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ABSTRACT

Fair clustering problems have been paid lots of attention recently. In

this paper, we study the 𝑘-Center problem under the group fairness

and data summarization fairness constraints, denoted as Group Fair

𝑘-Center (GF𝑘C) and Data Summarization Fair 𝑘-Center (DSF𝑘C),

respectively, in the massively parallel computational (MPC) dis-

tributed model. The previous best results for the above two prob-

lems in the MPC model are a 9-approximation with violation 7

(WWW 2022) and a (17 + 𝜖)-approximation without fairness viola-

tion (ICML 2020), respectively. In this paper, we obtain a (3 + 𝜖)-
approximation with violation 1 for the GF𝑘C problem in the MPC

model, which is almost as accurate as the best known approxima-

tion ratio 3 with violation 1 for the sequential algorithm of the GF𝑘C

problem. Moreover, for the DSF𝑘C problem in the MPC model, we

obtain a (4 + 𝜖)-approximation without fairness violation, which

is very close to the best known approximation ratio 3 for the se-

quential algorithm of the DSF𝑘C problem. Empirical experiments

show that our distributed algorithms perform better than existing

state-of-the-art distributed methods for the above two problems.
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1 INTRODUCTION

Clustering is one of the most popular problems in machine learning,

and has lots of applications in data mining, image classification, etc.

Given a set of points, the goal of clustering is to partition the point

set into several disjoint clusters such that the points in the same

cluster are close to each other, and the points in different clusters

are far away from each other. Several classic clustering models have

been extensively studied, such as 𝑘-Center, 𝑘-Median, and 𝑘-Means.

In this paper, we focus on the 𝑘-Center problem that is known to

be NP-hard [20], and admits a 2-approximation algorithm [21, 23].

Many variations of the 𝑘-Center problem have been studied in the

literature [1, 3, 4, 10–12, 17, 19, 26].

Recently, fair clustering has been extensively studied, and lots

of definitions about fairness have been proposed, such as group

fairness [2, 6, 8, 22], data summarization fairness [16, 24, 27], pro-

portional fairness [14, 28, 30], individual fairness [29, 31], etc. In

this paper, we focus on two fairness notions, i.e., group fairness

and data summarization fairness. For an instance of the clustering

problem under group fairness or data summarization fairness, the

points in the instance are divided into several groups, and each

point is assigned a color to denote which group it is in.

We take two examples to illustrate the application of group fair-

ness and data summarization fairness, respectively. As pointed out

in [15], if the given clustering instance contains some minority

groups, and the properties of the minority groups are not consid-

ered in the clustering process, then in the clustering results, the

proportion of some minority groups assigned to some clusters may

be far from the true proportions in real life, which results in the

unfair treatments to minority groups. For the data summarization

problem, the objective is to find a small subset to summarize the

whole dataset. Most algorithms for data summarization are usu-

ally biased with respect to some sensitive attributes, and this leads

to the study of the data summarization problem under fairness

constraints, for example, a Google Images search for the keyword

"CEO" returns a much higher proportion of men than the real life

proportion of male CEOs, leading to prejudice against women [25].
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In this paper, we focus on the 𝑘-Center problem under group

fairness and data summarization fairness constraints, denoted as

Group Fair 𝑘-Center (GF𝑘C) and Data Summarization Fair 𝑘-Center

(DSF𝑘C), respectively. Given a set 𝐶 of 𝑛 points in a metric space,

where 𝐶 comprises𝑚 disjoint groups 𝐶1, . . . ,𝐶𝑚 , and the points in

𝐶ℎ are colored with color ℎ (ℎ ∈ {1, . . . ,𝑚}). For the GF𝑘C problem,

two fair vectors 𝛼, 𝛽 ∈ [0, 1]𝑚 are given, and the goal is to partition

𝐶 into 𝑘 clusters such that the proportion of points with color

ℎ in each cluster is at least 𝛽ℎ and at most 𝛼ℎ , and the 𝑘-Center

problem objective is minimized. For the DSF𝑘C problem, a vector

𝛾 = (𝑘1, . . . , 𝑘𝑚) with
∑𝑚
ℎ=1

𝑘ℎ = 𝑘 is given, and the goal is to

partition 𝐶 into 𝑘 clusters such that the number of cluster centers

with color ℎ is equal to 𝑘ℎ , and the 𝑘-Center problem objective is

minimized. In this paper, we study the GF𝑘C and DSF𝑘C problems

in the massively parallel computational (MPC) distributed model,

which is used to deal with massive data. In this model, the input data

points are distributed arbitrarily across various machines. Suppose

that there are 𝑙 machines, and the points in the set𝐶 are partitioned

across 𝑙 machines, denoted as {𝑀1, . . . , 𝑀𝑙 } where ∪𝑙𝑗=1𝑀𝑗 = 𝐶 .

The MPC model computes final solution in several rounds. In each

round, each machine 𝑗 ( 𝑗 ∈ {1, . . . , 𝑙}) performs some computation

on𝑀𝑗 , and communicates with a coordinator at the end of the round.

The goal of the MPC model is to optimize the communication cost

and the number of rounds.

Chierichetti et al. [15] introduced the definition of fairness with

only two colors, requiring that the proportion of two colors has

approximately equal representation in every cluster. Bercea et

al. [8] proposed the notion of group fairness. They presented a

3-approximation with an additive 1 violation for the group fairness

constraints using linear programming and min-cost flow network

for the GF𝑘C problem. The value of violation represents the extent

to which the fairness constraints are violated (see [8] with details).

Ahmadian et al. [2] studied the GF𝑘C problem with only an up-

per bound constraint 𝛼 . They presented a 3-approximation with

an additive 2 violation (the definition of this violation is different

from the one in [8]) using linear programming and min-cost flow

network. For the GF𝑘C problem under the condition that colors

are allowed to overlap, a 4-approximation algorithm with (4Δ + 3)
violation [6] and a 3-approximation algorithm with (4Δ + 3) vio-
lation [22] were presented, respectively, where Δ is the maximum

number of colors a single point can belong to. Recently, Bera et

al. [7] considered the GF𝑘C problem in the MPC model. They gave

a 2-round algorithm that communicates 𝑂 (𝑚𝑘𝑙 log𝑛) amount of

data, and achieves a 9-approximation with an additive 7 violation.

Chen et al. [13] studied the matroid center problem that general-

izes the DSF𝑘C problem, and gave a 3-approximation with running

time Ω(𝑛2 log𝑛). For the DSF𝑘C problem, there was a (3 ·2𝑚−1−1)-
approximation with running time𝑂 (𝑛𝑘𝑚2 +𝑘𝑚4) based on a swap

technique [27]. Jones, Lê Nguyên and Nguyen [24] improved the

time complexity to𝑂 (𝑛𝑘), and maintained the approximation factor

3 using the maximum matching method. Chiplunkar, Kale and Ra-

mamoorthy [16] considered the DSF𝑘C problem in the MPC model.

They gave a 2-round algorithm that communicates 𝑂 (𝑚𝑘𝑙 log𝑛)
amount of data, and achieves a (17 + 𝜖)-approximation.

For the GF𝑘C and DSF𝑘C problems in the MPC model, there

exist some obstacles to obtain better approximation algorithms.

It is known that for the GF𝑘C and DSF𝑘C problems in the single

machine, the best known results have approximation ratio 3, re-

spectively. However, for the above two problems in the MPC model,

the best known results have approximation ratios 9 and 17 + 𝜖 , re-
spectively. Therefore, the gaps between the ratios of the distributed

algorithms in the MPC model and the ratios of the sequential al-

gorithms are still large. The key idea of the previous distributed

algorithms for the two problems in the MPC model is first to obtain

a set of 𝑘 centers on each machine. Then, each machine sends the 𝑘

centers to the coordinator to obtain the final solution. The quality of

the set of 𝑘 centers obtained on eachmachine greatly impacts on the

finding of the final approximate solution in the coordinator. How-

ever, the above process of obtaining 𝑘 centers has an approximation

loss of 2 on each machine, which is hard to find an approximation

algorithm with same ratio of the sequential algorithm. Moreover,

due to the existence of fairness constraints, it remains troublesome

to obtain a solution satisfying fairness constraints with a small

loss in approximation guarantee in the coordinator. Therefore, how

to find a set of high-quality centers on each machine (the gap be-

tween the approximate solution obtained by the set of centers on

each machine and the optimal solution is small), and how to obtain

a desired feasible solution satisfying fairness constraints with a

small approximation loss in the coordinator are still challenging for

the GF𝑘C and DSF𝑘C problems in the MPC model. The previous

distributed algorithm for the GF𝑘C problem in the MPC model

communicates with the coordinator by a factor of 𝑂 (log𝑛) due
to the guess of optimal cost of given instance. Therefore, how to

reduce the communication cost of the distributed algorithm for the

GF𝑘C problem in the MPC model is still challenging.

