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ABSTRACT
Existing deep reinforcement learning (DRL) methods for multi-

objective vehicle routing problems (MOVRPs) typically decompose

an MOVRP into subproblems with respective preferences and then

train policies to solve corresponding subproblems. However, such a

paradigm is still less effective in tackling the intricate interactions

among subproblems, thus holding back the quality of the Pareto

solutions. To counteract this limitation, we introduce a collaborative

deep reinforcement learning method. We first propose a preference-

based attention network (PAN) that allows the DRL agents to reason

out solutions to subproblems in parallel, where a shared encoder

learns the instance embedding and a decoder is tailored for each

agent by preference intervention to construct respective solutions.

Then, we design a collaborative active search (CAS) to further

improve the solution quality, which updates only a part of the

decoder parameters per instance during inference. In the CAS

process, we also explicitly foster the interactions of neighboring

DRL agents by imitation learning, empowering them to exchange

insights of elite solutions to similar subproblems. Extensive results

on random and benchmark instances verified the efficacy of PAN

and CAS, which is particularly pronounced on the configurations

(i.e., problem sizes or node distributions) beyond the training ones.

Our code is available at https://github.com/marmotlab/PAN-CAS.
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1 INTRODUCTION
Multi-objective vehicle routing problems (MOVRPs), developed

from single-objective VRPs (SOVRPs), are a class of VRPs character-

ized by a group of conflicting objectives to optimize. MOVRPs

are integral to logistics, traffic management, urban planning,

etc. [17], drawing significant interest from both industry and

academia [51]. While SOVRPs are generally classified as NP-hard,

MOVRPs present even greater complexity, as they aim to identify

Pareto optimal solutions that offer different trade-offs between

conflicting objectives. These solutions are significant as they reflect

varying preferences for disparate criteria (i.e., objectives) and

can be instrumental in decision-making processes to meet the

diverse requirements of clients. However, exactly searching all

Pareto optimal solutions proves to be impractically expensive,

especially when dealing with large problem sizes or numerous

solutions [10, 12]. As more practical alternatives, a variety of

heuristics have been proposed, aimed at seeking a group of

approximate Pareto solutions in manageable time frames. However,

classic heuristics are often manually designed and delicately tuned

to cater to specific MOVRPs [17], presenting a limitation that

hinders the performance and applications to broader VRP variants.

Therefore, automated learning of heuristics in a data-driven manner

is highly desired, which is supposed to attenuate the above defects.

The past few years have witnessed surging research endeavors

aimed at solving VRPs using deep reinforcement learning (DRL).

Following a plethora of studies on SOVRPs [1, 3], deep models

have been adapted and extended for MOVRPs. Typically, these

models scalarize an MOVRP into multiple SOVRPs with respective

preference vectors and then train DRL agents to solve these SOVRPs

to obtain approximate (Pareto) solutions. In early attempts, a neural

architecture such as Pointer Net or Attention Model [20, 42] for

tackling a single objective is repeatedly trained for each SOVRP

with transfer learning, which resulted in high training overhead

and the impracticality of maintaining numerous neural networks.

Recent endeavors have pivoted towards training a single neural

architecture capable of solving all associated SOVRPs, incorporating

an additional sub-network to process preferences and adjust

the neural network to learn tailored policies for each specific

SOVRP. Such a one-to-all training paradigm has shown promising

results empirically, outperforming the earlier one-to-one paradigm

and some traditional heuristics. However, the current one-to-all
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paradigm predominantly relies on simple interventions achieved by

processing preferences through fully connected layers. This could

potentially lead to undesirable proportionality dependency of the

network parameters on preferences [34], thereby holding back the

network capacity to derive more effective policies. Moreover, the

existing DRL methods are struggling to address the interactions

between subproblems, which could significantly enhance the

overall quality of Pareto solutions [52], if properly leveraged.

To overcome the above issues, this paper introduces a collab-

orative deep reinforcement learning method to solve MOVRPs.

Given an MOVRP instance, we decompose (scalarize) it into

subproblems (SOVRPs) with respective preferences, and train DRL

agents to reason out solutions to corresponding SOVRPs. To this

end, we propose a preference-based attention network (PAN) to

parameterize the policies in an encoding-decoding manner. The

encoder in PAN is shared by DRL agents to learn the instance

embedding, and the decoder is tailored for each respective agent

by preference intervention to construct solutions in parallel. In

particular, we project preferences into query, key, and value

matrices in attentions of the decoder, which are added with their

preference-agnostic but trainable counterparts of query, key, and

value. On top of PAN, we also propose a collaborative active

search (CAS) to further improve the quality of Pareto solutions

during inference. CAS fine-tunes the policies of DRL agents per

instance by updating only a subset of the decoder parameters.

Throughout this process, we also explicitly promote the interactions

between neighboring agents addressing similar subproblems with

similar preferences. Each agent is allowed to perceive the respective

solutions of its neighbors for seeking and imitating the most elite

one to its own subproblem. In doing so, the agents are able to

efficiently exchange their insights of elite solutions to similar

subproblems. In summary, this paper contributes to the DRL for

MOVRPs community in the following aspects:

• We propose a collaborative DRL method to solve MOVRPs and

exploit the encoder-decoder structured PAN for training policies

to construct Pareto solutions in parallel.

• We introduce a hybrid intervention to the decoder in the PAN,

leading to both the preference-based and preference-agnostic

parameters in attentions for more effective policies. We also

design CAS to further promote the solution quality, where DRL

agents exchange insights of elite solutions by imitation learning.

• We evaluate the proposed approach on multi-objective traveling

salesman problem (MOTSP) and multi-objective capacitated

vehicle routing problem (MOCVRP). Results on synthetic and

benchmark instances justified the efficacy of PAN and CAS,

where our approach outperformed traditional heuristics and DRL

baselines, especially on the configurations (i.e., problem sizes or

node distributions) that are beyond the training ones.

2 RELATEDWORK
TraditionalHeuristics forMOVRPs. SolvingMOVRPs ismarkedly

more intractable than SOVRPs, such as the NP-hard TSP and

CVRP [12]. The formidable computational complexity associated

with MOVRPs often precludes the practical application of exact

methods, especially in cases involving large problem sizes or a

plethora of (Pareto) solutions [14, 46]. Therefore, the research

focus has largely shifted towards heuristics designed to identify

approximate Pareto solutions within acceptable timeframes [17, 51].

Among them, multi-objective evolutionary algorithms (MOEAs)

have emerged as a prominent strategy, including the dominance-

based MOEAs [8, 9, 37] and decomposition-based MOEAs [11, 18,

52]. However, the design of anMOEA often relies on laborious hand-

engineering, which may impede the algorithmic performance. This

often involves the predefinition of numerous algorithm components

and exhaustive tuning of various reproduction, mutation, and

selection operators, along with their associated hyperparame-

ters [41, 48, 50]. Efforts have been made to attenuate the manual

workload by automating some specific components, but massive

tuning remains a prerequisite to discovering a reasonably good

combination [24, 27, 40]. Furthermore, most heuristics are narrowly

focused, often specialized and optimized for particular MOVRP like

either MOTSP or MOCVRP [5, 13, 29, 32, 35, 39], which limits their

adaptability to other VRP variants.

