO combinations in sequential bargaining games and attack-
graph games, we show that ROs can steer strategy exploration
toward empirical games with solutions aligned with speci�ed objec-
tives. Using BE as an example, we show that PSRO with generalized
ROs can be employed for computing solution concepts other than
NE. Theoretically, we prove that PSRO with certain ROs belongs to
the class of GWFP.
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