Our Contributions: In this paper, to overcome the above ob-

stacles, we propose some new approximation results for the GF𝑘C

and DSF𝑘C problems in the MPC model. The main contributions

of our paper are summarized as follows.

• For the GF𝑘C problem in the MPC model, we obtain a (3+𝜖)-
approximation with violation 1, which is almost as accurate

as the best approximation ratio of the sequential algorithm

for the GF𝑘C problem. For the DSF𝑘C problem in the MPC

model, we obtain a (4 + 𝜖)-approximation without fairness

violation, which is very close to the ratio 3 of the sequential

algorithm for the DSF𝑘C problem.

• Compared with the distributed algorithms in [7] for the

GF𝑘C problem, the optimal cost is guessed by considering

all possible 𝑂 (𝑛2) distances for given instance, resulting

in a factor 𝑂 (log𝑛) in communication cost. By guessing a

lower bound of the optimal cost on each machine, and then

applying a geometric guessing method, we present a process

to find the final solution in the coordinator, and achieve

better communication cost without factor 𝑂 (log𝑛).
• We test our distributed algorithms on real datasets, and the

experiment results show that our algorithms perform better

compared with the state-of-the-art algorithms.

We summarize the results in the literature and ours in Table 1.

Formally, we have the following results.

Theorem 1.1. Assume that the input data points are already dis-

tributed across the machines. There exists a 2-round MPC algorithm
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Table 1: Approximation results for the GF𝑘C and DSF𝑘C problems in the MPC model.

Problem Approximation Communication Violation Reference

GF𝑘C
9 𝑂 (𝑘𝑚𝑙 · log𝑛) 7 [7]

3 + 𝜖 𝑂 (𝑘𝑚𝑙 · (4/𝜖 )𝐷 ) 1 Theorem 1.1

DSF𝑘C
17 + 𝜖 𝑂 (𝑘𝑚𝑙 ) 0 [16]

4 + 𝜖 𝑂 (𝑘𝑚𝑙 · (4/𝜖 )𝐷 ) 0 Theorem 1.2

that achieves a (3+𝜖)-approximation with violation 1, and communi-

cates 𝑂 (𝑘𝑚𝑙 · (4/𝜖)𝐷 ) amount of data for the GF𝑘C problem, where

𝜖 > 0 is a parameter, and 𝐷 is the doubling dimension of the input

data points, respectively.

Theorem 1.2. Assume that the input data points are already

distributed across the machines. There exists a 2-round MPC algo-

rithm that achieves a (4 + 𝜖)-approximation, and communicates

𝑂 (𝑘𝑚𝑙 · (4/𝜖)𝐷 ) amount of data for the DSF𝑘C problem, where 𝜖 > 0

is a parameter, and 𝐷 is the doubling dimension of the input data

points, respectively.

2 PRELIMINARIES

Given a set 𝐶 of points in a metric space (X, 𝑑), for a point 𝑣 ∈ 𝐶
and a set 𝑆 ⊆ 𝐶 , let 𝑑 (𝑣, 𝑆) = min𝑠∈𝑆 𝑑 (𝑣, 𝑠). For any𝑚 ∈ N≥1, let
[𝑚] denote {1, . . . ,𝑚}. For any nonempty subset 𝑆 ⊆ 𝐶 of centers

and any 𝑠 ∈ 𝑆 , a ball 𝐵(𝑠, 𝑟 ) is the set of points that are within

a distance 𝑟 from 𝑠 , i.e., 𝐵(𝑠, 𝑟 ) = {𝑣 ∈ 𝐶 | 𝑑 (𝑠, 𝑣) ≤ 𝑟 }. For any
nonempty subset 𝑆,𝐶′ ⊆ 𝐶 , let 𝑐𝑜𝑠𝑡 (𝑆,𝐶′) = max𝑣∈𝐶′ 𝑑 (𝑣, 𝑆) be the
clustering cost of 𝑆 for 𝐶′.

Definition 2.1 (the 𝑘-Center problem). Given a set 𝐶 of points in

a metric space (X, 𝑑) and an integer 𝑘 , the goal is to find a subset

𝑆 ⊆ 𝐶 of 𝑘 centers such that 𝑐𝑜𝑠𝑡 (𝑆,𝐶) is minimized.

Given an instance (𝐶,𝑑, 𝑘) of the 𝑘-Center problem, 𝑆 is called a

feasible solution if 𝑆 ⊆ 𝐶 is a set of size 𝑘 .

Definition 2.2 (the GF𝑘C problem). Given a set 𝐶 of points in a

metric space (X, 𝑑), an integer 𝑘 , a set of colors 𝐻 = {1, . . . ,𝑚},
𝑚 disjoint groups G = {𝐶1, . . . ,𝐶𝑚} with

⋃𝑚
ℎ=1

𝐶ℎ = 𝐶 , and two

vectors 𝛼 = (𝛼1, . . . , 𝛼𝑚), 𝛽 = (𝛽1, . . . , 𝛽𝑚), where the points in 𝐶ℎ
are colored with color ℎ ∈ 𝐻 , and 𝛽ℎ, 𝛼ℎ are the lower and upper

bounds on the proportions of group 𝐶ℎ points in each cluster, re-

spectively, the goal is to find a set 𝑆 ⊆ 𝐶 of 𝑘 centers, and a mapping

𝜙 : 𝐶 → 𝑆 such that the cost max𝑣∈𝐶 𝑑 (𝑣, 𝜙 (𝑣)) is minimized, and

𝜙 satisfies the following group fairness constraints.

𝛽ℎ |O𝑖 | ≤ |Oℎ𝑖 | ≤ 𝛼ℎ |O𝑖 |,∀𝑖 ∈ 𝑆,∀ℎ ∈ 𝐻 (1)

where O𝑖 = {𝑣 ∈ 𝐶 | 𝜙 (𝑣) = 𝑖} is the set of points in cluster 𝑖 , and

Oℎ
𝑖
= {𝑣 ∈ 𝐶ℎ | 𝜙 (𝑣) = 𝑖} is the set of points in cluster 𝑖 with color

ℎ, respectively.

Given an instance (𝐶,𝑑, 𝑘,G, 𝐻, 𝛼, 𝛽) of the GF𝑘C problem, a pair

(𝑆, 𝜙) is called a feasible solution if 𝑆 ⊆ 𝐶 is a set with size 𝑘 , and

𝜙 : 𝐶 → 𝑆 is a mapping satisfying constraint (1).

Definition 2.3 (the DSF𝑘C problem). Given a set 𝐶 of points in a

metric space (X, 𝑑), an integer 𝑘 , a set of colors 𝐻 = {1, . . . ,𝑚},𝑚
disjoint groups G = {𝐶1, . . . ,𝐶𝑚} with

⋃𝑚
ℎ=1

𝐶ℎ = 𝐶 , and a vector

𝛾 = (𝑘1, . . . , 𝑘𝑚) with
∑𝑚
ℎ=1

𝑘ℎ = 𝑘 , where the points in 𝐶ℎ are

colored with color ℎ ∈ 𝐻 , the goal is to find a subset 𝑆 ⊆ 𝐶 of

𝑘 centers such that the cost max𝑣∈𝐶 𝑑 (𝑣, 𝑆) is minimized, and 𝑆

satisfies the following data summarization fairness constraints.

|{𝑣 | 𝑣 ∈ 𝑆, 𝑣 ∈ 𝐶ℎ}| = 𝑘ℎ,∀ℎ ∈ 𝐻 (2)

Given an instance (𝐶,𝑑, 𝑘,G, 𝐻,𝛾) of the DSF𝑘C problem, 𝑆 is

called a feasible solution if 𝑆 ⊆ 𝐶 with size 𝑘 satisfies constraint (2).

Definition 2.4 (doubling dimension). Given a set 𝐶 of points in

a metric space (X, 𝑑), the doubling dimension of 𝐶 is the smallest

number 𝐷 such that for any radius 𝑟 and a point 𝑣 ∈ 𝐶 , all points
in the ball 𝐵(𝑣, 𝑟 ) are always covered by the union of at most 2

𝐷

balls with radius 𝑟/2.

3 OBTAINING CANDIDATE SET ON EACH

MACHINE

In this section, we show how to construct a candidate set, which

is a set of centers on each machine. Since the quality of a set of

centers obtained on each machine and the existence of fairness

constraints greatly impact the finding of the approximate solutions

in the coordinator, we first construct a candidate set on each ma-

chine. Using the method in [9], we can achieve a small gap between

the approximation solution obtained by the candidate set and the

optimal solution.