Deep Models for MOVRPs. Deep learning has demonstrated

notable success in solving SOVRPs, especially the TSP and CVRP [2,

6, 15, 19, 23, 33, 47, 55], with comprehensive reviews available

in [1, 36]. The prevailing approach in this line of literature harnesses

the encoder-decoder structured neural architectures, exemplified

by the models like Pointer Net [42] and Attention Model [20, 21].

Inspired by the works on SOVRPs, there have been endeavors

to adapt deep models for MOVRPs, which utilize these neural

architectures to solve a series of SOVRPs derived from the scalarized

MOVRP. In particular, Wu et al. [45] and Li et al. [25] employ

individual models, trained via RL algorithms, to solve each SOVRP.

They transfer parameters among models for warm starts so as

to improve the training convergence. Similarly, Shao et al. [38]

and Zhang et al. [53] apply Pointer Net and Attention Model to

tackle scalarized SOVRPs, respectively, and optimize the neural

architecture parameters by evolutionary strategies. Zhang et al.

[54] further introduces a meta-DRL procedure to enhance the

knowledge transfer between subproblems. However, it necessitates

considerable effort to fine-tune the meta-model for each SOVRP.

In the methods described above, each SOVRP is associated with

an individually trained or fine-tuned neural network. Such a one-

to-one paradigm often induces high training overhead and requires

additional resources to maintain a set of neural networks. To

mitigate the inconveniences, Lin et al. [28] presents a DRL method

for MOVRPs, which achieves state-of-the-art performance among

deep models and inspires subsequent research [26, 49]. These

methods, characterized by a one-to-many paradigm, incorporate a

sub-network to assimilate preference embeddings. These embed-

dings are then transformed into parameters within the decoder of

Attention Model, giving rise to respective routing policies tailored

for each SOVRP. Nevertheless, the current one-to-many paradigm

solely embeds preferences via simple fully connected networks,

which could potentially lead to inferior parameters in the decoder

and inhibit the learning of more effective policies.

3 PRELIMINARIES
3.1 MOVRP Description
Typically, a VRP instance can be defined on a graph G with the

node setV = {1, 2, · · · , 𝑛}, where each node 𝑖 ∈V is featured by 𝑜𝑖 .

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1957



The solution to a VRP instance is a tour 𝜋 = (𝜋1, 𝜋2, · · · , 𝜋𝑇 ), i.e.,
a node sequence of length 𝑇 , with 𝜋 𝑗 ∈V . A solution 𝜋 is feasible

only if it meets the constraints for the VRP. Accordingly, anMOVRP

with 𝜅 objectives are formally defined as:

min

𝜋∈X
𝐹 (𝜋) = (𝑓1 (𝜋), 𝑓2 (𝜋), · · · , 𝑓𝜅 (𝜋)), (1)

where X comprises all feasible solutions to the MOVRP, and

𝐹 (𝜋) is a 𝜅-dimensional vector that includes 𝜅 objective values

of the solution 𝜋 . Given the conflict, there is no single solution for

achieving optimality for every objective. Instead, Pareto solutions

are often pursued to achieve different trade-offs (i.e., preferences)

among objectives.

Definition 1 (Pareto Dominance). A solution 𝜋 ∈ X dominates

another solution 𝜋 ′ ∈ X (i.e., 𝜋 ≺ 𝜋 ′), if and only if 𝑓𝑖 (𝜋) ≤
𝑓𝑖 (𝜋 ′),∀𝑖 ∈ {1, · · · , 𝜅} and 𝐹 (𝜋) ≠ 𝐹 (𝜋 ′).
Definition 2 (Pareto Optimality). A solution 𝜋∗ ∈ X is Pareto

optimal if it is not dominated by any other solution. Accordingly,

the Pareto set is defined as all Pareto optimal solutions, i.e.,

P =
{
𝜋∗ ∈ X|� 𝜋 ′ ∈ X : 𝜋 ′ ≺ 𝜋

}
. The Pareto front is defined as

images of Pareto optimal solutions in the objective space, i.e.,

F = {𝐹 (𝜋) |𝜋 ∈ P}.
Since solving a SOVRP optimally (e.g., TSP and CVRP) is

already NP-hard, MOVRPs are markedly more intractable with

the aim of attaining Pareto optimal solutions, the quantity of which

often exponentially expands along with the problem size (i.e., the

number of nodes). Therefore, MOEAs are often adopted to compute

approximate Pareto solutions. Among them, the MOEAs based on

decomposition (MOEA/Ds) gain the solutions by solving SOVRPs

decomposed from an MOVRP, which inspires current DRL methods.

3.2 MOEA/D Framework
The vanilla MOEA/D first utilizes decomposition techniques to

scalarize an MOVRP into 𝑁 subproblems (i.e., SOVRPs) with a set

of uniformly distributed preferences 𝜆1, 𝜆2, · · · , 𝜆𝑁 , each of which

satisfies 𝜆𝑖 = (𝜆1𝑖 , · · · , 𝜆
𝜅
𝑖
)⊤, ∀ 𝜆 𝑗

𝑖
≥ 0 and

∑𝜅
𝑗=1 𝜆

𝑗
𝑖
= 1.

3.2.1 Decomposition. In MOEA/Ds, the major decomposition

techniques include weighted-sum, Tchebycheff, and penalty-based

boundary intersection (PBI) approaches [31, 52], respectively.

Weighted-sum Approach. Given an MOVRP, the 𝑖th subproblem

(i.e., SOVRP) is defined with the 𝑖th preference 𝜆𝑖 , such that,

min 𝑔𝑤 (𝜋 |𝜆𝑖 ) =
∑︁𝜅

𝑗=1
𝜆
𝑗
𝑖
𝑓𝑗 (𝜋), 𝜋 ∈ X (2)

Tchebycheff Approach. It minimizes the maximal distance be-

tween objectives and the ideal reference point, such that,

min 𝑔𝑡 (𝜋 |𝜆𝑖 , 𝑧∗) = max

1≤ 𝑗≤𝜅

{
𝜆
𝑗
𝑖
|𝑓𝑗 (𝜋) − 𝑧∗𝑗 |

}
, 𝜋 ∈ X (3)

where 𝑧∗ = (𝑧∗
1
, · · · , 𝑧∗𝜅 )⊤ signifies the ideal reference point with

𝑧∗
𝑗
≤ min

{
𝑓𝑗 (𝜋) |𝜋 ∈ X

}
. Unlike the weighted-sum approach,

which is limited to convex Pareto fronts (PFs), the Tchebycheff

approach is also effective for nonconvex PFs. It also guarantees

that the optimal solution in Eq. (3) under a specific (but unknown)

preference 𝜆𝑖 could be a Pareto optimal solution [7].

Algorithm 1 MOEA/D Procedure

Require: The number of subproblems 𝑁 ; the number of objectives

𝑚; the neighbourhood size 𝑁𝑠 ; the ideal point 𝑧
∗
.

1: Initialize a population of solutions 𝑃 =
{
𝜋1, · · · , 𝜋𝑁

}
, a set of

𝑁 uniform preferences 𝜆1, 𝜆2, · · · , 𝜆𝑁 and their neighborhoods.

