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ABSTRACT
Evolutionary reinforcement learning algorithms (ERLs), which com-
bine evolutionary algorithms (EAs) with reinforcement learning
(RL), have demonstrated significant success in enhancing RL per-
formance. However, most ERLs rely heavily on Gaussian mutation
operators to generate new individuals. When the standard deviation
is too large or small, this approach will result in the production of
poor or highly similar offspring. Such outcomes can be detrimen-
tal to the learning process of the RL agent, as too many poor or
similar experiences are generated by these individuals. In order to
alleviate these issues, this paper proposes an Adaptive Evolutionary
Reinforcement Learning (AERL) method that adaptively adjusts
both the standard deviation and the evaluation process. By tracking
the performance of new individuals, AERL maintains the mutation
strength within a suitable range without the need for additional
gradient computations. Moreover, the proposed AERL approach
early terminates unnecessary evaluations and discards experiences
arising from poor individuals, thereby resulting in enhanced learn-
ing efficiency. Empirical assessments conducted on a variety of
continuous control problems demonstrate the effectiveness of the
AERL method.
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1 INTRODUCTION
Reinforcement Learning (RL) has been widely applied in various ar-
eas , showcasing capabilities that even surpass human performance
[2, 17, 29], primarily owing to the successful integration of RL with
deep neural networks [16]. Nonetheless, numerous common chal-
lenges persist in RL algorithms, such as the difficulty in deriving
informative learning signals from sparse rewards and the limitation
in promoting diverse exploration [13].

Over the past few years, several research efforts have attempted
to introduce Evolutionary Algorithms (EAs) to help address these
issues. Notably, in [22, 25], EAs have been explored as a compet-
itive alternative to Reinforcement Learning (RL). These methods
adopt the policy networks and their cumulative rewards as indi-
viduals and fitness values, respectively. While this approach can
naturally overcome the influence from sparse rewards, it gener-
ally suffers from lower sample efficiency than RL methods because
of the neglect of the specific information in each step. Except for
replacing RL algorithms with EAs, a more promising scheme is
to combine both of them and leverage their advantages from two
domains. Among these hybrid methods that integrate EA and RL,
Evolutionary Reinforcement Learning (ERL) [13] is one of the most
popular algorithms. ERL maintains an actor population optimized
by Genetic Algorithm (GA) and an additional actor optimized by
RL algorithm. The actor population can explore different regions
of the solution space and provide diverse experiences for the RL
actor’s training. Additionally, the updated RL actor is copied into
the population and used to produce the next generation. By com-
bining GA and RL in a suitable way, ERL can combine the strengths
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of both methods and demonstrate superior performance compared
to the original RL algorithm or GA.

While ERL [13] has exhibited the potential and superiority of
hybrid methods, it employs completely random crossover and mu-
tation operators that could potentially harm the functionality of
neural networks. To address this weakness, Proximal Distilled Evo-
lutionary Reinforcement Learning (PDERL) [3] devises two genetic
operators based on backpropagation that are more stable and ef-
ficient than the operators used in the original ERL. Incorporating
these operators with ERL, PDERL significantly improves its per-
formance. Nevertheless, both operators in PDERL rely on gradient
computation, which increases its computational burden. Further-
more, ERL and PDERL collect the entire population’s experiences
irrespective of the quality of single individual. In reality, newly
generated individuals may be poor due to the randomness of mu-
tation, and their experiences may not benefit the learning of RL
agents. To alleviate the computational burden, we propose an adap-
tive mutation operator that adjusts the mutation strength within
a proper range based on the performance of the newly generated
individuals. Additionally, our method employs an early termination
strategy that determines the termination of the evaluation process.
Specifically, the evaluation of poor individuals is terminated early,
and their experiences are discarded. The main contributions of this
article are as follows:
1) An adaptive mutation operator is proposed for evolutionary rein-

forcement learning algorithms (ERLs), which can effectively con-
trol the strength of mutation and improve practical performance.
This operator does not require extra gradient computation and
has a low computational cost.

2) An early termination strategy is designed to further enhance
the efficiency of ERLs. This strategy discards useless evaluations
and experiences from poor-performing individuals, leading to
improved learning efficiency and algorithm performance.