Theorem 3.1 ([9]). Given an instance I = (𝐶,𝑑, 𝑘) of the 𝑘-
Center problem and a parameter 𝜖 > 0, assume that 𝐷 is the doubling

dimension of𝐶 , and 𝜏 is the cost of optimal solution of I, respectively.
Then, there is an algorithm that returns a subset 𝐸 ⊆ 𝐶 with size

𝑘 · (4/𝜖)𝐷 such that for any 𝑣 ∈ 𝐶 , 𝑑 (𝑣, 𝐸) ≤ 𝜖𝜏 .

For completeness, we refer to the algorithm in Theorem 3.1 by

𝜖-CSC (see Algorithm 1). Given an instance I = (𝐶,𝑑, 𝑘) of the
𝑘-Center problem and a parameter 𝜖 > 0, let 𝐸 be the set of centers

returned by algorithm 𝜖-CSC. Formally, we call 𝐸 an 𝜖-candidate set

ofI. In algorithm 𝜖-CSC, it involves an important subroutine, which

is a classic greedy algorithm (denoted as Greedy-𝑘C) in [21] for

solving the 𝑘-Center problem. Here we briefly review how Greedy-

𝑘C works. Given an instance (𝐶,𝑑, 𝑘) of the 𝑘-Center problem,

Greedy-𝑘C first selects an arbitrary point from 𝐶 as center. Then,

it iteratively selects the next center that is the farthest point from

all chosen centers until 𝑘 centers are chosen. Moreover, we have

the following theorem given in [21].

Theorem 3.2 ([21]). Greedy-𝑘C is a 2-approximation algorithm

for the 𝑘-Center problem.

Here, we give a brief introduction of algorithm 𝜖-CSC in [9]. The-

orem 3.2 implies that Greedy-𝑘C returns a 2-approximate solution
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Algorithm 1: 𝜖-CSC

Input: A set 𝐶 of points, a metric 𝑑 , a positive integer 𝑘 ,

and a parameter 𝜖 > 0

Output: A subset 𝐸 of 𝐶

1 𝐸 ← ∅;
2 𝑆 ← Greedy-𝑘C(𝐶,𝑑, 𝑘);
3 𝐸 ← 𝑆 ;

4 while 𝑐𝑜𝑠𝑡 (𝐸,𝐶) > (𝜖/2) · 𝑐𝑜𝑠𝑡 (𝑆,𝐶) do
5 𝑣 ← argmax𝑣∈𝐶 𝑑 (𝑣, 𝐸);
6 𝐸 ← 𝐸 ∪ {𝑣};
7 return 𝐸.

of the 𝑘-Center problem instance with only 𝑘 centers. Intuitively, if

we continue to pick more and more centers from 𝐶 , then a better

approximate solution can be obtained. Therefore, the general idea

of algorithm 𝜖-CSC is to use the greedy strategy of Greedy-𝑘C

on 𝐶 to iteratively select points as centers such that the cost of

the chosen centers is small. More precisely, for a given instance

(𝐶,𝑑, 𝑘) of the 𝑘-Center problem and a parameter 𝜖 > 0, algorithm

𝜖-CSC starts with an empty-set 𝐸. Then, it runs Greedy-𝑘C(𝐶,𝑑, 𝑘)
to obtain a set 𝑆 of 𝑘 centers, and adds the centers in 𝑆 to 𝐸. Finally,

it continues to use the greedy strategy to select some centers from

𝐶 , and adds them to 𝐸 until 𝑐𝑜𝑠𝑡 (𝐸,𝐶) ≤ (𝜖/2) · 𝑐𝑜𝑠𝑡 (𝑆,𝐶) holds.
Let 𝜏 and 𝜏𝑓 denote the costs of optimal solutions of the 𝑘-Center

problem instance and the GF𝑘C (or DSF𝑘C) problem instance, re-

spectively. Then, we have 𝜏 ≤ 𝜏𝑓 since the feasible solution of

the GF𝑘C (or DSF𝑘C) problem instance is also a feasible solution

of the 𝑘-Center problem instance. Therefore, an 𝜖-candidate set

to the 𝑘-Center problem instance is also the one to the GF𝑘C (or

DSF𝑘C) problem instance due to 𝜏 ≤ 𝜏𝑓 . We now use the GF𝑘C

problem as an example to show how to construct an 𝜖-candidate

set in the MPC model. The analysis can be easily adapted to the

DSF𝑘C problem. For a given instance I = (𝐶,𝑑, 𝑘,G, 𝐻, 𝛼, 𝛽) of the
GF𝑘C problem and a parameter 𝜖 > 0, assume that the points in

𝐶 are partitioned across 𝑙 machines. Let 𝑀𝑗 be the set of points

distributed to machine 𝑗 ∈ [𝑙], and 𝐸 𝑗 be the output of algorithm

𝜖-CSC(𝑀𝑗 , 𝑑, 𝑘, 𝜖), respectively. Let 𝐸 = ∪𝑙
𝑗=1

𝐸 𝑗 .

Lemma 3.3. Given an instanceI = (𝐶,𝑑, 𝑘,G, 𝐻, 𝛼, 𝛽) of the GF𝑘C
problem and a parameter 𝜖 > 0, assume that 𝐷 is the doubling

dimension of𝐶 , and 𝜏𝑓 is the cost of optimal solution ofI, respectively.
Then, for any 𝑣 ∈ 𝐶 , 𝑑 (𝑣, 𝐸) ≤ 𝜖𝜏𝑓 . Moreover, |𝐸 | = 𝑘𝑙 · (4/𝜖)𝐷 .

Proof. For each machine 𝑗 ∈ [𝑙], let 𝑆 𝑗 be the output of Greedy-
𝑘C(𝑀𝑗 , 𝑑, 𝑘) when step 2 of 𝜖-CSC(𝑀𝑗 , 𝑑, 𝑘, 𝜖) is executed. Note that
𝑆 𝑗 is the set of 𝑘 centers selected by 𝜖-CSC. Since𝑀𝑗 is a subset of𝐶 ,

by Theorem 3.2, we have 𝑐𝑜𝑠𝑡 (𝑆 𝑗 , 𝑀𝑗 ) ≤ 2𝜏 ≤ 2𝜏𝑓 . After calling the

algorithm 𝜖-CSC, we have 𝑐𝑜𝑠𝑡 (𝐸 𝑗 , 𝑀𝑗 ) ≤ (𝜖/2) ·𝑐𝑜𝑠𝑡 (𝑆 𝑗 , 𝑀𝑗 ). Thus,
for any 𝑣 ∈ 𝑀𝑗 , 𝑑 (𝑣, 𝐸 𝑗 ) ≤ 𝑐𝑜𝑠𝑡 (𝐸 𝑗 , 𝑀𝑗 ) ≤ (𝜖/2) · 𝑐𝑜𝑠𝑡 (𝑆 𝑗 , 𝑀𝑗 ) ≤
𝜖𝜏𝑓 . Combining all 𝑙 machines, for any 𝑣 ∈ 𝐶 , we have𝑑 (𝑣, 𝐸) ≤ 𝜖𝜏𝑓 .

Since there are 𝑙 machines, by Theorem 3.1, |𝐸 | = 𝑘𝑙 · (4/𝜖)𝐷 . □

For simplicity, we define a mapping 𝜋 : 𝐶 → 𝐸 that maps each

point 𝑣 ∈ 𝑀𝑗 ( 𝑗 ∈ [𝑙]) to its closest center in 𝐸 𝑗 . Therefore, by

Lemma 3.3, we get that for any 𝑣 ∈ 𝐶 , 𝑑 (𝑣, 𝜋 (𝑣)) ≤ 𝜖𝜏𝑓 . Note that

many real-world datesets often have lower intrinsic dimensions [5],

i.e., the set 𝐶 has a low doubling dimension 𝐷 . Moreover, once the

dimension of the dataset is given, the doubling dimension of the

dataset is fixed. Since the exact value of the doubling dimension of

the testing dataset is often difficult to compute, it is usually assumed

to be a constant [18]. Therefore, the construction of the set 𝐸 does

not cause large communication cost in the coordinator.

4 DISTRIBUTED ALGORITHMS

In this section, we show how to obtain the desired distributed al-

gorithms for the GF𝑘C and DSF𝑘C problems in the MPC model.

For the distributed algorithms in [7, 16], the final solutions are ob-

tained based on the centers returned by each machine. However, it

is hard to obtain feasible solutions with a small approximation loss

in the coordinator due to the existence of fairness constraints. We

overcome the obstacle caused by the fairness constraints, and prove

theoretically that for the GF𝑘C and DSF𝑘C problems in the MPC

model, there must exist feasible solutions with small factors (3 + 𝜖)
and (4 + 𝜖) of the optimal solution in the coordinator, respectively.