Assign the solution 𝜋𝑖 to the preference 𝜆𝑖 , 𝑖 ∈ {1, · · · , 𝑁 }.
2: while not satisfy the stopping criteria do
3: for 𝑖 = 1, · · · , 𝑁 do
4: Randomly select a required number of mating parents

from 𝜆𝑖 ’s neighborhood, denoted as𝜓 𝑖 .

5: Using crossover and mutation operations to reproduce

offspring 𝜋𝑖,𝑐 of 𝜋𝑖 .

6: Update the solutions linked to subproblems within 𝜓 𝑖

using 𝜋𝑖,𝑐 if 𝑔𝑡 (𝜋𝑖,𝑐 |𝜆𝑘 , 𝑧∗) < 𝑔𝑡 (𝜋𝑘 |𝜆𝑘 , 𝑧∗), where 𝜆𝑘 ∈ 𝜓 𝑖
and 𝜋𝑘 is the current solution associated with 𝜆𝑘 .

7: end for
8: end while
9: return Final population.

PBI Approach. This approach formulates the 𝑖th subproblem of

an MOVRP as follows,

min 𝑔𝑝 (𝜋 |𝜆) = 𝑑1 + 𝛼𝑑2
where 𝑑1=

∥ (𝐹 (𝜋 )−𝑧∗ )⊤𝜆∥
∥𝜆∥

𝑑2= ∥𝐹 (𝜋)−(𝑧∗+𝑑1𝜆)∥ , 𝜋 ∈ X
(4)

where 𝛼 > 0 is a preset penalty item and 𝑧∗ is the ideal reference
point as defined in the Tchebycheff approach. The PBI approach

can yield more uniformly distributed PFs than the Tchebycheff

approach, especially in the case of more than two objectives [52].

3.2.2 SOVRP Solving. After the decomposition, the subproblems

(i.e., SOVRP) are solved using evolutionary algorithms. We outline

the typicalMOEA/D procedurewith the Tchebycheff decomposition

in Algorithm 1. In particular, the MOEA/D groups subproblems

according to the Euclidean distances of their associated preferences.

Initially, a population of 𝑁 solutions are generated for correspond-

ing subproblems (line 1). Then, the MOEA/D iteratively evolves

the population. More specifically, given a target subproblem and its

group, another two subproblems in the same group are randomly

selected with their solutions used to reproduce an offspring solution

by genetic operations (lines 4-5). The offspring would replace the

best-so-far solution to each subproblem in the group (including the

target one), if it was more elite for each SOVRP (line 6).

However, evolutionary algorithms often deliver inferior solu-

tions for MOVRPs in practice, which heavily depend on consid-

erable iterations to evolve the population and massive labor to

tune algorithmic components. In this paper, we parameterize DRL

agents by the PAN to automatically learn policies that can efficiently

construct solutions to SOVRPs in parallel. We also propose the CAS

to further improve the performance, in which we realize effective

gradient-based interactions between agents by imitation learning.

4 METHODOLOGY
Given a set of subproblems (i.e., SOVRPs) that are decomposed

from an MOVRP, we aim to train the policies for constructing

solutions to SOVRPs in parallel. In doing so, we can efficiently
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solve a set of SOVRPs with respective preferences, yielding the

approximate Pareto solutions. To this end, we first model the

process of constructing the solution to each SOVRP as a Markov

decision process (MDP). Then, we parameterize the policies by the

preference-based attention network (PAN), which are trained by

DRL algorithm to solve SOVRPs with respective preferences in sync.

During inference, we further propose the collaborative active search

(CAS) to improve the quality of Pareto solutions per instance, which

adopts the PAN to iteratively sample solutions to subproblems and

fine-tunes the policies of DRL agents in a collaborative manner. We

detail our collaborative DRL method in the following sections.

4.1 DRL for Solving Subproblem
Given the SOVRP with a preference 𝜆𝑖 , we construct the solution

following Markov Decision Process (MDP). An agent iteratively
takes the current state as input (e.g., the instance information and

the partially constructed solution), and outputs the probabilities of

nodes to be visited next. The action is a node that is greedily selected
or randomly sampled from the probabilities. The transition dynam-

ics is joining the node to the partial solution. We parameterize the

policy 𝑝 of the agent by a neural network 𝑝𝜃 , so that the probability

of constructing a complete tour 𝜋 to the SOVRP is expressed by

𝑝𝜃 (𝜋 |G) =
∏𝑇
𝑡=1 𝑝𝜃 (𝜋𝑡 |𝜋<𝑡 ,G), where 𝜋𝑡 and 𝜋<𝑡 represent the

selected node and partial solution at the 𝑡-th step. Typically, the re-
ward is defined as the negative value of the scalarized objective, e.g.,

R(𝜋) = −𝑔𝑡 (𝜋 |𝜆𝑖 , 𝑧∗) with Tchebycheff decomposition. The policy

network is commonly trained with REINFORCE [44] algorithm,

which maximizes L(𝜃 |G) = E𝑝𝜃 (𝜋 | G)R(𝜋) by the gradient,

∇𝜃L(𝜃 |G) = E𝑝𝜃 (𝜋 | G) [(R(𝜋) − 𝑏 (G))∇𝜃 log𝑝𝜃 (𝜋 |G)], (5)

where the baseline 𝑏 (·) reduces the gradient variance and stabilizes
the training over solutions to different instances, i.e., 𝜋 ∼ 𝑝𝜃 , G ∈
˜G. There are two paradigms to extend the above DRL to solve

MOVRPs. On the one hand, the methods in one-to-one paradigm

sequentially train individual neural networks to solve SOVRPs with

a predefined set of preferences [25, 54]. However, they generally

suffer from low training efficiency and perform inferior on the

SOVRPs with preferences unseen during training. On the other

hand, the methods in one-to-many paradigm train a single neural

network to solve SOVRP with any preference, which incorporates a

sub-network to transform preferences into parameters in the neural

network, inducing policies tailored for each SOVRP. Following the

latter, we propose the PAN to parameterize the policies for SOVRPs.

In contrast to existing methods, we design a hybrid intervention

strategy to generate both the preference-based and preference-

agnostic parameters for gaining more effective policies.

4.2 Preference-based Attention Network
The PAN consists of an encoder shared by SOVRPs and a decoder

tailored for each SOVRP by the hybrid intervention. The shared

encoder stacks multiple multi-head self-attention layers, which pro-

cesses each MOVRP instance (in parallel) to attain 𝑑ℎ-dimensional

node embeddings 𝜔 =
{
ℎ 𝑗

}𝑛
𝑗=1

, 𝑗 ∈ V . Following existing methods,

we directly exploit the encoder in Attention Model [21], which has

shown decent performance in solving single-objective VRPs.

Preference set

Linear

GELU

Linear Multi-head Attention

Single-head Attention

Mask & Softmax

Tailored Decoder

∆𝜙

𝝀

𝜙!

Probability

𝜔 Shared Encoder

Sub-network

Figure 1: Illustration of the PAN with hybrid intervention.

