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ABSTRACT
Graph-based environments pose unique challenges to multi-agent
reinforcement learning. In decentralized approaches, agents op-
erate within a given graph and make decisions based on partial
or outdated observations. The size of the observed neighborhood
limits the generalizability to different graphs and affects the reac-
tivity of agents, the quality of the selected actions, and the com-
munication overhead. This work focuses on generalizability and
resolves the trade-off in observed neighborhood size with a contin-
uous information flow in the whole graph. We propose a recurrent
message-passing model that iterates with the environment’s steps
and allows nodes to create a global representation of the graph
by exchanging messages with their neighbors. Agents receive the
resulting learned graph observations based on their location in the
graph. Our approach can be used in a decentralized manner at run-
time and in combination with a reinforcement learning algorithm
of choice. We evaluate our method across 1000 diverse graphs in
the context of routing in communication networks and find that it
enables agents to generalize and adapt to changes in the graph.
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1 INTRODUCTION
The capability of an adaptive system depends on the quality of its
input. Ideally, it has access to the state and makes fully informed de-
cisions at all times. Research in multi-agent reinforcement learning
ranges from centralized to decentralized approaches [22]. Our focus
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lies on decentralized systems in graph-based environments. While
agents may leverage the complete state during training, they have
limited access to local information during execution. In decentral-
ized approaches, agents can directly react to local changes. However,
having only local information may lead to suboptimal decisions.
A common way to counteract this is to expand the observations
of each agent by information from their direct neighborhood [30].
Including more nodes in the observed neighborhood improves de-
cision making [5] but increases the communication overhead.

Recent works show that graph neural networks [34] and neural
message passing [11] are well suited for applications in graph-based
environments, especially because they can generalize to unseen
graphs [33]. However, the approaches often assume a centralized
view [1], explicit coordination across all agents [2], or the availabil-
ity of labeled data in order to apply supervised learning [10].

We aim to resolve the trade-off in limited observed neighbor-
hoods in graph-based environments and propose a recurrent ap-
proach where nodes exchange local information via message pass-
ing to improve their understanding of the global state. They refine
their local states over the environment’s steps, allowing informa-
tion to iteratively travel through the whole graph. Based on these
node states, agents receive location-dependent graph observations.

Our approach provides a novel foundation for learning com-
munication systems in multi-agent reinforcement learning and is
jointly trained in an end-to-end fashion. Our contributions are:
• We propose to decouple learning graph-specific representa-
tions and control by separating node and agent observations.
• To the best of our knowledge, we are the first to address the
problem of limited observed neighborhoods in graph-based
environments with recurrent graph neural networks.
• We show that the learned graph observations enable gener-
alization over 1000 diverse graphs in a routing environment,
achieving similar throughput as agents that specialize on
single graphs when combined with action masking.
• We show that our approach enables agents to adapt to a
change in the graph on the fly without retraining.

Our code is available at https://github.com/jw3il/graph-marl.
The remainder of this paper is structured as follows. We begin with
the problem statement in Sec. 2 and then introduce our approach
in Sec. 3. We describe our evaluation setup in Sec. 4, the results are
presented and discussed in Sec. 5. The following Sec. 6 provides an
overview of related work and Sec. 7 concludes the paper.
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2 REINFORCEMENT LEARNING IN GRAPHS
Reinforcement learning (RL) in graph-based environments has
gained much popularity in many application domains [28], includ-
ing communication networks [22]. We consider multi-agent envi-
ronments that build upon a graph 𝐺 � (𝑉 , 𝐸) ∈ G, representing a
communication network of nodes𝑉 connected via undirected edges
𝐸 ⊆ 𝑉 ×𝑉 . We assume that the agents 𝐼 are part of a partially observ-
able stochastic game [16] that requires them to consider the graph,
i.e. state 𝑠𝑡 ∈ 𝑆 at step 𝑡 contains 𝐺 and may augment it with state
information that characterizes the network. Examples include edge
delays and compute resources of nodes. Each agent 𝑖 ∈ 𝐼 receives
partial observations 𝑜𝑖𝑡 ∼ 𝑂𝑖 (·|𝑠𝑡 ) and selects an action 𝑎𝑖𝑡 ∈ 𝐴 using
its policy 𝑎𝑖𝑡 ∼ 𝜋𝑖 (·|𝑜𝑖𝑡 ). The agent’s goal is to maximize its expected
discounted return E

[∑𝑇
𝑡 ′=𝑡 𝛾

𝑡 ′−𝑡𝑅𝑖
𝑡 ′
]
with discount factor 𝛾 ∈ [0, 1]

and time horizon 𝑇 , where the individual rewards 𝑅𝑖𝑡 = 𝑅
𝑖 (𝑠𝑡 , 𝑎𝑡 )

are based on the joint action of all agents 𝑎𝑡 = (𝑎𝑖𝑡 )𝑖∈𝐼 .
How agents observe the graph and the network’s state is usually

not discussed in depth by related works. A centralized view allows
for the best decision making but does not scale to bigger graphs.
A decentralized view trades off reactivity and amount of available
information with the size of the observed neighborhood. Authors
usually decide for one of these views and their approaches are
therefore, by design, limited to certain problems or graph structures.

Consider a decentralized approach where an agent is located on
a node and observes its 𝑛-hop neighborhood. Depending on the
environment, the assumption about the observable neighborhood
is critical with respect to generalizability. Let’s imagine the agent
is supposed to find the shortest path to some destination node in
the graph that is 𝑛 + 1 hops away. How can it identify the shortest
path to a destination node that’s not included in its observation?
There are two straight-forward solutions:

(1) Specialization on a single graph. Agents explore the whole
graph during training. If the graph is fixed and nodes are
uniquely identifiable based on the agent’s observation, agents
can specialize and find the optimal path to any node.

(2) Expansion of the observation space to include the missing
information, e.g. to (𝑛 + 1)-hop neighborhoods.

With specialization, the learned solution will not generalize to
other graphs. If the target graph does not change, this would be a
sufficient but highly inflexible solution. As real networks have di-
verse underlying graphs and are usually dynamic, many researchers
consider online training on the target graph. However, as reinforce-
ment learning requires agents to explore and make suboptimal
decisions, online training from scratch might be unacceptable in
practice. In contrast, expanding the observation space allows agents
to generalize. However, the observation range to consider greatly
depends on the concrete problem. For example, for routing, global
knowledge is necessary if any node could be the destination. But
then the approach is not decentralized anymore and will not scale.

Our idea is to address this issue by expanding the observation
space with learned graph observations that leverage recurrent mes-
sage passing. Agents are still reactive and don’t have to gather in-
formation about the whole graph before making a decision. While
initial decisions may be suboptimal, the quality of the learned graph
observations should increase over time. Ideally, they converge to a
global view and allow agents to make optimal decisions.