Given an instance I = (𝐶,𝑑, 𝑘,G, 𝐻, 𝛼, 𝛽) (or I = (𝐶,𝑑, 𝑘,G, 𝐻,𝛾))
of the GF𝑘C (or DSF𝑘C) problem, assume that 𝐷 is the doubling

dimension of 𝐶 , and the points in 𝐶 are distributed among 𝑙 ma-

chines. Let 𝑀𝑗 be the set of points distributed to machine 𝑗 ∈ [𝑙].
Moreover, we have ∪𝑙

𝑗=1
𝑀𝑗 = 𝐶 . Assume that 𝜏𝑓 is the cost of opti-

mal solution for given instance. In Subsection 4.3, we show how to

obtain 𝜏𝑓 by a geometric guessing method in the coordinator with

an approximation loss (1 + 𝛿), where 𝛿 > 0 is a parameter.

4.1 The GF𝑘C Problem in the MPC Model

In this section, we consider the GF𝑘C problem in the MPC model,

and present a distributed algorithm, called Group-Fair-𝑘C (see

Algorithm 2), which can achieve a (3 + 𝜖)-approximation with

an additive 1 violation for the group fairness constraints. The

general idea of Group-Fair-𝑘C is as follows. Given an instance

I = (𝐶,𝑑, 𝑘,G, 𝐻, 𝛼, 𝛽) of the GF𝑘C problem and a parameter 𝜖 > 0,

our algorithm has two rounds. In the first round, we run the algo-

rithm 𝜖-CSC(𝑀𝑗 , 𝑑, 𝑘, 𝜖) to obtain a set 𝐸 𝑗 = {𝑠1𝑗 , . . . , 𝑠
𝑡
𝑗
} ⊆ 𝑀𝑗 of 𝑡

centers on each machine 𝑗 ∈ [𝑙], where 𝑡 = 𝑘 · (4/𝜖)𝐷 . Based on 𝐸 𝑗 ,

we construct a weighted set 𝑈 𝑗 of points with size𝑚𝑡 as follows,

where each point in 𝑈 𝑗 is associated with an integer weight. For

each center 𝑠𝑖
𝑗
∈ 𝐸 𝑗 (𝑖 ∈ [𝑡]) and each color ℎ ∈ 𝐻 , we add a point

𝑣𝑖ℎ
𝑗

with the same position as 𝑠𝑖
𝑗
with weight𝑤𝑖ℎ

𝑗
to𝑈 𝑗 , where𝑤

𝑖ℎ
𝑗

is equal to the total number of points with color ℎ such that 𝑠𝑖
𝑗
is the

closest center in 𝐸 𝑗 (i.e.,𝑤
𝑖ℎ
𝑗

= |{𝑣 ∈ 𝑀𝑗 ∩𝐶ℎ | 𝜋 (𝑣) = 𝑠𝑖
𝑗
}|). Then,

we send (𝐸 𝑗 ,𝑈 𝑗 ) to the coordinator for each machine 𝑗 ∈ [𝑙] at the
end of the round. Let 𝐸 = ∪𝑙

𝑗=1
𝐸 𝑗 and 𝑈 = ∪𝑙

𝑗=1
𝑈 𝑗 . In the second

round, we first run algorithm Greedy-𝑘C(𝐸,𝑑, 𝑘) to obtain a set

𝑆 = {𝑠1, . . . , 𝑠𝑘 } of 𝑘 centers. Then, we obtain the final solution by

solving the Weighted Fair Assignment problem (see Definition 4.2)

that assigns the weighted points in 𝑈 to the centers in 𝑆 .

Let 𝑆 = {𝑠1, . . . , 𝑠𝑘 } ⊆ 𝐸 be the set of 𝑘 centers returned by

Greedy-𝑘C(𝐸, 𝑘, 𝑑) in the second round. The following lemma eas-

ily follows from Theorem 3.2 and Lemma 3.3.

Lemma 4.1. For any 𝑣 ∈ 𝐶 , we have 𝑑 (𝑣, 𝑆) ≤ (2 + 𝜖)𝜏𝑓 .

We consider the following Weighted Fair Assignment problem.
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Algorithm 2: Group-Fair-𝑘C

Input: An instance I = (𝐶,𝑑, 𝑘,G, 𝐻, 𝛼, 𝛽) of the GF𝑘C
problem, the points in𝑀𝑗 distributed across the 𝑗-th

machine ( 𝑗 ∈ [𝑙]), and a parameter 𝜖 > 0

Output: A feasible solution of I
1 for 𝑗 = 1 to 𝑙 do

2 𝐸 𝑗 ← 𝜖-CSC(𝑀𝑗 , 𝑑, 𝑘, 𝜖);
3 𝑈 𝑗 ← ∅;
4 for 𝑖 = 1 to |𝐸 𝑗 | do
5 for ℎ = 1 to𝑚 do

6 𝑣𝑖ℎ
𝑗
← construct a point with the same position

as 𝑠𝑖
𝑗
with color ℎ;

7 𝑤𝑖ℎ
𝑗
← |{𝑣 ∈ 𝑀𝑗 ∩𝐶ℎ | 𝜋 (𝑣) = 𝑠𝑖

𝑗
}|;

8 𝑈 𝑗 ← 𝑈 𝑗 ∪ {𝑣𝑖ℎ𝑗 };

9 Send (𝐸 𝑗 ,𝑈 𝑗 ) to the coordinator for each machine 𝑗 ∈ [𝑙];
10 𝑆 ← Greedy-𝑘C(∪𝑙

𝑗=1
𝐸 𝑗 , 𝑑, 𝑘);

11 𝜙 ← solve the Weighted Fair Assignment problem on 𝑈 and

𝑆 ;

12 return (𝑆, 𝜙).

Definition 4.2 (the Weighted Fair Assignment problem [7]). Given

a weighted set 𝑈 of points in a metric space (X, 𝑑), where each
point 𝑢 ∈ 𝑈 is associated with an integer weight𝑤𝑢 , an integer 𝑘 , a

set of colors 𝐻 = {1, . . . ,𝑚},𝑚 disjoint groupsU = {U1, . . . ,U𝑚}
with ∪𝑚

ℎ=1
Uℎ = 𝑈 , a set 𝑆 = {𝑠1, . . . , 𝑠𝑘 } of 𝑘 centers, and two

vectors 𝛼 = {𝛼1, . . . , 𝛼𝑚}, 𝛽 = {𝛽1, . . . , 𝛽𝑚}, where the points in
Uℎ are colored with color ℎ ∈ 𝐻 , the goal is to find a mapping

𝜓 : (𝑈 × 𝑆) → N∪ {0} satisfying∑𝑠∈𝑆 𝜓 (𝑢, 𝑠) = 𝑤𝑢 for any 𝑢 ∈ 𝑈 ,

and the following weighted fairness constraints, i.e.,

𝛽ℎ ≤
∑
𝑢∈Uℎ

𝜓 (𝑢, 𝑠)∑
𝑢∈𝑈 𝜓 (𝑢, 𝑠) ≤ 𝛼ℎ,∀𝑠 ∈ 𝑆,∀ℎ ∈ 𝐻, (3)

and such that the costmax𝑢∈𝑈 max𝑠∈𝑆,𝜓 (𝑢,𝑠 )>0 𝑑 (𝑢, 𝑠) is minimized.

Given an instance (𝑈 , 𝑆, 𝑑, 𝑘,U, 𝐻, 𝛼, 𝛽) of the Weighted Fair As-

signment problem, we call𝜓 : (𝑈 ×𝑆) → N∪{0} a feasible solution
if𝜓 satisfies constraint (3), and

∑
𝑠∈𝑆 𝜓 (𝑢, 𝑠) = 𝑤𝑢 for any𝑢 ∈ 𝑈 .We

define the cost of 𝜓 as 𝑐𝑜𝑠𝑡 (𝜓 ) = max𝑢∈𝑈 max𝑠∈𝑆,𝜓 (𝑢,𝑠 )>0 𝑑 (𝑢, 𝑠),
which is the maximum distance between a point 𝑢 ∈ 𝑈 and a center

𝑠 ∈ 𝑆 with 𝜓 (𝑢, 𝑠) > 0. Note that a point 𝑢 ∈ 𝑈 is assigned to a

center 𝑠 ∈ 𝑆 if and only if 𝜓 (𝑢, 𝑠) > 0. It is easy to get that the

cost of optimal solution of the Weighted Fair Assignment problem

instance is the same as the GF𝑘C problem instance.

Lemma 4.3. For the Weighted Fair Assignment problem instance

J = (𝑈 , 𝑆, 𝑑, 𝑘,U, 𝐻, 𝛼, 𝛽), there must exist a solution 𝜓 satisfying

constraint (3) with 𝑐𝑜𝑠𝑡 (𝜓 ) ≤ (3+𝜖)𝜏𝑓 , where 𝜏𝑓 is the cost of optimal

solution of J .