3) The above approaches are integrated with RL algorithms to
form an Adaptive Evolutionary Reinforcement Learning called
AERL, which outperforms other compared algorithms in various
continuous control problems.
The remainder of this paper is organized as follows. Section 2 pro-

vides background information and related work on ERLs. Section 3
details the proposed adaptive mutation operator, evaluation strat-
egy, and their integration with RL algorithms. Section 4 compares
AERL to state-of-the-art ERLs and RL algorithms, and includes ab-
lation experiments to demonstrate the advantages of our method.
Finally, Section 5 provides conclusions and future work.

2 BACKGROUND AND MOTIVATION
This section provides some related background information. First,
a brief introduction to GAs is presented, which are commonly used
as the EA component in many ERLs. Next, a brief overview of the
most frequently used RL algorithms in ERLs is provided. Finally,
we describe some representative ERLs.

2.1 GA
GAs [31, 34] are population-based heuristic search algorithms that
mimic natural selection and biological evolution. GA’s reproduction
process includes three genetic operators: selection, crossover (or

recombination), and mutation [6]. Similar to natural selection, the
selection operator favors individuals with higher fitness values [1].
There are typically stochastic operations in the selection operators,
such as tournament selection [15] and roulette wheel selection [32],
which introduce diversity into the population. In nature, the chro-
mosomes of parents are combined to produce the next generation.
The crossover operators in GA simulate this process. For instance,
single-point crossover [8] swaps the chromosomes of parents before
a random point. The mutation operator modifies the chromosomes
of individuals with a certain probability. When the chromosomes
represent the weights of a neural network, Gaussian mutation [8]
is widely used as the base of the mutation operator.

2.2 DDPG and TD3
Deep Deterministic Policy Gradient (DDPG) [14] extends the idea
of DQN [16] to continuous action domains, and is also based on the
Deterministic Policy Gradient (DPG) algorithm [24]. To produce
continuous actions, DDPG employs an actor-network 𝜇 to represent
the policy and a critic network 𝑄 to approximate the action-value
function, which forms the actor-critic architecture [27]. Addition-
ally, DDPG also uses target networks 𝜇′ and 𝑄 ′. At each time step,
the agent receives a state 𝑠𝑡 and selects an action 𝑎𝑡 using the policy
network. Then, the environment returns a reward 𝑟𝑡 and the next
state 𝑠𝑡+1 to the agent. After the interaction between the agent and
environment, the tuple (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) is stored in the experience
replay buffer 𝑅. To optimize the actor and critic networks, losses are
computed using a batch of tuples. Specifically, the critic network is
updated by minimizing the loss 𝐿 as follows:

𝐿 =
1
𝑁

∑︁
𝑖

(𝑦𝑖 −𝑄 (𝑠𝑖 , 𝑎𝑖 |𝜃𝑄 ))2 (1)

where 𝑦𝑖 = 𝑟𝑖 +𝛾𝑄 ′ (𝑠𝑖+1, 𝜇′ (𝑠𝑖+1 |𝜃𝜇
′ ) |𝜃𝑄 ′ ), and 𝜃 means network’s

parameter. The actor is updated by the sampled policy gradient:

∇𝜃𝜇 𝐽 ≈ 1
𝑁

∑︁
𝑖

∇𝑎𝑄 (𝑠, 𝑎 |𝜃𝑄 ) |𝑠=𝑠𝑖 ,𝑎=𝜇 (𝑠𝑖 )∇𝜃𝜇 𝜇 (𝑠 |𝜃𝜇 ) |𝑠𝑖 (2)

Twin delayed deep deterministic policy gradient (TD3) [9] indi-
cates that DDPG overestimates the value of action and utilizes two
value function networks to alleviate this problem, which is similar
to Double Q-learning [12]. In TD3, two critic networks provide sep-
arate estimates of the value function, and the minimum estimate
is used. The value target 𝑦𝑖 in the critic loss is calculated using Eq.
(3):

𝑦𝑖 = 𝑟𝑖 + 𝛾 𝑚𝑖𝑛 𝑗=1,2𝑄
′
𝑗 (𝑠𝑖+1, 𝜇

′ (𝑠𝑖+1 |𝜃𝜇
′
) |𝜃𝑄

′
𝑗 ) (3)

In addition, TD3 updates the actor and target networks after updat-
ing the critic for multiple times to reduce estimation error.