3 LEARNED GRAPH OBSERVATIONS
We consider environments that are based on a graph and propose to
decouple both components, i.e. agents do not have to keep track of
the whole graph state and can build upon a lower-level mechanism
that aggregates graph information. The information flow is illus-
trated in Fig. 1 and will be explained in the following subsections.
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Figure 1: Our graph observation mechanism iteratively dis-
tributes node states via message passing. Agents in the graph
receive local graph observations for decision making.

3.1 Recurrent Message Passing
The core idea of our graph observations is leveraging the message-
passing framework of graph neural networks [13] to distribute
local information in the network. Related approaches are usually
used in a centralized manner with a global view [3]. However,
recurrent aggregation functions [23, 37] spread multiple message
passing iterations over time and enable decentralization [10]. We
introduce a second recurrent loop back to the input of the graph
neural network and label this approach recurrent message passing.

We assume that each node 𝑣 ∈ 𝑉 receives local node observations
𝑚𝑣 ∼ 𝑀𝑣 (· | 𝑠) based on an unknown system state 𝑠 ∈ 𝑆 . Instead
of directly using this as an input of a graph neural network, each
node 𝑣 ∈ 𝑉 embeds its local observation into its current node state
ℎ𝑣 with an arbitrary differentiable function encode:

ℎ𝑣0 � encode(ℎ𝑣,𝑚𝑣) . (1)

The node state ℎ𝑣 is initialized to zero in the first step and will
serve as a recurrent loop between subsequent environment steps.
This allows nodes to consider previously aggregated information
when processing observations, similar to auto-regressive graph
models [31] that use predictions of previous steps as their input.

At iteration 𝑘 ≥ 0, each node sends their state ℎ𝑣
𝑘
to all direct

neighbors𝑤 ∈ 𝑁 (𝑣) � {𝑤 | (𝑣,𝑤) ∈ 𝐸}. Each neighbor generates
a new state by first aggregating incoming node states and then
updating its state using arbitrary differentiable functions aggregate𝑘

and update𝑘 . One message passing iteration is defined as:

𝑀𝑣
𝑘
� aggregate𝑘 ((ℎ𝑤

𝑘
)𝑤∈𝑁 (𝑣) ) (2)

ℎ𝑣
𝑘+1 � update𝑘 (ℎ𝑣

𝑘
, 𝑀𝑣

𝑘
) . (3)
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Algorithm 1 Distributed Node State Update

Input: Node 𝑣 with direct neighbors 𝑁 (𝑣), state 𝑠 , previous node
state ℎ𝑣 , node observation𝑚𝑣

Output: Updated node state ℎ𝑣
𝐾
and intermediate states 𝐻 𝑣

1: ℎ𝑣0 ← encode(ℎ𝑣,𝑚𝑣) ⊲ Encode node observation
2: for 𝑘 ← 0 to 𝐾 − 1 do ⊲ Update with message passing
3: Send ℎ𝑣

𝑘
to all neighbors𝑤 ∈ 𝑁 (𝑣)

4: Receive ℎ𝑤
𝑘
from all neighbors𝑤 ∈ 𝑁 (𝑣)

5: 𝑀𝑣
𝑘
← aggregate𝑘 ((ℎ𝑤

𝑘
)𝑤∈𝑁 (𝑣) )

6: ℎ𝑣
𝑘+1 ← update𝑘 (ℎ𝑣

𝑘
, 𝑀𝑣

𝑘
)

7: 𝐻 𝑣 ← (ℎ𝑣
𝑘
)𝑘 ∥ (ℎ𝑤𝑘 )𝑤∈𝑁 (𝑣),𝑘 ⊲ Get all intermediate states

8: return ℎ𝑣
𝐾
, 𝐻 𝑣

Alg. 1 shows pseudo code for recurrent message passing that is
executed by all nodes 𝑣 ∈ 𝑉 . There are 𝐾 ∈ N iterations between
steps in the environment, i.e. equations (2) and (3) are repeatedly
applied until 𝑘 + 1 = 𝐾 . The final aggregate ℎ𝑣

𝐾
and all intermediate

node states 𝐻 𝑣 received and calculated by 𝑣 can then be used by
agents, as we will detail later. In the next environment step, we set
ℎ𝑣 = ℎ𝑣

𝐾
and repeat the algorithm. The number of iterations can be

adjusted to fit the requirements of the learning task. An increased
number of iterations per step causes information to traverse the
network faster but also increases the communication overhead.

This node state update is performed at each step in the envi-
ronment. We assume that each agent 𝑖 ∈ 𝐼 is assigned to exactly
one node 𝑣𝑖 ∈ 𝑉 at each step. In addition to its observation in the
environment, agent 𝑖 ∈ 𝐼 then receives a local graph observation
𝜓 𝑖 of the node it is assigned to based on the information 𝐻 𝑣

𝑖
this

node received in this step via a differentiable readout function Ψ:

𝜓 𝑖 � Ψ(𝐻 𝑣
𝑖

). (4)

In the simplest case, Ψ could be the identity function of the latest
node state Ψ(𝐻 𝑣𝑖 ) � ℎ𝑣𝑖

𝐾
in each iteration, i.e. agents receive the

current state of the node to which they are assigned. Access to inter-
mediate node states is necessary to allow for skip connections and
aggregation mechanisms like jumping knowledge networks [42].

3.2 Model Architecture
Based on the design from the previous section, we propose a sim-
ple recurrent message passing architecture. The encode function
is represented by a fully connected network to embed the node
observation and an LSTM [17] to update the previous node state
with the new embedding. The aggregate function is the sum of all
neighbors’ hidden states, but could be any graph convolution from
related work. Finally, update is modeled by another LSTM.We share
parameters for all iterations, i.e. ∀𝑘. update𝑘 = update. We provide
an overview of the architecture with Fig. 2. An LSTM cell takes an
input tensor and a pair of hidden and cell state tensors (ℎ, 𝑐) and
yields new hidden and cell states. In our architecture, the hidden
state is exchanged with neighbor nodes during aggregation, the
cell state remains local to the node. The inner loop from update to
aggregate depicts iterations within a step, the outer loop represents
the forwarding of states between environment steps. The states

LS
TM

 A

(1) (3) (2) 

FC LS
TM

 B

Figure 2: Our recurrent message passing model leverages
LSTM cells to encode the node observation and update the
node state. The hidden states of neighbor nodes are aggre-
gated via summation, cell states remain local to each node.

of the LSTM modules are not separated. Instead, a single pair of
hidden and cell states is passed on between the modules.

3.3 Integration in Deep RL
Graph observations are compatible with all deep reinforcement
learning approaches that allow for backpropagation through the
policy’s input, i.e. the observation space. To the best of our knowl-
edge, most algorithms do not have any limitations in that regard,
as the policy is usually based on a differentiable function.