Proof. Let (𝑆∗, 𝜙∗) be an optimal solution of the GF𝑘C problem

instance I with cost 𝜏𝑓 , where 𝑆∗ = {𝑠∗
1
, . . . , 𝑠∗

𝑘
} is the set of 𝑘

optimal centers. Let 𝑂∗ = {𝑂∗
1
, . . . ,𝑂∗

𝑘
} be the corresponding 𝑘

optimal clusters under mapping 𝜙∗. For any 𝑖 ∈ [𝑘] and ℎ ∈ 𝐻 , let

𝑂∗
𝑖
(ℎ) be the set of points in 𝑂∗

𝑖
with color ℎ. Obviously, we have

𝐶 = ∪𝑖∈[𝑘 ]𝑂∗𝑖 . For any 𝑖 ∈ [𝑘], we have 𝑂
∗
𝑖
= ∪ℎ∈𝐻𝑂∗𝑖 (ℎ). For any

𝑖 ∈ [𝑘], let 𝜎 (𝑠∗
𝑖
) = argmin𝑠∈𝑆 𝑑 (𝑠, 𝑠∗𝑖 ) denote the closest center

in 𝑆 to 𝑠∗
𝑖
. By Lemma 4.1, we get that there exists a center in 𝑆

with distance at most (2 + 𝜖)𝜏𝑓 to 𝑠∗
𝑖
. Thus, we have 𝑑 (𝑠∗

𝑖
, 𝜎 (𝑠∗

𝑖
)) ≤

(2+𝜖)𝜏𝑓 since 𝜎 (𝑠∗𝑖 ) is the closest center in 𝑆 to 𝑠
∗
𝑖
. For any 𝑣 ∈ 𝐶 , let

𝜙 (𝑣) = 𝜎 (𝜙∗ (𝑣)). We now prove that (𝑆, 𝜙) is a (3+𝜖)-approximate

solution ofI, i.e., the cost of (𝑆, 𝜙) is atmost (3+𝜖)𝜏𝑓 , and𝜙 : 𝐶 → 𝑆

satisfies the group fairness constraints.

For any 𝑣 ∈ 𝑂∗
𝑖
(𝑖 ∈ [𝑘]), by the triangle inequality, we have

𝑑 (𝑣, 𝜙 (𝑣)) = 𝑑 (𝑣, 𝜎 (𝜙∗ (𝑣))) ≤ 𝑑 (𝑣, 𝜙∗ (𝑣)) + 𝑑 (𝜙∗ (𝑣), 𝜎 (𝜙∗ (𝑣)))
≤ 𝜏𝑓 + (2 + 𝜖)𝜏𝑓 ≤ (3 + 𝜖)𝜏𝑓 .

Hence, the cost of (𝑆, 𝜙) is at most (3 + 𝜖)𝜏𝑓 . Since (𝑆∗, 𝜙∗) is a
feasible solution of I, for any 𝑖 ∈ [𝑘] and ℎ ∈ 𝐻 , we have

𝛽ℎ ≤
|𝑂∗
𝑖
(ℎ) |
|𝑂∗
𝑖
| ≤ 𝛼ℎ .

For any 𝑠 ∈ 𝑆 , let 𝑁 (𝑠) = {𝑠∗
𝑖
∈ 𝑆∗ | 𝜎 (𝑠∗

𝑖
) = 𝑠} denote all centers in

𝑆∗ such that 𝑠 is the closest center. Note that {𝑣 ∈ 𝐶 | 𝜙 (𝑣) = 𝑠} =
∪𝑠∗

𝑖
∈𝑁 (𝑠 )𝑂

∗
𝑖
. Similarly, for any ℎ ∈ 𝐻 , we have {𝑣 ∈ 𝐶ℎ | 𝜙 (𝑣) =

𝑠} = ∪𝑠∗
𝑖
∈𝑁 (𝑠 )𝑂

∗
𝑖
(ℎ). Consequently, for any 𝑠 ∈ 𝑆 and ℎ ∈ 𝐻 , we

have

|{𝑣 ∈ 𝐶ℎ | 𝜙 (𝑣) = 𝑠}|
|{𝑣 ∈ 𝐶 | 𝜙 (𝑣) = 𝑠}| =

∑
𝑠∗
𝑖
∈𝑁 (𝑠 ) |𝑂∗𝑖 (ℎ) |∑
𝑠∗
𝑖
∈𝑁 (𝑠 ) |𝑂∗𝑖 |

.

By using the scaling technique, we have

min

𝑠∗
𝑖
∈𝑁 (𝑠 )

|𝑂∗
𝑖
(ℎ) |
|𝑂∗
𝑖
| ≤

∑
𝑠∗
𝑖
∈𝑁 (𝑠 ) |𝑂∗𝑖 (ℎ) |∑
𝑠∗
𝑖
∈𝑁 (𝑠 ) |𝑂∗𝑖 |

≤ max

𝑠∗
𝑖
∈𝑁 (𝑠 )

|𝑂∗
𝑖
(ℎ) |
|𝑂∗
𝑖
| .

Then, we have

𝛽ℎ ≤
∑
𝑠∗
𝑖
∈𝑁 (𝑠 ) |𝑂∗𝑖 (ℎ) |∑
𝑠∗
𝑖
∈𝑁 (𝑠 ) |𝑂∗𝑖 |

≤ 𝛼ℎ .

Thus, 𝜙 satisfies the group fairness constraints.

We now prove that for the Weighted Fair Assignment problem

instance J = (𝑈 = ∪𝑙
𝑗=1

𝑈 𝑗 , 𝑆, 𝑑, 𝑘,U, 𝐻, 𝛼, 𝛽), a mapping𝜓 satisfy-

ing constraint (3) with 𝑐𝑜𝑠𝑡 (𝜓 ) ≤ (3 + 𝜖)𝜏𝑓 based on the solution

(𝑆, 𝜙) of I can be constructed. For any point 𝑣 ∈ 𝐶 , assume that

𝑣 is in machine 𝑗 ∈ [𝑙] with color ℎ ∈ 𝐻 , i.e., 𝑣 ∈ 𝑀𝑗 ∩𝐶ℎ . By the

definition of the mapping 𝜋 , we get that 𝜋 (𝑣) is the closest center
in 𝐸 𝑗 to 𝑣 with 𝑑 (𝜋 (𝑣), 𝑣) ≤ 𝜖𝜏𝑓 . Suppose that 𝑖 ∈ [𝑡] is the index of
the center 𝜋 (𝑣) in 𝐸 𝑗 . Recall that for each color ℎ ∈ 𝐻 , the weighted

set 𝑈 𝑗 contains a point 𝑣
𝑖ℎ
𝑗

with the same position as 𝜋 (𝑣) ∈ 𝐸 𝑗 .

Thus, we have 𝑑 (𝑣𝑖ℎ
𝑗
, 𝑣) ≤ 𝜖𝜏𝑓 since 𝑣𝑖ℎ

𝑗
and 𝜋 (𝑣) have the same

positions. In the solution (𝑆, 𝜙), point 𝑣 is assigned to the center

𝜙 (𝑣) ∈ 𝑆 . Then, we assign 1 unit of weight of the point 𝑣𝑖ℎ
𝑗

to 𝜙 (𝑣),
i.e., set𝜓 (𝑣𝑖ℎ

𝑗
, 𝜙 (𝑣)) = 1. By the triangle inequality, we have

𝑑 (𝑣𝑖ℎ𝑗 , 𝜙 (𝑣)) ≤ 𝑑 (𝑣𝑖ℎ𝑗 , 𝑣) + 𝑑 (𝑣, 𝜙 (𝑣)) ≤ (3 + 𝜖)𝜏𝑓 .

Thus, we have 𝑐𝑜𝑠𝑡 (𝜓 ) ≤ (3 + 𝜖)𝜏𝑓 .
We now prove that the mapping 𝜓 satisfies constraint (3). By

the above process, we get that the total weight of points with color

ℎ ∈ 𝐻 in𝑈 assigned to a center 𝑠 ∈ 𝑆 is exactly equal to the number

of points of this color assigned to 𝑠 in the solution (𝑆, 𝜙), i.e., for any
𝑠 ∈ 𝑆 and ℎ ∈ 𝐻 , we have

∑
𝑢∈Uℎ

𝜓 (𝑢, 𝑠) = |{𝑣 ∈ 𝐶ℎ | 𝜙 (𝑣) = 𝑠}|.
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Then, for any 𝑠 ∈ 𝑆 , we have ∑𝑢∈𝑈 𝜓 (𝑢, 𝑠) = |{𝑣 ∈ 𝐶 | 𝜙 (𝑣) = 𝑠}|.
Thus, for any 𝑠 ∈ 𝑆 and ℎ ∈ 𝐻 , we have∑

𝑢∈Uℎ
𝜓 (𝑢, 𝑠)∑

𝑢∈𝑈 𝜓 (𝑢, 𝑠) =
|{𝑣 ∈ 𝐶ℎ | 𝜙 (𝑣) = 𝑠}|
|{𝑣 ∈ 𝐶 | 𝜙 (𝑣) = 𝑠}| .