2.3 ERLs and Motivation
To combine the benefits of EA and RL, various hybrid algorithms
have been proposed. One such approach is ERL [13], which inte-
grates GA and DDPG to optimize a population of actors and an
extra RL actor, respectively. The actor population generates diverse
experiences to train the RL actor, while the RL actor is periodically
inserted into the population to provide new individuals. Although
ERL has demonstrated its advantages on continuous control tasks,
its genetic operators are damaging and may cause forgetting of the
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learned information. To tackle this issue, Proximal Distilled Evo-
lutionary Reinforcement Learning (PDERL) [3] proposes proximal
mutation and distillation crossover. Proximal mutation utilizes the
sum of gradients to reduce the mutation strength of each weight, in-
creasing the stability of the mutation. Distillation crossover exploits
parents’ experiences to train their child using Imitation Learning
[18]. These two operators outperform the original operators on the
same tasks. Motivated by the framework of ERL, several studies
explore schemes that leverage the advantages of more methods.
Cross-Entropy Method Reinforcement Learning (CEM-RL) [19] pro-
poses a different framework that integrates RL algorithms with
CEM [11, 21]. CEM-RL applies RL gradient steps directly to half
of the population and employs the top-performing half to gener-
ate individuals, so it can reduce the impact of gradient steps that
decrease the performance. Competitive and Cooperative Hetero-
geneous Deep Reinforcement Learning (C2HRL) [33] uses a het-
erogeneous agent pool to force agents to compete for computation
resources and cooperate with each other for more efficient explo-
ration in the solution space. C2HRL’s agent pool includes agents
optimized by TD3, Soft Actor-Critic (SAC) [10], and EA. By leverag-
ing multiple excellent optimization methods, C2HRL can gain more
advantages from different areas than simple combination schemes.
Evolution-based Soft Actor Critic (ESAC) [26] combines ES with
SAC and utilizes hindsight crossover to facilitate skill transfer be-
tween individuals. Furthermore, ESACmaximizes the mutation rate
of ES through its proposed automatic mutation tuning to enhance
hyperparameter robustness.

Although many sophisticated combination schemes or opera-
tors have been proposed to improve the practical performance in
different environments, they ignore the difference in experiences
collected from ERLs and RL algorithms. In RL algorithms, new
experiences are generally collected from the current policy, and
even if action noise is used to improve exploration, it only slightly
changes the agent’s behavior. For ERLs, experiences come from the
RL agent and the agent population. However, ERLs add random
perturbations to the weights of the policy network to evolve the
individuals, which can destroy the functionality of neural networks
and produce poor individuals that are unhelpful for exploration.
To prevent these individuals from influencing agents’ learning, we
identify them, terminate their evaluations during the evaluation
process and discard their experiences. Besides, the strength of muta-
tion affects the quality of newly produced individuals significantly.
To maintain the mutation strength within a reasonable range with-
out increasing massive extra computation, we vary the mutation
strength based on the performance of new individuals. Moreover,
by controlling the mutation strength, the ratio of new poor indi-
viduals can be reduced to some extent. The details and practical
implementation of our method are discussed in the next section.

3 PROPOSED ALGORITHM
This section introduces the details of our proposed AERL algorithm.
The general framework of AERL is illustrated in Fig. 1. The algo-
rithm involves several main steps, including the evaluation of the
RL actor 𝜋𝑅𝐿 and the population 𝑝𝑜𝑝𝜋 , the mutation of the popu-
lation, and the gradient update of the RL agent. It is worth noting
that the evaluation and update of the population will be executed

Population

Actor 1
Actor 2

.

.

.
Actor N

Replay Buffer

Evaluation (Early 
Termination Strategy)

RL actor

Sample

experiences

train

update

Adaptive Mutation

Evaluation

Use EA?

experiences

no
yes

Figure 1: The algorithm framework of AERL

only if the RL agent makes no progress in the last K evaluations.
This means that the evolutionary part of the algorithm (i.e., the left
half in Fig. 1) will not be executed when the RL agent can make
progress quickly. Finally, if the number of timesteps reaches the
maximum value, the algorithm terminates and the best individual
in the population is selected as the final solution.