In order to integrate our method with deep RL algorithms, the
node state update has to be performed at each environment step
during inference and training, resulting in an expanded observation
space for the agents. The integration at inference time can be done
with a simple environment wrapper. Depending on the considered
algorithm, the integration into the training loop will require addi-
tional effort. For example, algorithms based on Q-learning bootstrap
the value target using the observations of future states. In order
to compute the corresponding graph observations, we therefore
have to compute or sample node states for these future steps. Ad-
ditionally, as node states are updated over multiple environment
steps, we have to unroll the node state update over a sequence of
steps and apply backpropagation through time in order to learn
stable update functions. This is already included in algorithms that
consider stateful agents with recurrent models [20], but will require
adjustments for other reinforcement learning algorithms.

3.4 Exemplary Integration in Deep Q-Learning
In this section, we exemplary describe how to integrate our method
into independent DQN [27] with parameter sharing across agents.
Our approach is summarized in Alg. 2, noteworthy changes to the
original algorithm are highlighted in light gray. The main difference
lies in the introduction of node states ℎ𝑡 that are updated in parallel
to the environment steps based on the node observations𝑚𝑡 and
the previous node states. For notational simplicity, we denote re-
current message passing combined with the readout function Ψ as
a differentiable function𝑈 (ℎ𝑡 ,𝑚𝑡 , 𝑠𝑡 ;𝜃𝑈 ) parameterized by 𝜃𝑈 (see
line 9). It returns the next node state of all nodes ℎ𝑡+1 � (ℎ𝑣𝑡+1)𝑣∈𝑉
and the graph observations of all agents 𝜓𝑡 � (𝜓 𝑖𝑡 )𝑖∈𝐼 based on
the node states of all nodes ℎ𝑡 , all node observations𝑚𝑡 and the
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state 𝑠𝑡 . The only information required from 𝑠𝑡 are the graph and
the mapping of agents to nodes. The graph observation𝜓 𝑖𝑡 of agent
𝑖 depends on its position in the graph and is concatenated with the
agent’s observation 𝑜𝑖𝑡 received from the environment (see line 12).
�̂� and𝑈 denote that the respective gradient calculation is disabled.

During training, we sample a sequence of transitions from the re-
playmemory and perform backpropagation through time analogous
to the stored state method from recurrent experience replay [20].
The initial node state ℎ′

𝑗0
is loaded from the replay memory and

subsequent node states in the sequence are recomputed (see lines 18
and 19). The Q-learning target requires graph observations for the
next step, which we compute temporarily. We then aggregate the
squared error over all steps in the sequence (see line 22) and per-
form gradient descent with respect to the agent’s parameters 𝜃𝑄
and the parameters of the message passing module 𝜃𝑈 .

Algorithm 2 Independent DQN with Learned Graph Observations
1: Initialize replay memory 𝐷
2: Initialize action-value function 𝑄 with weights 𝜃𝑄
3: Initialize target weights 𝜃𝑄
4: Initialize node state update function 𝑈 with weights 𝜃𝑈
5: for episode← 0 . . . do
6: ℎ0 ← 0 ⊲ Initialize node states
7: Obtain 𝑠0, 𝑜0, and𝑚0 by resetting the environment
8: for 𝑡 ← 0 to 𝑇 − 1 do
9: ℎ𝑡+1,𝜓𝑡 ←𝑈 (ℎ𝑡 ,𝑚𝑡 , 𝑠𝑡 ;𝜃𝑈 ) ⊲ Node state update
10: for 𝑖 ∈ 𝐼 do
11: Select random action 𝑎𝑖𝑡 with probability 𝜖
12: otherwise select action

𝑎𝑖𝑡 = argmax𝑎�̂� (𝑜𝑖𝑡 ∥ 𝜓 𝑖𝑡 , 𝑎;𝜃𝑄 )
13: Perform environment step with actions 𝑎𝑡 and get

reward 𝑟𝑡 , state 𝑠𝑡+1, obs 𝑜𝑡+1, node obs𝑚𝑡+1
14: Store (ℎ𝑡 , ℎ𝑡+1,𝑚𝑡 ,𝑚𝑡+1, 𝑠𝑡 , 𝑠𝑡+1, 𝑜𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑜𝑡+1) in 𝐷
15: Initialize loss 𝐿 ← 0
16: for batch sequence indices in 𝐷 j← 𝑗0 to 𝑗0 + (𝐽 − 1) do
17: if 𝑗 = 𝑗0 then
18: ℎ′

𝑗
← ℎ 𝑗 ⊲ Load node state from replay memory

19: ℎ′
𝑗+1,𝜓

′
𝑗
← 𝑈 (ℎ′

𝑗
,𝑚 𝑗 , 𝑠 𝑗 ;𝜃𝑈 ) ⊲ Train node state update

20: ℎ′′
𝑗+2,𝜓

′′
𝑗+1 ← 𝑈 (ℎ′

𝑗+1,𝑚 𝑗+1, 𝑠 𝑗+1;𝜃𝑈 ) ⊲ Target input
21: 𝑦 𝑗 ← 𝑟 𝑗 + Z𝑗𝛾 max𝑎 �̂� (𝑜 𝑗+1 ∥ 𝜓 ′′𝑗+1, 𝑎;𝜃𝑄 )

with Z𝑖
𝑗
=

{
0 if agent 𝑖 is done at step 𝑗 + 1
1 otherwise

22: 𝐿 ← 𝐿 + (𝑦 𝑗 −𝑄 (𝑜 𝑗 ∥ 𝜓 ′𝑗 , 𝑎 𝑗 ;𝜃𝑄 ))2

23: Perform gradient descent on 𝐿 with respect
to parameters 𝜃𝑄 and 𝜃𝑈

24: Update target weights 𝜃𝑄

4 EXPERIMENT SETUP
We evaluate our approach in diverse graphs based on a routing
environment. The following sections describe considered models,
algorithms and graphs with greater detail. Then we briefly describe
the routing environment and a simplified supervised learning task.

4.1 Models and Training Algorithms
Our design consist of two parts, a model that generates graph
observations and a reinforcement learning agent.

Graph Observations. The core of the graph observations is the
message passing framework, as described in Sec. 3.1. Any graph
neural network can be used to generate such graph observations.
We use our proposed architecture from Sec. 3.2 and consider three
baseline graph neural network architectures from related work with
implementations by PyTorch Geometric [9] and PyTorch Geometric
Temporal [32]. Two architectures are feed-forward graph neural
networks without recurrency. GraphSAGE [14] is a GNN with mul-
tiple graph convolutional layers that use individual parameters.
A-DGN [12] aims to improve learning long-range dependencies
with an added diffusion term and performs multiple iterations with
the same parameters. As a recurrent baseline, GCRN-LSTM [37]
combines an LSTMwith Chebyshev spectral graph convolutions [7].
While our architecture uses a single sum to aggregate hidden states,
GCRN-LSTM utilizes 8 Chebyshev convolutions to aggregate inter-
mediate computations of an LSTM cell.