Since the solution (𝑆, 𝜙) satisfies the group fairness constraints, the
mapping𝜓 satisfies constraint (3). □

Lemma 4.3 shows the existence of a solution𝜓 of J satisfying

constraint (3) with cost at most (3 + 𝜖)𝜏𝑓 . Note that a solution𝜓 of

J induces an assignment from the set 𝑈 to the centers in 𝑆 . The

natural idea to obtain such an assignment is firstly to use the linear

programming method, which results in a fractional assignment

satisfying the group fairness constraints with cost at most (3+𝜖)𝜏𝑓 .
Then, we can obtain an integral assignment by using a rounding

method that rounds the feasible fractional assignment obtained

to an integral assignment. Therefore, we model the Weighted Fair

Assignment problem instance J = (𝑈 , 𝑆, 𝑑, 𝑘,U, 𝐻, 𝛼, 𝛽) as a linear
program, which can be solved by the method in [7].

Theorem 4.4 ([7]). Given an instance J of the Weighted Fair As-

signment problem, assume that 𝜙 ′ : 𝑈 → 𝑆 is a fractional assignment

obtained by the linear programming with cost at most (3+𝜖)𝜏𝑓 . Then,
there is a rounding algorithm that returns an integral assignment 𝜙

with cost at most (3 + 𝜖)𝜏𝑓 with an additive 7 violation for group

fairness constraints.

By Theorem 4.4, we can obtain an integral assignment𝜙 : 𝑈 → 𝑆

with an additive 7 violation that assigns each point𝑢 ∈ 𝑈 to a center

𝑠 ∈ 𝑆 with 𝑑 (𝑢, 𝑠) ≤ (3 + 𝜖)𝜏𝑓 . However, the above solution is for

the weighted points in𝑈 , we need to convert it to obtain a solution

for the original points in𝐶 . Based on the integral assignment 𝜙 , we

can obtain a solution (𝑆, 𝜙) for the GF𝑘C problem instance, where

𝜙 : 𝐶 → 𝑆 is a mapping that assigns each point in𝐶 to a center in 𝑆 .

For any 𝑣 ∈ 𝐶 , assume that point 𝑣 has color ℎ ∈ 𝐻 , and we get that

𝜋 (𝑣) is the closest center in 𝐸 to 𝑣 . Recall that the set 𝑈 contains a

point with color ℎ, denoted by 𝑢ℎ , with the same position as 𝜋 (𝑣).
Assume that in the above integral assignment 𝜙 , the weight point

𝑢ℎ is assigned to a center 𝑠 ∈ 𝑆 . Then, we assign 𝑣 to 𝑠 , i.e., set

𝜙 (𝑣) = 𝑠 . Obviously, by Theorem 3.1, the above process incurs an

additional cost of 𝜖𝜏𝑓 . Therefore, the cost of (𝑆, 𝜙) is still at most

(3 + 𝜖)𝜏𝑓 .
In fact, the violation can be improved to 1 instead of 7 by using

the rounding method in [8]. However, compared with the rounding

method in [8], the method in [7] is fast and scalable in practice .

Since the sizes of 𝐸 𝑗 and𝑈 𝑗 are𝑂 (𝑘 · (4/𝜖)𝐷 )) and𝑂 (𝑘𝑚 · (4/𝜖)𝐷 ))
for each machine 𝑗 ∈ [𝑙], respectively, the algorithm Group-Fair-

𝑘C communicates 𝑂 (𝑘𝑚𝑙 · (4/𝜖)𝐷 ) amount of data. By the above

discussion, Theorem 1.1 can be proved.

4.2 The DSF𝑘C Problem in the MPC Model

In this section, we consider the DSF𝑘C problem in the MPC model,

and present a distributed algorithm, called Data-Summarization-

Fair-𝑘C (see Algorithm 3), which achieves a (4 + 𝜖)-approximation

without fairness violation. The general idea of Data-Summarization-

Fair-𝑘C is as follows. Given an instance I = (𝐶,𝑑, 𝑘,G, 𝐻,𝛾) of
the DSF𝑘C problem and a parameter 𝜖 > 0, our algorithm has two

rounds. In the first round, we run the algorithm 𝜖-CSC(𝑀𝑗 , 𝑑, 𝑘, 𝜖)

Algorithm 3: Data-Summarization-Fair-𝑘C

Input: An instance I = (𝐶,𝑑, 𝑘,G, 𝐻,𝛾) of the DSF𝑘C
problem, the points in𝑀𝑗 distributed across the 𝑗-th

machine ( 𝑗 ∈ [𝑙]), and a parameter 𝜖 > 0

Output: A feasible solution of I
1 for 𝑗 = 1 to 𝑙 do

2 𝐸 𝑗 ← 𝜖-CSC(𝑀𝑗 , 𝑑, 𝑘, 𝜖);
3 𝑈 𝑗 ← 𝐸 𝑗 ;

4 for 𝑖 = 1 to |𝐸 𝑗 | do
5 for ℎ = 1 to𝑚 do

6 𝑣𝑖ℎ
𝑗
← a point in𝑀𝑗 with color ℎ such that 𝑠𝑖

𝑗
is

the closest center in 𝐸 𝑗 ;

7 𝑈 𝑗 ← 𝑈 𝑗 ∪ {𝑣𝑖ℎ𝑗 };

8 Send (𝐸 𝑗 ,𝑈 𝑗 ) to the coordinator for each machine 𝑗 ∈ [𝑙];
9 𝑆 ←Greedy-𝑘C(∪𝑙

𝑗=1
𝐸 𝑗 , 𝑑, 𝑘);

10 𝑆 ←Get-Solution(𝐶,𝑑, 𝑘,G, 𝐻,𝛾, 𝑆,∪𝑙
𝑗=1

𝑈 𝑗 , 𝜏𝑓 , 𝜖);
11 return 𝑆 .

to obtain a set 𝐸 𝑗 = {𝑠1𝑗 , . . . , 𝑠
𝑡
𝑗
} ⊆ 𝑀𝑗 of 𝑡 centers on each machine

𝑗 ∈ [𝑙], where 𝑡 = 𝑘 · (4/𝜖)𝐷 . Based on 𝐸 𝑗 , we construct a repre-

sentative set 𝑈 𝑗 of points with size𝑚𝑡 as follows. We start with

𝑈 𝑗 = 𝐸 𝑗 . Then, for each center 𝑠𝑖
𝑗
∈ 𝐸 𝑗 (𝑖 ∈ [𝑡]) and each color

ℎ ∈ 𝐻 , we add a point 𝑣𝑖ℎ
𝑗
∈ 𝑀𝑗 with color ℎ to𝑈 𝑗 (if it exists) such

that 𝜋 (𝑣𝑖ℎ
𝑗
) = 𝑠𝑖

𝑗
(note that there may be multiple points in𝑀𝑗 with

color ℎ such that the closest center is 𝑠𝑖
𝑗
, and we select any point 𝑣𝑖ℎ

𝑗

from these points). Next, we send (𝐸 𝑗 ,𝑈 𝑗 ) to the coordinator for

each machine 𝑗 ∈ [𝑙] at the end of the round. Let 𝐸 = ∪𝑙
𝑗=1

𝐸 𝑗 and

𝑈 = ∪𝑙
𝑗=1

𝑈 𝑗 . In the second round, we first run algorithm Greedy-

𝑘C(𝐸,𝑑, 𝑘) to obtain a set 𝑆 = {𝑠1, . . . , 𝑠𝑘 } of 𝑘 centers. Then, we

get the final solution by calling the algorithm Get-Solution (see

Algorithm 4), which finds a maximummatching between a bipartite

graph based on 𝑆 and 𝑈 . The matching method in Get-Solution

is similar to that of [16, 24], which is a commonly technique used

for solving the DSF𝑘C problem to get 𝑘 centers satisfying the data

summarization fairness constraints.

Lemma 4.5. Given an instance I = (𝐶,𝑑, 𝑘,G, 𝐻,𝛾) of the DSF𝑘C
problem and a parameter 𝜖 > 0, Get-Solution returns a set 𝑆 satis-

fying the data summarization fairness constraints such that for any

𝑣 ∈ 𝐶 , 𝑑 (𝑣, 𝑆) ≤ (4 + 𝜖)𝜏𝑓 .