3.1 Adaptive Mutation
When the weights of a neural network are the variables of mutation,
the standard variation 𝜎 of the Gaussian mutation is critical. If 𝜎
is too large, it can disrupt the functionality of the neural network.
Conversely, if 𝜎 is too small, the mutation operator will have al-
most no impact on the neural network, and the newly produced
individuals will be similar to the old ones. Therefore, we propose
an adaptive mutation operator that keeps the standard variation
within an appropriate range. In PDERL [3], the strength of mu-
tation of each weight is scaled by its gradient, but this approach
requires extra gradient computation. Our method varies 𝜎 based
on the performance of new individuals, which only requires very
simple computation.

Algorithm 1 provides the pseudo-code for our mutation opera-
tor. This mutation operator requires a boolean variable, 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 ,
as input. If this variable is true, the standard deviation 𝜎 will be
increased in the next step, and vice versa. The value of 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 is
determined after evaluating the population. Specifically, 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒
will be set to false if all fitness values of the new individuals are
smaller than half of the elitists’ fitness; otherwise, it will be set to
true. To make the change of 𝜎 more stable, we use two variables,
𝑢 and 𝑙 , which store the value of 𝜎 in the last decrease or increase,
respectively. When we need to increase the value of 𝜎 , if 𝜎 is sig-
nificantly less than 𝑢, the value of 𝜎 will be set to half of the sum
of 𝜎 and 𝑢. Otherwise, the value of 𝜎 will be doubled. The steps
for decreasing 𝜎 are similar to the above process. Finally, all new
individuals are produced by mutating the elitists in the population.
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Algorithm 1: Adaptive_Mutation
Input: population 𝑝𝑜𝑝𝜋 ;
elitist 𝑒;
𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒;
𝜎 ;
upper bound 𝑢;
lower bound 𝑙 ;
Output: 𝑝𝑜𝑝𝜋 , 𝜎,𝑢, 𝑙

1 if 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 then
2 𝑙 = 𝜎 ;
3 if 𝜎 ≤ 𝑢 × 0.99 then
4 𝜎 = (𝜎 + 𝑢)/2;
5 else
6 𝜎 = 𝜎 × 2;
7 else
8 𝑢 = 𝜎 ;
9 if 𝜎 × 0.99 > 𝑙 then
10 𝜎 = (𝜎 + 𝑙)/2;
11 else
12 𝜎 = 𝜎/2;

13 for 𝜋𝑖 ∈ 𝑝𝑜𝑝𝜋 do
14 if 𝑖 ≠ 𝑒 then
15 𝜃𝑖 ← 𝜃𝑒 + 𝜎 ∗ 𝑥, 𝑥 ∼ 𝑁 (0, 𝐼 );

Algorithm 2: Evaluation with Early Termination Strategy
Input: actor 𝜋 ;
replay buffer 𝑅;
minimal timestep𝑚;
average reward 𝑎𝑣𝑔;
Output: 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠

1 Initialize 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = 0 , empty buffer 𝑄 ;
2 Reset environment and get initial state 𝑠0;
3 while env is not done do
4 Select action 𝑎𝑡 = 𝜋 (𝑠𝑡 |𝜃𝜋 );
5 Execute action 𝑎𝑡 , get reward 𝑟𝑡 and new state 𝑠𝑡+1;
6 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 + 𝑟𝑡 ;
7 Append transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) to 𝑄 ;
8 if 𝑡 > 𝑚 then
9 if 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 < 𝑎𝑣𝑔𝑡 then
10 break; // early termination
11 if 𝑑𝑜𝑛𝑒 then
12 Append 𝑄 to 𝑅;

13 update 𝑎𝑣𝑔;
14 return 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 ;

3.2 Early Termination Strategy
In this section, we propose a novel early termination strategy for
evaluation operation. Due to the inherent randomness of the muta-
tion operator, some new individuals in the population may have

Algorithm 3: AERL
1 Initialize actor 𝜋𝑅𝐿 , population 𝑝𝑜𝑝𝜋 , elitist 𝑒 , 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 , 𝜎 ,

upper bound 𝑢 and lower bound 𝑙 ;
2 while True do
3 𝑓𝑅𝐿 = Evaluation(𝜋𝑅𝐿, 𝑅,𝑚, 𝑎𝑣𝑔) ;
4 if RL agent makes no progress in last K evaluations then
5 Adaptive_Mutation(𝑝𝑜𝑝𝜋 , 𝑒, 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒, 𝜎,𝑢, 𝑙 ) ;
6 for actor 𝜋𝑖 ∈ 𝑝𝑜𝑝𝜋 do
7 𝑓𝑖 = Evaluation(𝜋𝑖 , 𝑅,𝑚, 𝑎𝑣𝑔); // Algorithm 2
8 Update 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 by 𝑓 ;
9 Select elitists 𝑒 by 𝑓 ;