We define the readout function Ψ of aggregated node state up-
date information 𝐻 𝑣 (see Sec. 3.1) to graph observations 𝜓 𝑖 as a
concatenation of the current node state ℎ𝑣

𝐾
and the last node states

ℎ𝑤
𝐾−1 that this node received from its neighbors. This serves as
a skip connection over the last iteration. Note that no additional
message exchange is necessary for this skip connection. We apply
the same readout function to all graph observation methods.

Agents. We consider independent DQN [27], recurrent DQN
(DQNR) [20], CommNet [38] and DGN1 [19]. We build upon the im-
plementation of DGN2 and reimplement the remaining approaches.
All variants share the same training setup but differ in the agent’s ar-
chitecture. DQN is a feed-forward networkwith fully-connected lay-
ers that is trained with a Q-learning loss. DQNR adds an LSTM [17]
layer and is trained on sequences. Both approaches do not fea-
ture any information exchange between agents, their policies are
completely separated during execution. CommNet extends DQNR
with two communication rounds where agents exchange their hid-
den states before selecting an action. DGN extends DQN with two
communication rounds using self-attention [39] and adds a regu-
larization term to the loss. Within one communication round of
CommNet and DGN, agents communicate with other agents that
reside on the same node or on a node in their direct neighborhood.

4.2 Graph Generation and Overview
We extend the graph generation used in the routing environment
from Jiang et al. [19]. It places 𝐿 nodes randomly on a 2D plane
and then connects close nodes with edges until all nodes reach
degree 𝐷 . Having a fixed node degree is not a mandatory constraint
for our approach, but results in a discrete action space of fixed
size that simplifies reinforcement learning. Technically, this can be
extended to graphs with nodes of variable degrees, e.g. via action
masking [36]. The delay of an edge in steps is determined by a linear
function of the distance between the connected nodes, rounded to
the next integer. Disconnected graphs are filtered out.

1Not to be confused with the graph neural network A-DGN.
2https://github.com/PKU-RL/DGN/, including the PyTorch version.
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(a) Exemplary test graphs𝐺𝐴 ,𝐺𝐵 , and𝐺𝐶 with increasing maximum betweenness centrality.
The suffix indicates the (min, max, mean) betweenness centrality in the respective graph.
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(b) Mean throughput on 100 episodes for
all test graphs. Each dot represents a graph.

Figure 3: Overview of the considered graphs with (a) three exemplary graphs from the test set and (b) the mean throughput of
shortest paths routing with and without bandwidth limitation in all 1000 test graphs.

We generate 1000 distinct graphs for testing with 𝐿 � 20 and
𝐷 � 3. The mean diameter is 7.21± 1.42 hops and 12.84± 2.72 steps.
The mean all-pairs shortest paths (APSP) lengths are 3.26 ± 1.92
hops and 5.7 ± 3.6 steps. The maximum APSP lengths equal the
max diameters of 12 hops and 23 steps. The betweenness centrality
in [0, 1] of a node reflects the proportion of shortest paths between
any two different nodes in the graph that contain this node. In
routing, high values indicate potential bottlenecks in the graph. We
show exemplary graphs with increasing maximum betweenness
centrality in Fig. 3a. The nodes are repositioned to provide a better
overview. Graph 𝐺𝐴 with a low maximum betweenness centrality
is well balanced. Graph 𝐺𝐵 has a high mean betweenness central-
ity due to its line-like structure. Graph 𝐺𝐶 has a high maximum
betweenness centrality because of the bottleneck node in the center.

Apart from the node connectivity and potential bottlenecks, the
diameter of the graphs and the distribution of the shortest paths are
expected to influence our approach. In the graph neural network
architecture considered in this paper, messages only traverse the
graph through its edges. The number of iterations for information
from node 𝑣1 to be forwarded to node 𝑣2 equals the length of the
shortest path between these nodes. The minimum number of itera-
tions required to collect information from all nodes is therefore the
diameter of the graph. While the maximum diameter is 12 hops, we
found that over 99% of the shortest paths in all test graphs have at
most 8 hops. Further details are provided in the appendix [41].

4.3 Routing Environment
We extend the routing environment from Jiang et al. [19] and fix
a bug that caused packets to skip edges. At all times, there are 𝑁
packets of random sizes in [0, 1) that have to be routed from random
source to destination nodes in a given graph. We focus on general-
izability across graphs and use 𝑁 � 20 packets in our experiments.
Each packet is an agent that receives a reward of 10when it reaches
its destination. On a node, agents select one of 1+𝐷 discrete actions
that correspond to waiting and choosing an outgoing edge. Each
edge has a transmission delay given in steps. We consider two envi-
ronment modes. The first mode has no restrictions and packets are
always transmitted via their selected edges. In the second mode, we
take packet sizes and limited edge capacities into account. A packet

of size𝑔 is transmitted via a selected edge if the cumulative size of all
packets that are currently transmitted via this edge is smaller than
1 − 𝑔. The packet then traverses the edge according to the number
of steps in its transmission delay. Otherwise, the packet is forced to
stay at its current position and receives a penalty of−0.2. An agent’s
local observations include its current position, its destination and
packet size. For each outgoing edge of their current node, it observes
the delay, the cumulative size of packets on that edge and the re-
spective neighbor’s node id. A node observes its own id, the number
and size of packets that reside on the node, and local information
about outgoing edges. All node ids are given as one-hot encodings.

The throughput refers to the number of packets per step that ar-
rive at their destination.Delay describes the length of their episodes.
Note that the delay should never be considered on its own. For ex-
ample, agents that only route to destinations in their 1-hop neigh-
borhood would achieve low delays but also a low throughput.

As a baseline, we consider heuristic agents with a global view
that always choose the shortest paths with respect to the edge de-
lays. Fig. 3b shows the throughput with and without bandwidth
limitations when using this heuristic for 100 episodes in all test
graphs. Each dot is colored according to the maximum betweenness
centrality of the respective graph. We can see that bandwidth limi-
tations cause a significant drop in throughput and that graphs with
high maximum betweenness tend to result in lower throughput.