We attain 𝜔 via a single forward pass through the encoder, and

then employ the decoder to construct solutions to SOVRPs in an

autoregressive manner. Taking MOTSP as an example, the decoder

obtains a context embedding ℎ𝑐 = [ℎ𝜋1 ;ℎ𝜋𝑡−1 ] at each step 𝑡 , where

ℎ𝜋1 , ℎ𝜋𝑡−1 are the first and last selected node in the current partial

solution, and [; ] means the concatenation operation. Then, we

process the context embedding ℎ𝑐 and node embeddings 𝜔 by a

multi-head attention (MHA) layer as follows,

𝑞𝑚𝑐 =𝑊𝑚
𝑄 (𝜆𝑖 )ℎ𝑐 ; 𝑘

𝑚
𝑗 =𝑊𝑚

𝐾 (𝜆𝑖 )ℎ 𝑗 ; 𝑣
𝑚
𝑗 =𝑊𝑚

𝑉 (𝜆𝑖 )ℎ 𝑗 , (6)

𝛿𝑚𝑐 𝑗 =

{
(𝑞𝑚𝑐 )⊤𝑘𝑚𝑗 /

√︁
𝑑𝑘 , if node 𝑗 is valid,

−∞, otherwise

(7)

𝑎𝑚𝑐 =
∑︁

𝑗
𝑢𝑚𝑐 𝑗𝑣

𝑚
𝑗 , 𝑢

𝑚
𝑐 𝑗 = 𝑒

𝛿𝑚
𝑐𝑗 /

∑︁
𝑗 ′
𝑒
𝛿𝑚
𝑐𝑗 ′ 𝑚 = 1, · · · , 𝑀, (8)

𝑓𝑐 =𝑊𝑂 (𝜆𝑖 ) [𝑎1𝑐 ; · · · ;𝑎𝑀𝑐 ], (9)

where Eqs. (6), (7), and (8) formulate the attention computations in

𝑀 heads;𝑊𝑚
𝑄
(𝜆𝑖 ) ∈ 𝑅𝑑𝑘×(2∗𝑑ℎ ) ,𝑊𝑚

𝐾
(𝜆𝑖 ),𝑊𝑚

𝑉
(𝜆𝑖 ), and𝑊𝑂 (𝜆𝑖 ) ∈

𝑅𝑑𝑘×𝑑ℎ with𝑑𝑘 = 𝑑ℎ/𝑀 are trainable parameters, which are derived

from the preference 𝜆𝑖 . Subsequently, we obtain the probabilities

over all valid nodes via a single-head attention layer as follows,

𝜁 𝑗 =

{
𝐶 · tanh(𝑓𝑐⊤ℎ 𝑗/

√︁
𝑑𝑘 ), if node 𝑗 is valid,

−∞, otherwise

(10)

𝑝𝜃 (𝜋𝑡 = 𝑗 |𝜋<𝑡 ,G, 𝜆𝑖 ) = 𝑒𝜁 𝑗 /
∑︁

𝑗 ′
𝑒𝜁 𝑗 ′ , (11)

where 𝐶 = 10 is the clipping value used for better exploration, and

the invalid nodes are masked by the softmax operation in Eq. (11).

Hybrid Intervention. To tailor the decoder for each SOVRP,

we generate parameters 𝜙𝑖 = [𝑊𝑚
𝑄
(𝜆𝑖 ),𝑊𝑚

𝐾
(𝜆𝑖 ),𝑊𝑚

𝑉
(𝜆𝑖 ),𝑊𝑂 (𝜆𝑖 )]

in the MHA layer based on respective preferences 𝝀 = {𝜆𝑖 }𝑁𝑖=1.
However, directly applying a sub-network to transform preferences

into the parameters may introduce a proportionality dependency

of the parameters on preferences, thereby limiting the capacity of

the decoder to learn more effective policies [34].

To mitigate this issue, we propose to employ a sub-network

to yield the additive adjustments to the parameters 𝜙 = {𝜙𝑖 }𝑁𝑖=1,
rather than 𝜙 themselves. As illustrated in Figure 1, we initialize

a set of trainable parameters 𝜙0 = [𝑊𝑚
𝑄0

,𝑊𝑚
𝐾0

,𝑊𝑚
𝑉0
,𝑊𝑂0

], which
are independent of preferences. Then, we apply a multi-layer

perception (MLP) as the sub-network to map the preference set 𝝀 to

the additive adjustments △𝜙 , i.e., △𝜙 = 𝑀𝐿𝑃 (𝝀) with𝝀 ∈ 𝑅𝑁×𝜅 and
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Algorithm 2 Collaborative Active Search

Require: The PAN 𝑝H , number of steps 𝐸, number of subproblems

𝑁 , the neighborhood size 𝑁𝑠 , number of tours 𝐾 .

1: Initialize a set of 𝑁 uniformly distributed preferences 𝝀 =

{𝜆1, · · · , 𝜆𝑁 } and their neighborhoods

{
𝜓 𝑖 , · · · ,𝜓𝑁

}
.

2: Initialize the best-so-far solutions to each subproblem, i.e., 𝜋̃𝑖 =

𝜋𝑖
0
∼SampleTour(𝑝H (·|G𝑠 , 𝜆𝑖 )), ∀𝑖 ∈ {1, · · · , 𝑁 }

3: for 𝑒 = 1 to 𝐸 do
4: Record log-probability of generating 𝜋̃𝑖 in each step.

5: Calculate gradient ∇HL𝐶𝐴𝑆 with 𝜋̃𝑖 , 𝜋𝑖
𝑒−1 by Eq. (15)

6: H ← ADAM(H ,∇HL𝐶𝐴𝑆 )
7: 𝜋𝑖𝑒 ∼SampleTour(𝑝H (·|G𝑠 , 𝜆𝑖 )), ∀𝑖 ∈ {1, · · · , 𝑁 }
8: Evaluate solutions to 𝜓 𝑖 on the 𝑖th subproblem in parallel,

and attain the most elite solution 𝜋𝑖∗, ∀𝑖 ∈ {1, · · · , 𝑁 }
9: Update the best-so-far solution 𝜋̃𝑖 to the 𝑖th subproblemwith

𝜋𝑖∗ if 𝑔𝑡 (𝜋𝑖∗ |𝜆𝑖 ) < 𝑔𝑡 (𝜋̃𝑖 |𝜆𝑖 ), ∀𝑖 ∈ {1, · · · , 𝑁 }
10: end for
11: return {𝜋̃𝑖 }𝑁

𝑖=1
.

△𝜙 ∈ 𝑅𝑁×(5∗𝑑ℎ∗𝑑ℎ ) . After that, we reshape △𝜙 into {△𝜙𝑖 }𝑁𝑖=1 for
SOVRPs, where △𝜙𝑖 = [△𝑊𝑚

𝑄
(𝜆𝑖 ), △𝑊𝑚

𝐾
(𝜆𝑖 ), △𝑊𝑚

𝑉
(𝜆𝑖 ), △𝑊𝑂 (𝜆𝑖 )]

shares the same dimensions as 𝜙𝑖 . Accordingly, the final parameters

𝜙 used in the MHA layer of the decoder is the sum of initial

parameters and additive adjustments, i.e., 𝜙 = {𝜙0 + △𝜙𝑖 }𝑁𝑖=1.
Notably, we generate the parameters for SOVRPs with respective 𝑁

preferences in parallel and ensure that we gain different parameters

to intervene policies of each DRL agent.