Proof. Let 𝐸 = ∪𝑙
𝑗=1

𝐸 𝑗 and 𝑈 = ∪𝑙
𝑗=1

𝑈 𝑗 . Let 𝑆 = {𝑠1, . . . , 𝑠𝑘 }
be the set of 𝑘 centers returned by Greedy-𝑘C(𝐸,𝑑, 𝑘). Let 𝑆∗ =
{𝑠∗
1
, . . . , 𝑠∗

𝑘
} be an optimal solution of I with cost 𝜏𝑓 . We first prove

the existence of 𝑆 . For each 𝑠∗
𝑖
∈ 𝑆∗ (𝑖 ∈ [𝑘]), by Lemma 4.1, we

get that there exists a center in 𝑆 with distance at most (2 + 𝜖)𝜏𝑓
to 𝑠∗

𝑖
. Assume that 𝑠∗

𝑖
is in machine 𝑗 ∈ [𝑙], i.e., 𝑠∗

𝑖
∈ 𝑀𝑗 . By the

definition of the mapping 𝜋 , 𝜋 (𝑠∗
𝑖
) is the closest center in 𝐸 𝑗 to

𝑠∗
𝑖
with 𝑑 (𝑠∗

𝑖
, 𝜋 (𝑠∗

𝑖
)) ≤ 𝜖𝜏𝑓 . Recall that for each color ℎ ∈ 𝐻 , the

set 𝑈 𝑗 contains a point with color ℎ such that 𝜋 (𝑠∗
𝑖
) is the closest

center in 𝐸 𝑗 . Therefore, the set 𝑈 𝑗 must contain a point, denoted

by 𝑓 (𝜋 (𝑠∗
𝑖
)), with the same color as 𝑠∗

𝑖
(possibly 𝑠∗

𝑖
itself) with

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1943



Algorithm 4: Get-Solution

Input: An instance I = (𝐶,𝑑, 𝑘,G, 𝐻,𝛾) of the DSF𝑘C
problem, a set 𝑆 of 𝑘 centers, a set 𝑈 of points, and

parameters 𝜏𝑓 , 𝜖 > 0

Output: A feasible solution 𝑆 of I
1 Let 𝑉1 = 𝑉2 = ∅, 𝐴 = ∅;
2 for 𝑖 = 1 to 𝑘 do

3 Construct a vertex 𝑢𝑖 , and add it to 𝑉1;

4 for ℎ = 1 to𝑚 do

5 Construct a set 𝑉ℎ of 𝑘ℎ identical vertices, and add the

vertices in 𝑉ℎ to 𝑉2;

6 Let 𝐺 = (𝑉1 ∪𝑉2, 𝐴);
7 for 𝑖 = 1 to 𝑘 do

8 for ℎ = 1 to𝑚 do

9 if ∃ 𝑣 ∈ 𝑈 ∩𝐶ℎ and 𝑑 (𝑠𝑖 , 𝑣) ≤ (2 + 𝜖)𝜏𝑓 then
10 For each vertex𝑤 ∈ 𝑉ℎ , add edge (𝑢𝑖 ,𝑤) to 𝐴;

11 Find a maximum matching𝑀 of 𝐺 ;

12 𝑆 ← ∅;
13 for each edge (𝑎, 𝑏) ∈ 𝑀 do

14 Let 𝑝 be a point in 𝑈 with color ℎ such that

𝑑 (𝑠𝑖 , 𝑝) ≤ (2 + 𝜖)𝜏𝑓 , where 𝑎 is the corresponding

vertex of center 𝑠𝑖 ∈ 𝑆 , and 𝑏 is in 𝑉ℎ , respectively;

15 𝑆 ← 𝑆 ∪ {𝑝};
16 return 𝑆 .

𝑑 (𝜋 (𝑠∗
𝑖
), 𝑓 (𝜋 (𝑠∗

𝑖
))) ≤ 𝜖𝜏𝑓 . Since 𝐸 is a subset of 𝐶 , by Lemma 3.2,

there exists a center 𝑠 ∈ 𝑆 such that 𝑑 (𝜋 (𝑠∗
𝑖
), 𝑠) ≤ 2𝜏𝑓 . By the

triangle inequality, we have

𝑑 (𝑓 (𝜋 (𝑠∗𝑖 )), 𝑠) ≤ 𝑑 (𝑓 (𝜋 (𝑠∗𝑖 )), 𝜋 (𝑠
∗
𝑖 )) + 𝑑 (𝜋 (𝑠

∗
𝑖 ), 𝑠) ≤ (2 + 𝜖)𝜏𝑓 .

Let 𝑆 = {𝑓 (𝜋 (𝑠∗
1
)), . . . , 𝑓 (𝜋 (𝑠∗

𝑘
))}. Hence, there must exist a set

𝑆 ⊆ 𝑈 satisfying the data summarization fairness constraints such

that for any 𝑓 (𝜋 (𝑠∗
𝑖
)) ∈ 𝑆 (𝑖 ∈ [𝑘]), there is a center 𝑠 ∈ 𝑆 with

𝑑 (𝑓 (𝜋 (𝑠∗
𝑖
)), 𝑠) ≤ (2 + 𝜖)𝜏𝑓 . Recall that Lemma 4.1 shows that for

any 𝑣 ∈ 𝐶 , there exists a center in 𝑆 with distance at most (2 + 𝜖)𝜏𝑓
to 𝑣 . Therefore, by the triangle inequality, we get that for any 𝑣 ∈ 𝐶 ,
there must exist a center 𝑠 ∈ 𝑆 with 𝑑 (𝑣, 𝑠) ≤ (4 + 𝜖)𝜏𝑓 .

We now prove that algorithm Get-Solution can give such a

solution 𝑆 of I. Get-Solution starts with a bipartite graph 𝐺 =

(𝑉1∪𝑉2, 𝐸). The left vertex set𝑉1 contains 𝑘 vertices in total, where

for each center 𝑠𝑖 ∈ 𝑆 (𝑖 ∈ [𝑘]), it contains one vertex. The right
vertex set 𝑉2 = ∪𝑚ℎ=1𝑉ℎ contains 𝑘 vertices in total, where for each

color ℎ ∈ 𝐻 , the set 𝑉ℎ contains 𝑘ℎ identical vertices. For each

vertices 𝑎 ∈ 𝑉1 and 𝑏 ∈ 𝑉2, let (𝑎, 𝑏) denote an edge between 𝑎 and

𝑏 For each 𝑖 ∈ [𝑘] and ℎ ∈ 𝐻 , if there is a point 𝑣 ∈ 𝑈 with color ℎ

such that 𝑑 (𝑠𝑖 , 𝑣) ≤ (2 + 𝜖)𝜏𝑓 , then the corresponding vertex 𝑢𝑖 is

connected to all vertices in 𝑉ℎ .

Let𝑀 be a maximum matching returned by the Ford-Fulkerson

algorithm based on 𝐺 that runs in polynomial time. Then, 𝑀 im-

mediately induces a solution 𝑆 as follows. For each edge (𝑎, 𝑏) in
𝑀 , assume that vertex 𝑎 corresponds to center 𝑠𝑖 ∈ 𝑆 , and ver-

tex 𝑏 is in 𝑉ℎ . We add a point 𝑝 ∈ 𝑈 with color ℎ to 𝑆 such that

𝑑 (𝑝, 𝑠𝑖 ) ≤ (2+𝜖)𝜏𝑓 . Since |𝑉ℎ | = 𝑘ℎ , 𝑆 contains 𝑘ℎ points with color

ℎ. Therefore, 𝑆 is a set of𝑘 centers satisfying the data summarization

fairness constraints. □

Since the sizes of 𝐸 𝑗 and 𝑈 𝑗 are 𝑂 (𝑘 · (4/𝜖)𝐷 )) and 𝑂 (𝑘𝑚 ·
(4/𝜖)𝐷 )) for eachmachine 𝑗 ∈ [𝑙], respectively, the algorithmData-

Summarization-Fair-𝑘C communicates 𝑂 (𝑘𝑚𝑙 · (4/𝜖)𝐷 ) amount

of data. By the above discussion, Theorem 1.2 can be proved.

4.3 Obtaining the Optimal Cost

In this section, we show how to obtain the optimal cost for given

instance by a geometric guessing method. For the completeness of

our algorithms, we do not provide the specific process of guessing

the optimal cost in Group-Fair-𝑘C and Data-Summarization-

Fair-𝑘C. Given an instance I of the DSF𝑘C (or DSF𝑘C) problem,

assume that 𝜏𝑓 is the cost of the optimal solution of I. Let 𝐿𝑜𝑤
and 𝑈𝑝𝑝 be a lower bound and an upper bound of 𝜏𝑓 , respectively.