10 if 𝑓𝑅𝐿 >𝑚𝑎𝑥 (𝑓 ) then
11 Copy 𝜋𝑅𝐿 into the population ;
12 Execute gradient update in RL algorithm ;

very poor performance, which can hinder exploration and provide
no benefit to the learning of RL agent. Furthermore, evaluating these
individuals can be a waste of time and resources, as the evaluation
process often requires extensive interactions with the environment
that may be costly or even hazardous in some real-world scenarios.
To address this issue, we terminate the evaluation process of such
individuals prematurely and discard their experiences.

Algorithm 2 provides the pseudo-code of our early termination
strategy. The variable 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 stores the average cumulative re-
ward of each step. The minimal timestep𝑚 is a hyperparameter,
which is used to avoid the influence of randomness in the early
interaction period. We compare the current cumulative reward
to the average cumulative reward when the timestep 𝑡 is larger
than𝑚. If the current value is smaller than the average value, we
terminate the evaluation and discard the experiences in the pre-
vious steps. To store these transitions, we use a temporary replay
buffer 𝑄 . If the interaction is done, the experiences in 𝑄 will be
appended to 𝑅. Furthermore, the variable 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 is updated after
every interaction.

3.3 Complete Algorithm
We integrate our adaptive mutation operator and evaluation strat-
egy with RL algorithms to create a novel algorithm called AERL.
Algorithm 3 presents the pseudo-code of AERL. We utilize EA only
when the RL agent makes no progress in the last K evaluations to
reduce unnecessary evaluations for the population. If the RL agent
achieves a higher score than the best individual in the population,
it will be copied into the population.

The algorithm initializes the population and other variables
in line 1 and then executes the while loop until the number of
timesteps reaches the maximum value. At the start of each itera-
tion, the RL actor is evaluated and a fitness score is returned. Next, if
the RL actor fails to make progress in the last K evaluations, the EA
part will be executed. Specifically, the population will be mutated
using our adaptive mutation operator and evaluated. Additionally,
the value of 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 is updated as described in Section 3.1, and
new elitists are selected based on the fitness values. If the fitness
score of the RL actor is larger than the maximum fitness value in
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the population, the algorithm copies the RL actor into the popula-
tion. Finally, the algorithm executes the gradient update in the RL
algorithm, and the next iteration of the while loop begins.

4 EXPERIMENTAL STUDIES
4.1 Test Problems
To evaluate the effectiveness of our method, we utilize the popular
mujoco simulation environments [4, 28] widely used in RL fields
[7, 14, 23]. Our evaluation focuses on five robot locomotion prob-
lems, namely HalfCheetah, Swimmer, Hopper, Ant, and Walker2d.
The goal of these problems is to apply torque on the robots’ joints
to complete specific locomotion tasks. These environments have
different features and can be used to test specific abilities of al-
gorithms. For example, HalfCheetah is a basic environment for
continuous control, while Ant has a high-dimensional state space
that presents more challenges for learning agents. In Hopper and
Walker2d, episodes are terminated if the agent’s health status dete-
riorates, which may occur due to the selected terrible actions. This
feature increases the difficulty of exploration and may cause the
learning process to halt prematurely. In Swimmer, the reward for
a single step can be deceptive for RL algorithms, leading to poor
performance [3, 13].

Apart from evaluating our method on Mujoco environments, we
also apply it to four classic control problems to test its performance
more fully. These problems include BipedalWalker, LunarLander-
Continuous, MountainCarContinuous, and Pendulum. Compared to
the Mujoco environments, the four classic control problems present
different challenges. In BipedalWalker and LunarLanderContinu-
ous, the agent receives a significant negative reward from the envi-
ronment when it falls or crashes, making exploration more difficult.
Although the state and action dimensions of the MountainCarCon-
tinuous environment are small, the reward in this environment is
sparse, with the agent only receiving a positive reward when it
reaches the top of the hill. Until then, it merely receives negative
rewards as a cost for taking actions, leaving the agent without an
efficient guide.