Policy Optimization. In each batch during training, we distribute

the parameters derived from different preferences to random

MOVRP instances rather than the same one, enhancing the explo-

ration over both preference and problem spaces. In specific, given a

batch of 𝑁 instance-preference pairs {(G𝑖 , 𝜆𝑖 )}𝑁𝑖=1, we sample tours

(i.e., solutions) {𝜋𝑖 }𝑁
𝑖=1

for the SOVRPs with respective preferences,

and update the PAN with the estimated gradient as below,

∇𝜃,𝜙L(𝜃, 𝜙 |G𝑖 , 𝜆𝑖 ) ≃
1

𝑁

∑︁𝑁

𝑖=1
(R(𝜋𝑖 |G𝑖 , 𝜆𝑖 )

− 𝑏 (G𝑖 , 𝜆𝑖 ))▽𝜃,𝜙 log 𝑝𝜃,𝜙 (𝜋𝑖 |G𝑖 , 𝜆𝑖 ),
(12)

where we use the expected reward as the baseline 𝑏 (·) over random
training samples, i.e., 𝜋𝑖 ∼ 𝑝𝜃,𝜙 , G𝑖 ∈ ˜G, 𝜆𝑖 ∈ ˜𝜆, according to [21].

4.3 Collaborative Active Search
After training, the proposed PAN is able to address multiple sub-

problems in sync without the need of additional search procedures.

While our experiments show it outperforms previous DRL methods,

we further enhance its performance from two considerations. First,

existing DRL methods for MOVRPs do not sufficiently leverage

the collaboration between agents, especially those addressing

similar subproblems. Intuitively, these agents could share valuable

knowledge and assist each other in finding better solutions to

respective subproblems (i.e., Pareto solutions). Second, deep models

often degenerate when tested on configurations (e.g., problem sizes

or node distributions) beyond the training ones, limiting their

applications in diverse scenarios. To mitigate the above issues, we

propose the CAS to search better Pareto solutions per instance.

Given a set of subproblems with {𝜆1, · · · , 𝜆𝑁 }, we define a neigh-
borhood𝜓𝑖 of a subproblem with 𝜆𝑖 as a subset of subproblems with

closest preferences, which are measured by Euclidean distances

between preferences. Then, we fine-tune the PAN on an MOVRP

instance, by iteratively sampling solutions to SOVRPs and updating

(instance-specific) policies of DRL agents. Imitation learning is used

within each neighborhood to further enhance the performance.

Self-Active Search. The active search is proposed in [2] and firstly

used for MOVRPs in [28]. As a simple yet effective gradient-based

search approach, it is focused on adapting a pre-trained model on a

single problem instance. While improving the solution quality, the

vanilla active search is prohibitively time-consuming to train the

whole neural network for each test instance. Instead, we only update

a limited number of parameters in the PANwhile keeping the others

fixed. In doing so, much less gradient-related computation is needed

in comparison to vanilla active search, which could significantly

increase the efficiency of the search process.

Specifically, we initialize a trainable matrixH ∈ 𝑅𝑛×𝑑ℎ with the

values in node embeddings𝜔 ′ = {ℎ′
𝑗
}𝑛
𝑗=1

, 𝑗 ∈ V , which are derived

from the trained encoder in the PAN. During the active search for

a specific instance G𝑠 , we substitute the above matrix to {ℎ 𝑗 }𝑛𝑗=1 in
Eq. (10) to gain the probabilities over nodes, and update it following

the similar estimated gradient displayed in Eq. (12), such that,

∇HL(H |G𝑠 , 𝜆𝑖 ) ≃
1

𝑁

∑︁𝑁

𝑖=1
(R(𝜋𝑖 |G𝑠 , 𝜆𝑖 )

− 𝑏 (G𝑠 , 𝜆𝑖 ))▽H log𝑝H (𝜋𝑖 |G𝑠 , 𝜆𝑖 ),
(13)

where 𝑝H means the PAN with onlyH to be trained; 𝜋𝑖 means the

sampled solution to the 𝑖th subproblem with preference 𝜆𝑖 in the in-

stance G𝑠 , which satisfies 𝑝H (𝜋𝑖 |G𝑠 , 𝜆𝑖 ) = Π𝑇
𝑡=1
𝑝H (𝜋𝑖𝑡 |𝜋𝑖<𝑡 ,G𝑠 , 𝜆𝑖 ).

𝑏 (·) is a baseline with the same definition as in Eq. (12). Please

note that we prevent gradients from flowing backward through

the encoder, and thus avoid considerable computation. Moreover,

the above update is used to fine-tune a small part of PAN, which is

shared by each DRL agent. Therefore the policies of agents to solve

corresponding SOVRPs are swiftly adapted.

Interaction by Imitation Learning. In addition to the above

DRL, where agents update their policies with respective rewards

(R(𝜋𝑖 |G𝑠 , 𝜆𝑖 )), we facilitate interactions among the agents to further

enhance their collaborative performance.Without loss of generality,

we take the neighborhood 𝜓 𝑖 of the subproblem with 𝜆𝑖 as an

example. Specifically, we initialize the best-so-far solution 𝜋̃𝑖 to the

𝑖th subproblem with a solution 𝜋𝑖
0
sampled by the trained PAN. At

each active search step, we foster the agent for the 𝑖th subproblem

to generate the solution 𝜋̃𝑖 by imitation learning, thus adjusting the

output probabilities of PAN towards generating 𝜋̃𝑖 . Accordingly, we

maximize L(H |G𝑠 ) = E𝜆𝑖𝑝H (𝜋̃𝑖 |G𝑠 , 𝜆𝑖 ) in the CAS, by updating

PANwith the log-probability of generating 𝜋̃𝑖 in each step, as below,

∇HL𝐼 (H |G𝑠 , 𝜆𝑖 ) ≃ 1

𝑁

∑𝑁
𝑖=1∇H log𝑝H (𝜋̃𝑖 |G𝑠 , 𝜆𝑖 )

= 1

𝑁

∑𝑁
𝑖=1

∑𝑇
𝑡=1 ∇H log 𝑝H (𝜋̃𝑖𝑡 |𝜋̃𝑖<𝑡 ,G𝑠 , 𝜆𝑖 )

(14)

After update in each step, we sample solutions to all subproblems,

evaluate the solutions to𝜓 𝑖 in parallel on the 𝑖th subproblem, and

attain the most elite solution 𝜋𝑖∗. We replace the best-so-far solution

𝜋̃𝑖 with 𝜋𝑖∗ if the latter is better. We repeat the above process in

each step until the termination. The rationale behind the interaction
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is that the elite solutions to respective subproblems could also be

favorable and informative to their similar neighboring subproblems.

Consequently, the overall gradient used to update the PAN in

the CAS is defined as below,

∇HL𝐶𝐴𝑆 = ∇HL(H |G𝑠 , 𝜆𝑖 ) + 𝜎∇HL𝐼 (H |G𝑠 , 𝜆𝑖 ), (15)

where 𝜎 is a hyperparameter used to balance the exploration by

L and exploitation by L𝐼 . A larger 𝜎 could encourage agents to

be more focused on generating the historical elite solutions in the

neighborhood. We describe the CAS by pseudocode in Algorithm 2.