4.4 Shortest Paths Regression Task
The routing environment requires agents to learn paths from source
to destination nodes. To quickly evaluate the efficacy of different
graph neural network architectures, we design a multi-target re-
gression problem as a simplification of the routing environment.
We expect that the performance of different architectures in this
task will indicate their suitability for the routing environment. The
training dataset contains node observations for 100 000 graphs
generated by resetting the routing environment. We exclude 1 000
of these graphs for validation. The targets for each node are the
shortest path lengths to all other nodes. For the test dataset, we use
the node observations and targets of the 1 000 graphs from Sec. 4.2.
The loss is the mean squared error between the predicted and real
distances for each source and destination node.
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5 RESULTS
We first present independent results for our two core components,
the graph neural network architectures (see Sec. 5.1) and agents
trained in the routing environment with single graphs (see Sec. 5.2).
Section 5.3 combines both components and provides the results for
generalized routing, followed by a discussion in Sec. 5.4.

We use the AdamW optimizer [25] for all experiments. Details
regarding the hyperparameters are provided in the appendix [41].

5.1 Shortest Paths Regression
We first evaluate the considered graph neural network architectures
in the shortest paths regression task (see Sec. 4.4). We train each
architecture with three seeds for 50 000 iterations of batch size 32.

Based on the observations regarding the APSP distribution from
Sec. 4.2, 𝐾 = 8message passing iterations allow to pass information
between over 99% of all node pairs in the test graphs. Therefore, we
hypothesize that 𝐾 = 8 should lead to good performance on the test
graphs for the non-recurrent models. The results for different mes-
sage passing iterations 𝐾 and unroll depths 𝐽 are shown in Tab. 1.
In GraphSAGE, 𝐾 refers to the number of graph convolutional
layers. For GCRN-LSTM, we set the filter size of the Chebyshev
convolutions to 𝐾 + 1. Both result in 𝐾 message passing iterations.
All approaches learn to approximate the shortest path lengths and
achieve a mean squared error (MSE) of around or below 1 for at
least one configuration. In the case of GraphSAGE, increasing the
number of layers to 16 leads to unstable training and a high test
loss in this task. As the non-recurrent architectures are stateless,
they yield the same results at each forward step 𝑡 .

For the recurrent approaches, we want to use a low number of
iterations per step (i.e. 𝐾 = 1) to reduce the communication over-
head. We evaluate them with different unroll depths 𝐽 and higher
values of 𝐾 for comparison. As expected, the recurrent approaches
perform poorly in the first forward step with 𝑡 = 1. They refine
their hidden states in subsequent steps and approximately reach
their minimum losses at the unroll depth 𝐽 that was used during
training. Afterwards, we can see that their losses increase again.
Increasing the unroll depth improves long-term stability, but leads
to increased training time. A higher number of iterations 𝐾 pre-
dominantly leads to improved predictions, at the cost of increasing
the communication overhead per step.

For our experiments in combination with reinforcement learn-
ing, we select 𝐾 = 8 for the non-recurrent models and 𝐾 = 1, 𝐽 = 8
for the recurrent models. This is a compromise between perfor-
mance, stability and communication overhead. Fig. 4 shows the
validation loss of the selected approaches during training. The re-
current architectures converge faster to a low loss value than the
non-recurrent ones. This could possibly be caused by better gra-
dients, as we compute separate losses for each message passing
iteration when unrolling the network. Both recurrent approaches
achieve similar validation losses, although our architecture is sim-
pler and exchanges less information during the forward steps. The
high standard deviation of GCRN-LSTM in the beginning is caused
by one of the three runs, where the validation loss does not de-
crease initially. In the reinforcement learning setting, we expect
recurrent experience replay with stored states to further improve
the long-term stability of the recurrent approaches.

Table 1: Results for the shortest paths regression problem. 𝐾
denotes the number of message passing iterations and 𝐽 the
unroll depth for recurrent approaches. Shown is the MSE on
all test topologies after 𝑡 forward steps with 𝐾 iterations. All
results are averaged over 3 seeds.

Architecture 𝐾 𝐽 MSE at Forward Step 𝑡
1 2 4 8 16 32

GraphSAGE 8 - 1.16 (all seeds: 1.14, 1.22, 1.13)
16 - 3.57 (all seeds: 4.18, 3.46, 3.06)

A-DGN 8 - 1.50 (all seeds: 1.49, 1.56, 1.46)
16 - 1.18 (all seeds: 1.16, 1.20, 1.18)

GCRN-LSTM

1 8 4.98 2.98 1.12 0.60 1.61 4.27
1 16 5.03 3.09 1.28 0.60 0.53 1.08
2 8 3.18 1.22 0.49 0.40 0.51 1.08
4 8 1.56 0.69 0.45 0.43 0.52 1.00

Ours

1 8 4.98 2.91 0.94 0.43 0.99 3.75
1 16 5.02 2.98 1.02 0.39 0.37 0.46
2 8 3.02 1.07 0.39 0.35 0.57 1.78
4 8 1.26 0.48 0.34 0.34 0.42 0.81
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Figure 4: Validation loss of the selected GNN architectures
in the shortest paths problem during training. The shaded
area shows the standard deviation over 3 models.

5.2 Routing in Single Graphs
Before we evaluate our method on multiple graphs, we train agents
without graph observations in the routing environment using single
graphs. The agents are trained for 250 000 total steps with 24 000
iterations of batch size 32. Episodes are truncated after 300 steps.
In Tab. 2, we show the results for the outlier graph from Fig. 3b at
around (4.5, 2.0). The top half shows the results without bandwidth
limitations, the bottom half with bandwidth limitations. Without
limitations, all methods learn the optimal shortest paths. This is not
surprising, as the graph is static and agents can locate themselves
in the graph using the node id they receive in their observation.
The agents specialize on the graph. With bandwidth limitations, the
throughput drastically decreases and the delay increases. We can
see that in this graph, all learning approaches are able to outperform
the shortest path solution in terms of mean reward and throughput.
Except for DQN, the delay of arrived packets is slightly higher.
Surprisingly, the effect of communication is very small. Using the
same training setup for all agent architectures, we cannot reproduce
the results from Jiang et al. [19] in this particular graph and find
that the performance of DQN is very close to DGN.
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Table 2: Results for routing in a selected graph, averaged
over 1000 episodes and 3 models. The learning approaches
outperform the shortest paths heuristic.

Mode Agent Metrics
Reward Delay Throughput

no
lim

ita
tio

n ShortestPath 2.26 ± 0.0 4.39 ± 0.0 4.52 ± 0.0
DQN 2.26 ± 0.0 4.39 ± 0.0 4.52 ± 0.0
DQNR 2.26 ± 0.0 4.39 ± 0.0 4.52 ± 0.0
CommNet 2.26 ± 0.0 4.39 ± 0.0 4.52 ± 0.0
DGN 2.26 ± 0.0 4.39 ± 0.0 4.52 ± 0.0

ba
nd

w
id
th

lim
ita

tio
n

ShortestPath 0.88 ± 0.0 7.06 ± 0.01 1.98 ± 0.0
DQN 1.05 ± 0.00 6.81 ± 0.08 2.15 ± 0.00
DQNR 1.09 ± 0.00 7.20 ± 0.06 2.22 ± 0.01
CommNet 1.11 ± 0.00 7.22 ± 0.03 2.26 ± 0.01
DGN 1.10 ± 0.00 7.23 ± 0.13 2.25 ± 0.01

Table 3: Througput for routing agents individually trained on
the graphs from Fig. 3a with varying betweenness centrality.
Shown are the results for the bandwidth limitation mode.