Thus, we have 𝐿𝑜𝑤 ≤ 𝜏𝑓 ≤ 𝑈𝑝𝑝 . Then, for an arbitrarily small

parameter 𝛿 , we can guess the optimal cost 𝜏𝑓 from {𝐿𝑜𝑤, 𝐿𝑜𝑤 (1 +
𝛿), 𝐿𝑜𝑤 (1 + 𝛿)2, . . . ,𝑈 𝑝𝑝}, which has at most log

1+𝛿 (𝑈𝑝𝑝/𝐿𝑜𝑤)
choices. More precisely, in our distributed algorithms, for each

machine 𝑗 ∈ [𝑙], we first compute 𝑟 𝑗 = 𝑐𝑜𝑠𝑡 (𝑆 𝑗 , 𝑀𝑗 )/2, and send

it to the coordinator, where 𝑆 𝑗 is the set of the first 𝑘 centers in

𝐸 𝑗 . Note that the process of sending 𝑟 𝑗 to the coordinator will not

increase the communication cost. It is easy to get that 𝑟 𝑗 ≤ 𝜏𝑓 .

Thus, we have max𝑗∈[𝑙 ] 𝑟 𝑗 ≤ 𝜏𝑓 , i.e., max𝑗∈[𝑙 ] 𝑟 𝑗 is a lower bound
of 𝜏𝑓 . Then, we can run the algorithm Group-Fair-𝑘C (or Data-

Summarization-Fair-𝑘C) in the coordinator with a parameter

starting at max𝑗∈[𝑙 ] 𝑟 𝑗 until it successfully finds a feasible solution

of given instance. The role of 𝛿 is to guess the optimal cost 𝜏𝑓 of

given instance. When the algorithm returns a feasible solution, the

guessing value is at least 𝜏𝑓 and at most (1 + 𝛿)𝜏𝑓 . For such case,

the clustering cost is at most (3 + 𝜖) (1 + 𝛿)𝜏𝑓 . Therefore, 𝛿 does not

influence the analysis of the approximation ratio. Moreover, the

geometric guessing process is executed in the coordinator without

additional communication cost.

5 EXPERIMENTS

In this section, we compare our proposed distributed algorithms

Group-Fair-𝑘C andData-Summarization-Fair-𝑘Cwith the state-

of-the-art algorithms.

Datasets. We conduct experiments on 6 real datasets frequently

used in fair clustering. For the GF𝑘C problem, we use Reuters, Bank,

and Creditcard. Reuters [2] dataset contains 50 English language

texts from each of 50 authors, where author is considered as the

sensitive attribute to generate 50 groups. Bank [6] dataset contains

one record for each phone call in a marketing campaign by a Por-

tuguese banking institution, where marital is used as the sensitive

attribute to generate 3 groups. Creditcard [6] dataset contains a in-

formation for each credit card holders from Taiwan, where marital

is considered as the sensitive attribute to generate 4 groups. For

the DSF𝑘C problem, we use SushiA, Adult, and Celeb-A from [16],

and follow the settings in [16] to obtain the sensitive attributes

for the three datasets. The datasets used in our experiments are

summarized in Table 2.
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Table 2: Datasets.

Problem Dataset Size Dimension Number of Groups

GF𝑘C

Reuters 2,500 10 50

Bank 4,000 3 3

Creditcard 30,000 13 4

DSF𝑘C

SushiA 5,000 11 2, 6, 12

Adult 30,000 6 2, 5, 10

Celeb-A 200,000 15360 2

Baseline Algorithms. We use three baseline algorithms in our

experiments. The first one is the algorithm Greedy-𝑘C that is a

2-approximation for the 𝑘-Center problem. We compare the cost

returned by Greedy-𝑘C in our experiments that is the maximum

distance from a point to its closest center, and is also a lower bound

of the optimal cost for the GF𝑘C (or DSF𝑘C) problem instance. Note

that Greedy-𝑘C is not strictly a baseline algorithm, and is used to

provide a lower bound for other algorithms in our experiments.

The second one is the distributed algorithm given in [7] that is a 9-

approximation for the GF𝑘C problem. The last one is the distributed

algorithm given in [16] that is a (17 + 𝜖)-approximation for the

DSF𝑘C problem. We denote the latter two distributed algorithms

as Bera and Chiplunkar, respectively. Instead of comparing the

costs returned by Bera and Chiplunkar, we follow the settings

in [16], and use the ratios between its costs and the lower bounds

returned by Greedy-𝑘C, respectively. Note that the ratios are not

the approximation ratios of the GF𝑘C and DSF𝑘C problems. Simi-

larly, we also compare the ratios between the costs returned by our

distributed algorithms and the lower bounds in experiments.

Results. Both our distributed algorithms first run algorithm

𝜖-CSC(𝑀𝑗 , 𝑑, 𝑘, 𝜖) to obtain a set 𝐸 𝑗 of 𝑘 · (4/𝜖)𝐷 centers on each

machine 𝑗 ∈ [𝑙]. However, the doubling dimension 𝐷 is hard to

compute in practice, and is not used as a parameter in our experi-

ments. We follow the settings in [9], which varies the size of the

set obtained on each machine in experiments. In our experiments,

for each machine 𝑗 ∈ [𝑙], we set |𝐸 𝑗 | = 10𝑘 . Tables 3 and 4 com-

pare the ratios between the costs of distributed algorithms for the

GF𝑘C and DSF𝑘C problems and the costs returned by Greedy-𝑘C,

respectively. Note that in these tables, we abbreviate Greedy-𝑘C

as G, Bera as B, and Chiplunkar as C, respectively. Moreover,

following the setting in [22], for the GF𝑘C problem in Table 3, the

parameters are fixed as 𝑘 = 4, 𝛽 = 0, and 𝛼 is selected with feasible

value. For the DSF𝑘C problem in Table 4, the parameters of fairness

constraints are selected from [16]. As shown in Table 3 and 4, our

distributed algorithms achieve a lower cost to find fair clusters with

various datasets and parameters.

Setups. We follow the settings in [7] with 𝑙 = 10, i.e., all the

algorithms in our experiments are tested on 10 machines. We follow

the settings in [16] with 𝛿 = 0.1. We use CPLEX to solve the linear

program. For hardware, all the experiments are conducted on 72

Intel Xeon Gold 6230 CPUs and 500GB memory.

6 CONCLUSIONS

In this paper, we consider the GF𝑘C and DSF𝑘C problems in the

MPC distributed model. Due to the fairness constraint, the problem

Table 3: Comparison of ratios between the costs of distributed

algorithms for the GF𝑘C problem and the costs returned by

Greedy-𝑘C on real datasets.

Dataset 𝛼 Greedy-𝑘C Bera Our

Reuters

0.05 3.01 3.57 2.49

0.2 3.01 3.52 2.49

0.4 3.01 3.52 2.49

Bank

0.8 2.85 × 10
3

31.27 13.9

0.9 2.85 × 10
3

16.05 13.9

1.0 2.85 × 10
3

9.20 7.13

Creditcard

0.6 1.65 × 10
6

3.49 2.22

0.7 1.65 × 10
6

3.45 2.18

0.8 1.65 × 10
6

3.45 2.18

Table 4: Comparison of ratios between the costs of distributed

algorithms for the DSF𝑘C problem and the costs returned by

Greedy-𝑘C on real datasets.

Dataset Constraint Greedy-𝑘C Chiplunkar Our

Adult

[2, 2] 6.87 2.06 1.99

[2]*5 5.21 2.32 2.02

[2]*10 4.09 2.64 2.02

CelebA

[2, 2] 4.53 × 10
4

1.96 1.83

[1, 3] 4.53 × 10
4

1.96 1.91

[3, 1] 4.53 × 10
4

1.97 1.93

SushiA

[2, 2] 11.5 2.43 2.17

[2]*6 9 2.67 2.11

[2]*12 8 2.25 2.12

is considerably more challenging than its non-fair counterpart. It is

thus a non-trivial task to obtain a solution that satisfies the fairness

constraints and meanwhile achieves a small approximation ratio

in the coordinator model. The main contributions of this paper

are: we show that there exist a (3 + 𝜖)-approximate solution and a

(4 + 𝜖)-approximate solution for the GF𝑘C and DSF𝑘C problems,

respectively, in the MPC distributed model, which are almost as

accurate as the sequential algorithms. We show experimentally

that our proposed distributed algorithms achieve better perfor-

mance compared with the state-of-the-art algorithms. Moreover,

we believe that our proposed distributed algorithms are useful in

the 𝑘-Center problem with other fairness constraints in the MPC

distributed model.
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