5 EXPERIMENTS
5.1 Experimental Setting
Problems&Training. We conduct extensive experiments to eval-

uate the effectiveness of the proposed PAN and CAS across

various MOVRPs, i.e., bi-objective TSP (BiTSP), tri-objective TSP

(TriTSP), and bi-objective CVRP (BiCVRP), as did in the existing

works [28, 30, 54]. Regarding the 𝜅-objective TSP, each node 𝑖 is

featured by 𝜅 2D-coordinates, and the 𝜅-th cost between node 𝑖

and 𝑗 is calculated as the Euclidean distance between their 𝜅-th 2D-

coordinates. Regarding BiCVRP, the conflicting objectives are the

minimization of the total tour length and the length of the longest

route, respectively, as per prior works [17, 22]. Following [28],

we use Tchebycheff and PBI approaches to scalarize bi-objective

VRPs (i.e., BiTSP and BiVRP) and tri-objective VRPs (i.e., TriTSP),

respectively. During training, we utilize consistent hyperparameters

across all problems throughout our experiments. Specifically, we

train the PAN for each problemwith the problem size defined by the

number of customer nodes (i.e., 50 and 100). We generate 100,000

instances on the fly in each epoch. The 2D coordinates and demands

(in BiCVRP instances) are uniformly sampled from the range [0, 1]2
and the discrete set {1, . . . , 9}, respectively. We set the batch size to

64, and train the PAN with 200 epochs using the Adam optimizer.

The learning rate is set to 10
−4

with a decay rate 10
−6
.

Baselines.We compare our trained PAN models with typical estab-

lished optimization algorithms for MOVRPs, encompassing both

conventional MOEAs and recent deep models for MOVRPs. Specifi-

cally, the baselines in the comparison include: 1) MOEA/D [52], a

classic decomposition-based MOEA executed with 4,000 iterations;

2) NSGA-II [9], a representative Pareto dominance-based multi-

objective genetic algorithm implemented with 4,000 iterations;

3) MOGLS [16], a multi-objective genetic local search algorithm

executed with 10,000 iterations and 100 local search steps in each

iteration; 4) NSGA-III [4], an extension of NSGA-II by introducing

reference direction, which is implemented with 4,000 iterations; 5)

DRL-MOA [25], a DRL approach that decomposes an MOVRP into

SOVRPs under different preferences and trains individual solving

policies with the parameter transfer scheme; 6) ML-DAM [54],

an approach that fine-tunes a meta-model to obtain individual

models for solving respective SOVRPs; 7) PMOCO [28], a deep

model that solves SOVRPswith the preference-based hypernetwork,

which achieves state-of-the-art performance in solving MOTSP and

MOCVRP among existing deep models. We train DRL-MOA and

PMOCO following their original training settings. For ML-DAM,

we set the number of iterations to 5,000 for BiCVRP50 and 1,000 for

BiCVRP100, ensuring similar training overhead among deepmodels.

The rest is the same as those in the original paper [54]. Regarding

MOEAs, we apply 2-opt and problem-specific local operators for

solving MOTSPs and BiCVRP, respectively, following the work [22].

Hyperparameters of Active Search.We use the Adam optimizer

for both our CAS and the vanilla active search (used in PMOCO).

Regarding CAS, we set the learning rate to 0.0041 with a decay rate

of 10
−6
, and set the indicator 𝜎 to 0.013 for balancing exploration

and exploitation. Regarding the vanilla active search, we choose

a learning rate of 2.6e-5 with a decay rate of 10
−6

for its best

performance. For the termination condition, we set 200 iterations

for both CAS and the vanilla active search, according to [15].

Metrics&Inference. As mentioned above, the trained PAN can be

evaluated in two modes, i.e., the direct test and CAS. Correspond-

ingly, PMOCO can also be directly tested and equipped with the

vanilla active search as used in its original paper [28]. For the direct

test, we implement two versions for PAN and PMOCO, i.e., with

and without instance augmentation. The instance augmentation

is often used in the literature to generate multiple solutions to

symmetric transformations of an instance. To ensure reasonable

inference time, we use 8 transformations for the direct test on

BiVRP and 64 transformations for the direct test on BiTSP and

TriTSP in PAN and PMOCO, respectively. Regarding PAN with CAS

and PMOCO with vanilla active search, we use 8 transformations

to solve all problems. We assess all methods using three metrics:

average hypervolume (HV) [43], average gap, and total runtime per

instance set. Among them, HV serves as a widely used metric in

multi-objective optimization to reflect both the convergence and

diversity of Pareto solutions. To keep uniformity in experiments, we

normalize HV values to the range of [0, 1] using the same reference

point for all methods, so that higher HV values indicate better

performance. The gap is defined as the ratio of the hypervolume

difference relative to the best HV among all methods. We denote the

best average HV and gap among all methods by bold throughout

the paper. PAN and baseline methods are implemented in Python

on a device with RTX A100 GPU and Intel Xeon Gold 6226R CPU.

5.2 Comparison Study
We compare our PAN and CASwith the baselines on BiTSP, BiCVRP,

and TriTSP across four sizes (i.e., 50, 100, 150, and 200). Deep models

(i.e., DRL-MOA, ML-DAM, PMOCO, and PAN) trained on size 50 are

evaluated on identical-sized instances, while those trained on size

100 are tested across sizes 100 to 200. Notably, DRL-MOA and ML-

DAM train individual models for bi/tri-objective VRPs with 101 and

105 uniformly distributed preferences, respectively. For fairness,

we apply the same preference sets to other decomposition-based

methods (i.e., MOEA/D, PMOCO, and PAN) during the test.

We summarize the results in Table 1, where we append "(Aug=X)"

to PMOCO or PAN signifying the usage of instance augmentation

with the indicated number of transformations. It is clear that

without instance augmentation and active search (AS), the trained

PAN outperforms all baselines across most instance sets, except

for a slight loss to PMOCO on BiTSP50. Especially on BiCVRP100,

BiCVRP150, and BiCVRP200, we observe the PAN significantly

surpasses the other DRL methods (i.e., DRL-MOA, ML-DAM, and

PMOCO)with over 10% smaller gaps. It also indicates the fairly good

zero-shot generalization of PAN on problem sizes 150 and 200. On
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Table 1: Results on MOVRPs with different problem sizes. Left: Test on 200 instances. Right: Generalization on 20 instances.