Agent Throughput
Graph𝐺𝐴 Graph𝐺𝐵 Graph𝐺𝐶

ShortestPath 3.20 ± 0.00 1.53 ± 0.00 1.02 ± 0.00
DQN 3.28 ± 0.01 1.43 ± 0.02 0.98 ± 0.01
DQNR 3.28 ± 0.00 1.47 ± 0.01 0.99 ± 0.01
CommNet 3.31 ± 0.00 1.53 ± 0.00 1.01 ± 0.01
DGN 3.29 ± 0.00 1.43 ± 0.05 1.00 ± 0.00

While we did not train agents for all 1000 test graphs, we have
made similar observations for the other graphs we investigated.
Tab. 3 shows the throughput in the three graphs from Fig. 3a, aver-
aged over 1000 episodes and 3 models. We omit the results without
limitations, as all approaches match shortest paths with a mean
throughput of around 4.05 in graph 𝐺𝐴 , 2.38 in graph 𝐺𝐵 and 2.98
in graph 𝐺𝐶 . For the limited bandwidth mode, we again find no
notable difference between DQN and DGN in these graphs and
notice that the learning approaches outperform shortest paths only
for graph𝐺𝐴 . The throughput achieved by the learning approaches
is approximately on par with shortest paths for graph 𝐺𝐵 and 𝐺𝐶 .

5.3 Generalized Routing
This section presents the results for our learned graph observa-
tions. We expect them to enable agents to generalize over different
graphs. As all agent architectures achieve similar results for single
graphs, we select DQN as the underlying agent architecture due
to its simplicity. Instead of only receiving observations from the
environment, agents now also receive graph observations from
nodes they are located at. We train graph observations and agents
end-to-end with reinforcement learning on randomly generated
graphs for 2.5 million total steps, 240 000 iterations and batch size
32. Episodes are truncated after 50 steps to increase the number of
generated graphs. The resulting models are evaluated on our 1000
test graphs and 300 episode steps for comparability with Sec. 5.2.

Table 4: Results for routing in 1000 test graphs for 300 steps
using DQN with graph observations provided by the listed
methods. An asterisk (*) indicates actionmasking at test time.

Mode Method Metrics
Reward Delay Throughput

no
lim

ita
tio

n

ShortestPath 1.77 ± 0.00 5.59 ± 0.00 3.54 ± 0.00
GraphSAGE 0.02 ± 0.00 4.49 ± 0.35 0.04 ± 0.00
A-DGN 1.15 ± 0.02 5.72 ± 0.02 2.29 ± 0.04
GCRN-LSTM 1.55 ± 0.01 5.60 ± 0.01 3.09 ± 0.01
Ours 1.56 ± 0.03 5.57 ± 0.02 3.12 ± 0.07
Ours* 1.74 ± 0.00 5.65 ± 0.00 3.49 ± 0.00

ba
nd

w
id
th

lim
ita

tio
n

ShortestPath 1.05 ± 0.00 7.93 ± 0.00 2.26 ± 0.00
GraphSAGE 0.02 ± 0.02 14.58 ± 6.85 0.08 ± 0.05
A-DGN 0.30 ± 0.14 10.85 ± 1.34 0.67 ± 0.28
GCRN-LSTM 0.99 ± 0.01 8.37 ± 0.02 2.03 ± 0.01
Ours 1.02 ± 0.01 8.26 ± 0.02 2.10 ± 0.02
Ours* 1.10 ± 0.00 7.59 ± 0.01 2.38 ± 0.01
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Figure 5: Reward of DQN with graph observations during
trainingwithout (left) andwith (right) bandwidth limitations.
The shaded area shows the standard deviation over 3 models.

Tab. 4 shows the average results over 3 seeds. The reward during
training is shown in Fig. 5. The high positive reward and throughput
of GCRN-LSTM and our proposed architecture show that graph ob-
servations indeed enable agents to generalize over different graphs.
Our method achieves comparable results while having a lower com-
munication overhead. However, we find that the results are worse
than for agents that specialize on single graphs (see Sec. 5.2). For the
non-recurrent approaches, A-DGN learns graph observations but
converges much slower than the recurrent approaches. GraphSAGE
fails to learn, even in experiments with batch size 256 and jumping
knowledge networks [42] that are not shown here. Considering the
results of Sec. 5.1, it is unclear why the non-recurrent approaches
perform poorly in this setting. We hypothesize that the targets
provided by backpropagation through time facilitate learning, but
further experiments in different environments would be required to
verify this. All methods have a lower throughput than the shortest
paths heuristic without additional modifications.

Upon closer inspection of the behavior of a model trained with
our architecture, we notice that around 12% of the 1000 test episodes
contain packets that never arrive at their destination within 300
steps. This is caused by routing loops, a common issue that can be
addressed with post-processing of the learned policy [18]. When
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Figure 6: Throughput over time and node state differences of
selected models in graph 𝐺𝐴 from Fig. 3a averaged over 100
episodes. The delay of a single edge is increased from 2 to 10
at step 50. The shaded area shows the standard deviation.

repeating the experiment with different seeds, we observe routing
loops in different graphs. We investigate an action masking mecha-
nism that stores the path of a packet and masks actions that lead
to already visited nodes. If there are no legal actions, the packet is
dropped and a new packet spawns at a random location.

Action masking results in throughput improvements that match
our expectations from the fixed topology setting, as shown in Tab. 4.
However, it introduces 0.01 and 0.1 dropped packets per step for
routing without and with bandwidth limitations, respectively.

5.4 Adaptation and Limitations
In this section, we investigate how agents react to a novel situation
and discuss the limitations of our work.

We exemplary increase the delay of a bottleneck edge in graph
𝐺𝐴 from 2 to 10 at step 50 and evaluate its effect on 100 episodes of
300 steps with bandwidth limitations. Fig. 6 shows the throughput
of different approaches in this scenario, combined with the stepwise
mean absolute difference of node state values from the recurrent
approaches. Static shortest paths (SP) ignores the delay change,
stepwise SP considers it. For each learning approach, we show
the results of the best model. The recurrent approaches quickly
converge to small node state differences at the beginning and react
to the change at step 50, although changing edge delays were never
encountered during training. Before step 50, DQN performs slightly
better than our approach. After the change, all three DQN models
fail to adapt and display a poor throughput, while one out of three
models with our approach is able to outperform stepwise shortest
paths. Following research could consider dynamic graph changes
during training and explore adaptivity in more detail.