4.2 Performance Metric
The performance of agents is measured by the average reward over
five episodes without exploration noise. To ensure a fair comparison
between RL algorithms and population-based algorithms, only the
individual with the highest fitness within the population is tested,
and the steps of each individual in the population are accumulated.
In addition, same as ERL and PDERL, the reported results are the
average values from five independent runs with different random
seeds.

4.3 Experimental Setting
To assess the practical efficacy of the proposed algorithm, we con-
duct a comparative analysis against three competitive evolutionary
reinforcement learning algorithms (ERL [13], PDERL [3], ESAC
[26]), as well as two state-of-the-art RL algorithms (TD3 [9] and
PPO [23]).

For a fair comparison with ERL and PDERL, our algorithm is
implemented using DDPG. However, in the HalfCheeetah environ-
ment, the performance of AERL with DDPG does not outperform

TD3. Therefore, to fully demonstrate the advantages of our method,
we also implement AERL with TD3 and report the results for this
environment. All compared algorithms are implemented using their
published implementations. We set the hyperparameters of each
algorithm to the values suggested in the corresponding papers or
to default values in the authors’ implementation. For the number of
steps in experiments, we follow the setting in ERL, using 2 million
steps for HalfCheetah and Swimmer, 4 million for Hopper, 6 million
for Ant, and 8 million for Walker2d.

Most of the hyperparameters of our method are identical to those
in ERL [13]. The specific hyperparameters used in our method are
detailed as follows: we set K to 10, and we set the minimal timesteps
m to 100 for Ant, LunarLanderContinuous and BipedalWalker; 200
for Swimmer; and 50 for other environments. For Hopper and
Walker2d, we do not terminate the evaluation prematurely, as the
interaction ends automatically when the agent becomes unhealthy.
We also do not terminate the evaluation prematurely in Mountain-
CarContinuous and Pendulum, because of the sparse reward and
the short length of the episode, respectively.

4.4 Experimental Results
Figure 2 depicts the learning curves of the compared algorithms in
solving five continuous control problems, with the shaded areas
indicating standard variation of performance. To fully showcase
the advantages of our method, we conduct additional experiments
comparing AERL(TD3) with the original TD3, as demonstrated
in Figure 3(a). Table 1 presents the mean and standard deviation
of final performances in various mujoco test environments. On
HalfCheetah, we report the result of AERL(DDPG) in this table,
while the final result of AERL(TD3) is 12426 ± 131. AERL outper-
forms ERL, PDERL, ESAC, and PPO in all mujoco environments.
AERL(DDPG) outperforms TD3 significantly on Swimmer, Hopper,
and Walker2d and slightly on Ant. Although TD3 performs better
than AERL with DDPG in the HalfCheetah environment, this lim-
itation is due to the used RL algorithm, and we demonstrate that
AERL(TD3) can outperform TD3 in this environment. PPO, on the
other hand, does not perform well on these robot locomotion simu-
lation problems, which may be attributed to its on-policy feature.
Generally, on-policy RL algorithms are less sample efficient than
off-policy RL algorithms [30]. Consequently, it may be challenging
for on-policy RL algorithms to outperform off-policy RL algorithms
when the number of timesteps is equal.

As HalfCheetah is a stable environment, an agent’s performance
changes slightly in different evaluation episodes, and the learning
curves exhibit a steadily increasing trend. Therefore, TD3-based
algorithms exhibit the best performance in this environment as TD3
has higher sample efficiency than DDPG. Our proposed method,
AERL with TD3, outperforms all other compared algorithms in this
environment. Although AERL with DDPG does not perform better
than TD3, it still outperforms other DDPG-based algorithms.