BiTSP50 BiTSP100 BiTSP150 BiTSP200

Methods HV Gap Time HV Gap Time HV Gap Time HV Gap Time

MOEA/D 0.552 4.31% 25.83h 0.589 13.28% 39.65h 0.582 19.97% 5.28h 0.574 23.87% 6.71h

NSGA-II 0.561 2.87% 18.11h 0.580 14.58% 32.13h 0.546 24.85% 4.94h 0.509 32.55% 6.27h

MOGLS 0.521 9.71% 13.20h 0.558 17.90% 34.40h 0.564 22.45% 9.79h 0.492 34.72% 14.91h

NSGA-III 0.522 9.62% 18.57h 0.565 16.88% 33.95h 0.536 26.27% 4.94h 0.562 25.48% 6.57h

DRL-MOA 0.491 15.02% 6.03s 0.605 10.95% 12.06s 0.657 9.58% 7.41s 0.686 9.05% 8.51s

ML-DAM 0.554 3.98% 6.43s 0.638 6.14% 9.93s 0.684 5.83% 10.48s 0.712 5.57% 15.27s

PMOCO 0.567 1.84% 12.67s 0.664 2.24% 39.79s 0.710 2.34% 15.90s 0.736 2.51% 29.94s

PMOCO(Aug=64) 0.573 0.81% 8.60m 0.670 1.38% 38.42m 0.714 1.69% 12.80m 0.740 1.92% 26.31m

PMOCO(AS, Aug=8) 0.576 0.19% 5.93h 0.677 0.41% 23.37h 0.723 0.45% 30.51h 0.752 0.34% 39.89h

PAN 0.566 1.89% 12.22s 0.666 1.94% 43.31s 0.713 1.90% 16.22s 0.740 1.92% 28.80s

PAN(Aug=64) 0.574 0.64% 9.14m 0.672 1.09% 39.19m 0.718 1.17% 12.11m 0.745 1.30% 24.99m

PAN(CAS, Aug=8) 0.577 0.00% 2.20h 0.680 0.00% 10.69h 0.727 0.00% 2.76h 0.754 0.00% 4.44h

BiCVRP50 BiCVRP100 BiCVRP150 BiCVRP200

Methods HV Gap Time HV Gap Time HV Gap Time HV Gap Time

MOEA/D 0.277 1.74% 44.26h 0.253 6.41% 75.26h 0.242 18.10% 10.77h 0.183 35.48% 13.92h

NSGA-II 0.278 1.47% 38.07h 0.237 12.30% 70.29h 0.222 24.79% 10.86h 0.183 35.38% 14.22h

MOGLS 0.272 3.38% 50.15h 0.240 10.97% 92.74h 0.243 17.45% 13.46h 0.229 19.08% 19.48h

NSGA-III 0.278 1.54% 36.48h 0.238 11.92% 73.96h 0.227 22.95% 10.95h 0.180 36.41% 14.43h

DRL-MOA 0.247 12.34% 10.26s 0.238 11.82% 25.55s 0.263 10.85% 20.24s 0.253 10.81% 28.92s

ML-DAM 0.237 15.82% 6.79s 0.207 23.42% 12.29s 0.230 22.14% 13.26s 0.232 18.11% 16.57s

PMOCO 0.278 1.56% 13.59s 0.221 18.16% 48.56s 0.235 20.48% 19.74s 0.218 23.13% 36.36s

PMOCO(Aug=8) 0.280 0.71% 1.37m 0.235 12.94% 5.95m 0.250 15.09% 1.93s 0.235 16.95% 3.95m

PMOCO(AS, Aug=8) 0.282 0.14% 6.93h 0.269 0.30% 23.08h 0.293 0.71% 38.74h 0.283 0.11% 50.13h

PAN 0.278 1.31% 14.25s 0.266 1.41% 51.32s 0.288 2.51% 19.80s 0.275 3.04% 35.65s

PAN(Aug=8) 0.280 0.60% 1.43m 0.268 0.74% 6.20m 0.290 1.63% 1.92m 0.275 2.93% 4.25m

PAN(CAS, Aug=8) 0.282 0.00% 3.37h 0.270 0.00% 11.35h 0.295 0.00% 5.28h 0.283 0.00% 8.37h

TriTSP50 TriTSP100 TriTSP150 TriTSP200

Methods HV Gap Time HV Gap Time HV Gap Time HV Gap Time

MOEA/D 0.184 48.30% 29.28h 0.230 49.77% 43.33h 0.252 50.63% 5.60h 0.264 51.34% 7.04h

NSGA-II 0.173 51.36% 18.29h 0.155 66.11% 35.06h 0.134 73.74% 5.00h 0.114 78.94% 6.42h

MOGLS 0.292 17.77% 29.45h 0.324 29.42% 75.09h 0.327 35.93% 14.02h 0.325 40.08% 21.45h

NSGA-III 0.255 28.27% 20.73h 0.258 43.76% 34.90h 0.234 54.13% 5.25h 0.207 61.79% 7.11h

DRL-MOA 0.237 33.40% 8.71s 0.354 22.80% 14.25s 0.407 20.40% 8.45s 0.442 18.59% 10.57s

ML-DAM 0.284 20.20% 5.98s 0.337 26.47% 10.84s 0.383 25.02% 13.70s 0.414 23.79% 17.74s

PMOCO 0.341 4.19% 11.82s 0.439 4.25% 41.41s 0.491 3.97% 16.83s 0.523 3.67% 29.97s

PMOCO(Aug=64) 0.349 1.91% 9.48m 0.447 2.55% 39.75m 0.497 2.68% 13.15m 0.529 2.60% 26.46m

PMOCO(AS, Aug=8) 0.352 0.93% 6.54h 0.455 0.92% 23.88h 0.507 0.72% 31.74h 0.543 0.00% 41.38h

PAN 0.342 3.74% 12.28s 0.442 3.66% 42.09s 0.493 3.50% 16.92s 0.524 3.39% 29.83s

PAN(Aug=64) 0.350 1.55% 9.47m 0.449 2.11% 40.69m 0.500 2.21% 12.58m 0.530 2.30% 25.93m

PAN(CAS, Aug=8) 0.355 0.00% 2.18h 0.459 0.00% 8.53h 0.511 0.00% 2.71h 0.542 0.15% 4.61h

the other hand, the performance of PAN is further elevated by the

use of instance augmentation and CAS. In particular, PAN(Aug=64)

is superior to PMOCO(Aug=64) with similar runtime across all

instance sets. PAN(CAS, Aug=8) attains the best results across all

instance sets except for TriTSP200, where it is narrowly edged

out by PMOCO(AS, Aug=8). In terms of computational efficiency,

conventional heuristics consume significantly more runtime than

deep models, with their inferiority turning more apparent as the

problem size grows. PAN and PMOCO take comparable runtime,

which is a little longer than that of DRL-MOA and ML-DAM. On

the other hand, the proposed CAS consumes extra inference time

on top of the PAN to deliver much better solutions. Notably, the

PAN with the CAS remains more efficient than PMOCO with the

vanilla active search, as well as conventional heuristics.

5.3 Benchmark Study
To further verify the effectiveness of the PAN and CAS, we compare

them with the baselines on 8 benchmark instances for MOTSP,

including 7 instances of BiTSP100 (i.e., KroAB100, KroAC100,

KroAD100, KroBC100, KroBD100, KroCD100, and ClusAB100) and 1

instance of BiTSP150 (i.e., KroAB150). These instances are generated

according to [29] and commonly used in the literature [25, 28, 54].

All results are shown in Table 2, where we report the results of

exact Pareto fronts that are obtained by prohibitively exhaustive

search in [12]. We mark the best results except the exact solutions

in bold. As shown, when the instance augmentation is not used,

PAN achieves significantly smaller HV and gap than the other

baselines. PAN(Aug=64) with instance augmentation further pro-

motes the performance of PAN and outperforms PMOCO(Aug=64).