These improvements in generalizability and adaptivity come at
the cost of exchanging messages with all neighbor nodes at each
step. Fig. 6 shows that there is comparatively little change in the
node states after convergence, suggesting a reduced need for com-
munication. While we show that a single message passing iteration
per step suffices to learn graph observations for generalized routing,
future work could investigate the further reduction of communi-
cation overhead. We see great potential for synergies with recent
works in the area of agent-to-agent communication, where agents
decide when to send messages [15, 24, 40] to selected recipients
instead of broadcasting them to all other agents [26].

6 RELATEDWORK
Reinforcement learning for graph-based environments exempli-
fied by routing has been investigated since the introduction of
Q-learning [4]. Recent works have shown to improve over previous
algorithms in various domains and network conditions [22, 28].

Many of these approaches assume centralized control with a
global view [1, 6, 18, 21, 35]. This not only limits their scalability,
but also their reactivity. Decentralized approaches [5, 36] are more
reactive, but their partial observability may degrade performance.
Learning directly in the target network allows agents to special-
ize [35]. However, this is challenging in practice because subopti-
mal actions can result in unacceptable real-world costs. Specialized
agents can also get stuck in local optima, requiring retraining from
scratch if the graph or the network conditions change [3].

Ideally, one would pre-train agents to perform well in all graphs
and network conditions and optionally fine-tune them online. Graph
neural networks have shown to enable generalization in routing
scenarios [8, 33], as opposed to traditional models with fixed in-
put dimensions that specialize on individual graphs [21]. To the
best of our knowledge, related works with graph neural networks
are mainly restricted to centralized approaches and agent-to-agent
communication [19, 29]. A noteworthy exception is the work by
Geyer and Carle [10], who propose a distributed message passing
scheme to learn routing in a supervised setting. With our work, we
address the gap of generalizability over graphs in the context of
multi-agent reinforcement learning with decentralized execution.

7 CONCLUSION
In this paper, we investigate the issue of generalizability in multi-
agent graph environments. We propose to decouple learning graph
representations and control by conceptually separating nodes and
agents. Nodes iteratively learn graph representations and forward
local graph observations to agents, allowing them to solve tasks in
the graph. We evaluate our approach based on four graph neural
network architectures across 1000 diverse graphs in a routing envi-
ronment. The results indicate that recurrent graph neural networks
can be trained end-to-end with reinforcement learning and sparse
rewards. Graph observations do not only allow agents to generalize
over different graphs, but also to adapt to changes in the graph
without retraining. However, having no constraints on the resulting
policies can lead to deteriorated behavior compared to agents that
specialize on a single graph. This is reflected by loops in the routing
environment, which we show can be alleviated with action masking.

Our contributions open up multiple avenues for future research,
including the further reduction of communication overhead and the
exploration of dynamically changing graphs. The effects of graph
observations in different environments are also worth investigating,
especially when cooperation between agents is required.

ACKNOWLEDGMENTS
This work has been funded by the Federal Ministry of Education
and Research of Germany (BMBF) through Software Campus Grant
01IS17050 (AC3Net) and the project “Open6GHub” (grant number:
16KISK014). It has been co-funded by the German Research Founda-
tion (DFG) in the Collaborative Research Center (CRC) 1053 MAKI.
The authors thank Amirkasra Amini for the valuable discussions.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1926



REFERENCES
[1] Paul Almasan, José Suárez-Varela, Krzysztof Rusek, Pere Barlet-Ros, and Albert

Cabellos-Aparicio. 2022. Deep reinforcement learning meets graph neural net-
works: Exploring a routing optimization use case. Computer Communications
196 (2022), 184–194.

[2] Guillermo Bernárdez, José Suárez-Varela, Albert López, Bo Wu, Shihan Xiao,
Xiangle Cheng, Pere Barlet-Ros, and Albert Cabellos-Aparicio. 2021. Is Ma-
chine Learning Ready for Traffic Engineering Optimization?. In 2021 IEEE 29th
International Conference on Network Protocols (ICNP). 1–11.

[3] Sai Shreyas Bhavanasi, Lorenzo Pappone, and Flavio Esposito. 2023. DealingWith
Changes: Resilient Routing via Graph Neural Networks and Multi-Agent Deep
Reinforcement Learning. IEEE Transactions on Network and Service Management
20, 3 (2023), 2283–2294.

[4] Justin Boyan and Michael Littman. 1993. Packet Routing in Dynamically Chang-
ing Networks: A Reinforcement Learning Approach. In Advances in Neural Infor-
mation Processing Systems, Vol. 6. Morgan-Kaufmann, 671–678.

[5] Florian Brandherm, Julien Gedeon, Osama Abboud, and Max Mühlhäuser. 2022.
BigMEC: Scalable Service Migration for Mobile Edge Computing. In IEEE/ACM
7th Symposium on Edge Computing (SEC). 136–148.

[6] Daniela M. Casas-Velasco, Oscar Mauricio Caicedo Rendon, and Nelson L. S. da
Fonseca. 2021. Intelligent Routing Based on Reinforcement Learning for Software-
Defined Networking. IEEE Transactions on Network and Service Management 18,
1 (2021), 870–881.

[7] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-
lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In
Advances in Neural Information Processing Systems, Vol. 29. 3844–3852.

[8] Miquel Ferriol-Galmés, Jordi Paillisse, José Suárez-Varela, Krzysztof Rusek, Shi-
han Xiao, Xiang Shi, Xiangle Cheng, Pere Barlet-Ros, and Albert Cabellos-
Aparicio. 2023. RouteNet-Fermi: NetworkModelingWith GraphNeural Networks.
IEEE/ACM Transactions on Networking 31, 6 (2023), 3080–3095.

[9] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[10] Fabien Geyer and Georg Carle. 2018. Learning and Generating Distributed
Routing Protocols Using Graph-Based Deep Learning. In Proceedings of the 2018
Workshop on Big Data Analytics and Machine Learning for Data Communication
Networks (Big-DAMA ’18). Association for Computing Machinery, 40–45.

[11] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. Neural Message Passing for Quantum Chemistry. In Proceedings of
the 34th International Conference on Machine Learning (ICML). PMLR, 1263–1272.

[12] Alessio Gravina, Davide Bacciu, and Claudio Gallicchio. 2023. Anti-Symmetric
DGN: a stable architecture for Deep Graph Networks. In The 11th International
Conference on Learning Representations (ICLR).