The hybrid algorithms exhibit a clear advantage over RL algo-
rithms on Swimmer, primarily due to the effectiveness of the evo-
lutionary algorithms (EAs) they incorporate. While the Swimmer
benchmark is challenging for RL algorithms to learn, it is rela-
tively easier for EAs and standalone EA can also perform well on
Swimmer [13]. This is likely because EAs rely only on the sum of
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Figure 2: Learning curves on mujoco continuous control benchmarks and classic control problems
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Figure 3: (a) The performance comparison between AERL(TD3) and TD3 on HalfCheetah; (b) The performance comparison
between AERL and its fixed standard variation variants; (c) The variation of 𝜎 in multiple test environments
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Table 1: The mean and standard variation of final performance in mujoco test environments and classic control benchmarks

Mujoco

Environment AERL(DDPG) ERL PDERL ESAC TD3 PPO

HalfCheetah 10834 ± 818 8697 ± 108 10622 ± 221 11611 ± 336 11880 ± 1327 2660 ± 1251
Swimmer 360 ± 8 358 ± 4 347 ± 13 31 ± 2 132 ± 13 122 ± 2
Hopper 3643 ± 68 1850 ± 608 3546 ± 97 3163 ± 463 2900 ± 650 1656 ± 278
Ant 6645 ± 329 4996 ± 1991 6116 ± 1075 4749 ± 1590 6552 ± 419 2872 ± 295

Walker2d 5795 ± 891 1666 ± 835 5425 ± 696 4530 ± 635 5386 ± 227 2822 ± 646

Classical

BipedalWalker 264 ± 57 −25 ± 31 54 ± 107 −83 ± 13 304 ± 9 237 ± 15
LunarLanderContinuous 253 ± 16 194 ± 34 248 ± 17 207 ± 107 273 ± 7 188 ± 24
MountainCarContinuous 97 ± 1 0 ± 0 94 ± 1 95 ± 0 0 ± 0 94 ± 0

Pendulum −130 ± 16 −581 ± 178 −564 ± 103 −142 ± 5 −153 ± 24 −937 ± 156

rewards, disregarding the reward at each step and thus avoiding
the influence of the deceptive single reward in the environment.
Due to the strength of EA on Swimmer, hybrid algorithms have
the best performance in this environment. Although PDERL is also
GA-based, its crossover and mutation operators are based on prop-
agation and the features of its EA component may be relatively
closer to gradient-based methods. In addition, as shown in Fig. 2,
AERL obviously learns faster than ERL, which demonstrates that
the proposed adaptive mutation and early termination strategies
are more efficient than the corresponding approaches employed in
ERL.

The Hopper andWalker2d environments are characterized by in-
stability, leading to significant variations in an agent’s performance
across different evaluation episodes. TD3 shows a clear decline in
its learning curve, making it important to protect excellent indi-
viduals from damage in these two environments. Population-based
methods offer inherent advantages in this regard, as they typically
store good individuals as elitists and directly include them in the
next generation of individuals. As demonstrated in Fig. 2, hybrid
algorithms exhibit greater stability in performance on these bench-
marks. While TD3 shows faster learning in the early stages, our
method catches up and ultimately surpasses its performance in
later stages of learning.

The learning curves of various algorithms compared on four
classic continuous control problems are depicted in Fig. 2 . The
shaded areas indicate the standard variation in performance. Table
1 presents the mean and standard deviation of final performances
across different test problems. Overall, our method achieves supe-
rior results on MountainCarContinuous, Pendulum and LunarLan-
derContinuous. On BipedalWalker, our results are slightly inferior
to TD3. On MountainCarContinuous, the results of ERL and TD3
are zero, which is due to the sparse reward in this environment. If
the agent cannot explore the top of hill to obtain the final positive
reward, the agent will only receive a negative reward as the cost of
action in every step. Therefore, the agent tends to remain stationary
to avoid receiving a negative reward, which results in a cumulative
reward of zero.

4.5 Ablation Experiments
In this section, we conduct ablation experiments to validate the
effectiveness of the proposed adaptive mutation operator and eval-
uation strategy.

First, we compare our method with fixed standard variation vari-
ants and we select the relatively challengingWalker2d environment
to demonstrate the differences between the complete algorithm and
its variants. The fixed 𝜎 values are set from 0.01 to 0.5. As shown
in Fig. 3(b), our method outperforms all its variants with fixed
𝜎 . Besides, the algorithm achieves the second performance when
𝜎 = 0.2, not the largest or smallest value in all trials. This phenom-
enon illustrates that 𝜎 values that are too large or too small are not
beneficial to the optimization of the population. Then, we record
the variation of 𝜎 value caused by our adaptive mutation operator
in multiple environments and plot it in Fig. 3(c). In the early period
of learning, the values of 𝜎 change greatly. As the learning goes
on, the values of 𝜎 show a dropping trend in principle. Besides, the
variation curves of 𝜎 are different in various environments. This
indicates that our method can adaptively control the value of 𝜎 in
different periods and different environments.