In addition, PAN(CAS, Aug=8) outperforms PMOCO(AS, Aug=8)

across all instances, with less than 0.5% and 1% optimality gap

for BiTSP100 and BiTSP150, respectively. Notably, the runtime of

PAN(CAS, Aug=8) is about 20 times less than that of PMOCO(AS,

Aug=8) across all instances. Since the node distributions in the

benchmark instances differ considerably from the distribution in

training, the results manifest that the PAN has a strong out-of-

distribution generalization capability and the CAS can further

enhance the performance remarkably.

5.4 Ablation Study
Preference-agnostic Parameters. We verify the effect of the pro-

posed preference-agnostic parameters in the hybrid intervention.

In specific, we remove these parameters from PAN, resulting in

a model termed PAN w/o PAP. We compare it with the original
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Table 2: Results on benchmark instances.

KroAB100 KroAC100 KroAD100 KroBC100

Method HV Gap Time HV Gap Time HV Gap Time HV Gap Time

Exact Pareto front 0.782 0.00% 58h 0.783 0.00% 30h 0.785 0.00% 21h 0.784 0.00% 28h

MOEA/D 0.703 10.10% 7.72m 0.693 11.57% 7.72m 0.701 10.76 % 7.72m 0.699 10.77% 7.72m

NSGA-II 0.696 10.98% 6.52m 0.680 13.15% 6.52m 0.692 11.80% 6.52m 0.707 9.85% 6.52m

MOGLS 0.684 12.48% 10.50m 0.687 12.24% 10.50m 0.686 12.66% 10.50m 0.687 12.36% 10.58m

NSGA-III 0.681 12.89% 9.17m 0.655 16.37% 9.08m 0.681 13.27% 9.08m 0.675 13.82% 9.10m

DRL-MOA 0.560 28.34% 3.95s 0.585 25.32% 3.62s 0.586 25.38% 3.63s 0.612 21.88% 3.6s

ML-DAM 0.739 5.49% 6.52s 0.746 4.81% 6.23s 0.734 6.54% 6.17s 0.733 6.47% 6.28s

PMOCO 0.759 2.84% 3.84s 0.760 2.92% 3.43s 0.764 2.65% 3.51s 0.762 2.83% 3.62s

PMOCO(Aug=64) 0.767 1.89% 13.45s 0.768 1.99% 13.08s 0.771 1.73% 13.08s 0.768 1.99% 13.08s

PMOCO(AS, Aug=8) 0.776 0.72% 38.21m 0.777 0.75% 36.92m 0.780 0.70% 36.95m 0.778 0.69% 38.65m

PAN 0.766 1.97% 0.58s 0.766 2.20% 0.29s 0.768 2.14% 0.24s 0.766 2.33% 0.20s

PAN(Aug=64) 0.771 1.37% 12.22s 0.772 1.47% 11.88s 0.774 1.39% 11.91s 0.773 1.44% 11.9s

PAN(CAS, Aug=8) 0.778 0.40% 1.8m 0.780 0.38% 1.78m 0.782 0.34% 1.78m 0.781 0.38% 1.78m

KroBD100 KroCD100 ClusAB100 kroAB150

Method HV Gap Time HV Gap Time HV Gap Time HV Gap Time

Exact Pareto front 0.781 0.00% 23h 0.791 0.00% 21h 0.78 0.00% 27h 0.728 0.00% days

MOEA/D 0.703 9.98% 7.72m 0.704 11.02% 7.72m 0.707 9.30% 10.78m 0.589 19.12% 10.25m

NSGA-II 0.696 10.88% 6.52m 0.704 11.05% 6.52m 0.689 11.68% 8.98m 0.532 26.95% 9.32m

MOGLS 0.689 11.84% 10.40m 0.693 12.42% 10.27m 0.689 11.62% 11.02m 0.549 24.61% 18.03m

NSGA-III 0.667 14.61% 9.08m 0.689 12.89% 9.07m 0.688 11.74% 9.18m 0.536 26.36% 13.35m

DRL-MOA 0.605 22.61% 3.6s 0.586 25.90% 3.6s 0.710 8.99% 3.96s 0.651 10.49% 5.69s

ML-DAM 0.742 5.03% 6.28s 0.751 5.07% 6.27s 0.740 5.14% 7.28s 0.685 5.94% 9.71s

PMOCO 0.760 2.66% 3.42s 0.768 2.94% 3.53s 0.755 3.19% 3.87s 0.703 3.35% 5.64s

PMOCO(Aug=64) 0.767 1.86% 13.07s 0.777 1.86% 13.07s 0.763 2.17% 14.19s 0.709 2.56% 39.52s

PMOCO(AS, Aug=8) 0.775 0.74% 37.89m 0.786 0.67% 37.98m 0.773 0.95% 37.55m 0.719 1.24% 1.06h

PAN 0.764 2.19% 0.21s 0.774 2.17% 0.20s 0.760 2.58% 0.63s 0.708 2.78% 0.97s

PAN(Aug=64) 0.771 1.36% 11.98s 0.780 1.47% 12.11s 0.766 1.77% 12.12s 0.712 2.12% 36.82s

PAN(CAS, Aug=8) 0.779 0.32% 1.78m 0.788 0.37% 1.78m 0.777 0.44% 1.79m 0.722 0.81% 8.24m
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Figure 2: Ablation study. Left: Effect of preference-agnostic parameters. Right: Effects of neighborhood and imitation learning.

PAN on BiTSP50, BiTSP100, BiTSP150, and BiTSP200 by recording

their gaps with respect to the best results in Table 1. As shown

in the left part of Figure 2, the absence of preference-agnostic

parameters leads to a consistent degradation in the performance of

PAN, which is particularly evident as the problem size increases.

Therefore, our design of the preference-agnostic parameters shows

more effectiveness upon the preference-based intervention.

Components of CAS.We further explore the impact of important

components in the CAS, including the neighborhood definition

and the interaction by imitation learning. We ablate their effects

on the performance by gradually removing them from CAS. We

first remove the usage of neighborhood from CAS, resulting in

the variant denoted by CAS w/o Neighbor, and then remove the

imitation learning from CAS w/o Neighbor, resulting in the variant

denoted by CAS w/o IL. We compare them with the original CAS

on BiTSP50, BiTSP100, BiTSP150, and BiTSP200, and visualize their

HV gaps relative to the original CAS in the right part of Figure 2.

We observe that the performance of the original CAS significantly

degrades when any of the components is removed, which reveals

the effectiveness of these key designs in our CAS.

6 CONCLUSION
In this paper, we propose a novel collaborative deep reinforcement

learning method for solving MOVRPs. We first decompose an

MOVRP into a set of SOVRPs with respective preferences and

develop the PAN to learn policies for solving the SOVRPs in parallel.

Especially, we design a hybrid intervention in the decoder of PAN

to tailor policies for the DRL agents. Then, we propose the CAS to

further elevate solution quality, which enables agents to exchange

insights of elite solutions by imitation learning. Extensive results

show the superiority of our method, especially in solving instances

beyond training configurations. In the future, we plan to extend our

method to solve more general combinatorial optimization problems,

e.g., multi-objective job scheduling and network design problems.
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