[13] William L. Hamilton. 2020. Graph Representation Learning. Synthesis Lectures
on Artificial Intelligence and Machine Learning 14, 3 (2020), 1–159.

[14] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems, Vol. 30. 1024–1034.

[15] Shuai Han, Mehdi Dastani, and Shihan Wang. 2023. Model-Based Sparse Com-
munication in Multi-Agent Reinforcement Learning. In Proceedings of the 2023
International Conference on Autonomous Agents and Multiagent Systems (AAMAS
’23). IFAAMAS, 439–447.

[16] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. 2004. Dynamic
Programming for Partially Observable Stochastic Games. In Proceedings of the
19th National Conference on Artificial Intelligence. AAAI Press, 709–715.

[17] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780.

[18] Oliver Hope and Eiko Yoneki. 2021. GDDR: GNN-based Data-Driven Routing. In
Proceedings of the 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS). 517–527.

[19] Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu. 2020. Graph Convolu-
tional Reinforcement Learning. In Proceedings of the 8th International Conference
on Learning Representations (ICLR).

[20] Steven Kapturowski, Georg Ostrovski, John Quan, Rémi Munos, and Will Dabney.
2019. Recurrent Experience Replay in Distributed Reinforcement Learning. In
Proceedings of the 7th International Conference on Learning Representations (ICLR).

[21] Gyungmin Kim, Yohan Kim, and Hyuk Lim. 2022. Deep Reinforcement Learning-
Based Routing on Software-Defined Networks. IEEE Access 10 (2022), 18121–
18133.

[22] Tianxu Li, Kun Zhu, Nguyen Cong Luong, Dusit Niyato, Qihui Wu, Yang Zhang,
and Bing Chen. 2022. Applications of Multi-Agent Reinforcement Learning in
Future Internet: A Comprehensive Survey. IEEE Communications Surveys &

Tutorials 24, 2 (2022), 1240–1279.
[23] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. 2016. Gated

Graph Sequence Neural Networks. In Proceedings of the 4th International Confer-
ence on Learning Representations (ICLR).

[24] Yen-Cheng Liu, Junjiao Tian, Nathaniel Glaser, and Zsolt Kira. 2020. When2com:
Multi-Agent Perception via Communication Graph Grouping. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 4105–4114.

[25] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In 7th International Conference on Learning Representations (ICLR).

[26] Ziyuan Ma, Yudong Luo, and Jia Pan. 2022. Learning Selective Communication
for Multi-Agent Path Finding. IEEE Robotics and Automation Letters 7, 2 (2022),
1455–1462.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(2015), 529–533.

[28] Mingshuo Nie, Dongming Chen, and Dongqi Wang. 2023. Reinforcement Learn-
ing on Graphs: A Survey. IEEE Transactions on Emerging Topics in Computational
Intelligence 7, 4 (2023), 1065–1082.

[29] Yaru Niu, Rohan Paleja, and Matthew Gombolay. 2021. Multi-Agent Graph-
Attention Communication and Teaming. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems (AAMAS ’21). IFAA-
MAS, 964–973.

[30] Milena Radenkovic and Vu San Ha Huynh. 2020. Cognitive Caching at the Edges
for Mobile Social Community Networks: A Multi-Agent Deep Reinforcement
Learning Approach. IEEE Access 8 (2020), 179561–179574.

[31] Davis Rempe, Jonah Philion, Leonidas J. Guibas, Sanja Fidler, and Or Litany. 2022.
Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic Prior.
In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 17284–17294.

[32] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexan-
der Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Beres, Guzman Lopez, Nicolas
Collignon, and Rik Sarkar. 2021. PyTorch Geometric Temporal: Spatiotemporal
Signal Processing with Neural Machine Learning Models. In Proceedings of the
30th ACM International Conference on Information and Knowledge Management.
4564–4573.

[33] Krzysztof Rusek, José Suárez-Varela, Paul Almasan, Pere Barlet-Ros, and Albert
Cabellos-Aparicio. 2020. RouteNet: Leveraging Graph Neural Networks for
Network Modeling and Optimization in SDN. IEEE Journal on Selected Areas in
Communications 38, 10 (2020), 2260–2270.

[34] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2009. The Graph Neural Network Model. IEEE Transactions on Neural
Networks 20, 1 (2009), 61–80.

[35] Stefan Schneider, Ramin Khalili, Adnan Manzoor, Haydar Qarawlus, Rafael Schel-
lenberg, Holger Karl, and Artur Hecker. 2021. Self-Learning Multi-Objective
Service Coordination Using Deep Reinforcement Learning. IEEE Transactions on
Network and Service Management 18, 3 (2021), 3829–3842.

[36] Stefan Schneider, Haydar Qarawlus, and Holger Karl. 2021. Distributed Online
Service Coordination Using Deep Reinforcement Learning. In 2021 IEEE 41st
International Conference on Distributed Computing Systems (ICDCS). 539–549.

[37] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson.
2018. Structured Sequence Modeling with Graph Convolutional Recurrent Net-
works. In Neural Information Processing - 25th International Conference (ICONIP)
(Lecture Notes in Computer Science, Vol. 11301). Springer, 362–373.

[38] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. 2016. Learning Multia-
gent Communication with Backpropagation. In Advances in Neural Information
Processing Systems, Vol. 29. 2244–2252.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30. 5998 – 6008.

[40] Xuefeng Wang, Xinran Li, Jiawei Shao, and Jun Zhang. 2023. AC2C: Adaptively
Controlled Two-Hop Communication for Multi-Agent Reinforcement Learning.
In Proceedings of the 2023 International Conference on Autonomous Agents and
Multiagent Systems (AAMAS ’23). IFAAMAS, 427–435.

[41] Jannis Weil, Zhenghua Bao, Osama Abboud, and Tobias Meuser. 2024. Towards
Generalizability of Multi-Agent Reinforcement Learning in Graphs with Recur-
rent Message Passing. arXiv:2402.05027 [cs.MA]

[42] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In Proceedings of the 35th International
Conference on Machine Learning (ICML), Vol. 80. PMLR, 5453–5462.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1927

https://arxiv.org/abs/2402.05027

	Abstract
	1 Introduction
	2 Reinforcement Learning in Graphs
	3 Learned Graph Observations
	3.1 Recurrent Message Passing
	3.2 Model Architecture
	3.3 Integration in Deep RL
	3.4 Exemplary Integration in Deep Q-Learning

	4 Experiment Setup
	4.1 Models and Training Algorithms
	4.2 Graph Generation and Overview
	4.3 Routing Environment
	4.4 Shortest Paths Regression Task

	5 Results
	5.1 Shortest Paths Regression
	5.2 Routing in Single Graphs
	5.3 Generalized Routing
	5.4 Adaptation and Limitations

	6 Related Work
	7 Conclusion
	Acknowledgments
	References