Furthermore, we replace our early termination strategy with
a standard evaluation function to enable a comparison with the
original AERL. In this variant algorithm, each individual in the
population undergoes a complete evaluation, and all of their ex-
periences are stored in the replay buffer, which is identical to the
evaluation function in ERL. We record the performance of both
algorithms in five independent runs with different random seeds
and plot the results in Figure 4. As shown in Figure 4, the original
AERL consistently achieves notably better final performance than
the variant that does not use the early termination strategy across
all tested environments. In addition, by discarding irrelevant evalu-
ations and experiences, our method exhibits greater efficiency and
faster learning than its variant.

4.6 The Alternation between Learning and
Evolution

Fig. 5 illustrates the percentage of timestep numbers of both the
RL actor and actor population during the learning process of our
method. In different environments or periods, the interaction step
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Figure 4: The performance comparison between AERL and its variants without early termination strategy

0.0 0.5 1.0 1.5 2.0
Million Steps

0.0

0.5

1.0

Pe
rc

en
ta

ge

RL Actor
Actor Population

(a) HalfCheetah

0.0 0.5 1.0 1.5 2.0
Million Steps

0.0

0.5

1.0

(b) Swimmer

0 1 2 3 4
Million Steps

0.0

0.5

1.0

(c) Hopper

0 2 4 6
Million Steps

0.0

0.5

1.0

(d) Ant

0 2 4 6 8
Million Steps

0.0

0.5

1.0

(e) Walker2d

Figure 5: The timestep number percentage of RL actor and actor population

numbers of the RL actor are varied. This is because the evalu-
ation strategy in our method provides better-performing actors
with greater opportunities to interact with the environment. In
comparison, for ERL and PDERL, the ratio is almost 1 : 𝑁 in all
circumstances, where 𝑁 represents the size of the population.

In the HalfCheetah environment, the percentage of the RL ac-
tor’s values are the highest among all environments. Even in the
final period, the proportion of the RL actor’s timesteps remains at
approximately 50%, indicating that the progress in performance
primarily comes from the RL agent’s learning. Conversely, in the
Swimmer environment, the proportion of the RL actor is approxi-
mately 10% for most of the periods. As discussed in the preceding
section, EAs consistently perform better than RL methods in this
environment; hence, it is reasonable for the percentage of the RL
actor to remain low. In unstable environments such as Hopper
and Walker2d, the RL actor’s performance can vary dramatically,
leading to a relatively lower proportion of the RL actor. In the Ant
environment, even though the percentage value of the RL actor is
lower than that of the actor population, it is still approximately 30%.
This observation demonstrates that the RL actor has more influence
in Ant than in Walker2d or Hopper, which is more similar to the
HalfCheetah environment.

5 CONCLUSIONS
In this paper, we have proposed an adaptive mutation operator and
an early termination strategy for ERLs. The adaptive mutation oper-
ator maintains the strength of mutation within a reasonable range
and does not rely on gradient computation or any computation-
ally complex operations. Instead, it uses the performance of newly
produced individuals, which can be conveniently calculated during
the evaluation process. In addition, the early termination strategy
avoids useless evaluation for poor-performing individuals and dis-
cards their experiences to enhance the learning efficiency of RL

agents. Then, these two improvements are integrated with RL algo-
rithms and form a novel algorithm called AERL. Moreover, several
experiments are conducted to compare the practical performance
of our method with other state-of-the-art algorithms in various
continuous control tasks. The experimental results demonstrate the
effectiveness of our algorithm.

Regarding future work, there is scope for improvement in the
rules of our adaptive mutation operator, as the current rules are
relatively simple. Developing a more fine-grained range of rules
could enhance the performance of our method. Furthermore, our
approach does not currently employ a crossover operator. Thus,
designing a powerful crossover operator within our method is a
possible avenue for future research. Additionally, beyond fitness-
based selection, it may be worthwhile to explore selection methods
that focus more attention on the diversity [5, 20].
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