
Successively Pruned Q-Learning: Using Self Q-function to Reduce
the Overestimation

Zhaolin Xue
Fudan University
Shanghai, China

21210860021@m.fudan.edu.cn

Lihua Zhang
Fudan University
Shanghai, China

lihuazhang@fudan.edu.cn

Zhiyan Dong ∗
Fudan University
Shanghai, China

dongzhiyan@fudan.edu.cn

ABSTRACT
It’s well-known that the Q-learning algorithm suffers the overes-
timation owing to using the maximum state-action value as an
approximation of the maximum expected state-action value. Dou-
ble Q-learning and other algorithms have been proposed as efficient
solutions to alleviate the overestimation. However, these proposed
methods intend to utilize multiple Q-functions to reduce the over-
estimation and ignore the information of single Q-function. In this
paper, 1) we reinterpret the update process of Q-learning, build a
more precise model compatible with previous model. 2) We pro-
pose a novel and simple method to control the maximum bias by
employing the information of single Q-function. 3) Our method not
only balances between the overestimation and the underestimation,
but also attains the minimum bias under proper hyper-parameters.
4) Moreover, it can be naturally generalized to the discrete control
domain and continuous control tasks. We reveal that our algorithms
outperform Double DQN and other algorithms on some represen-
tative games and some classical off-policy actor-critic algorithms
can also gain benefits from our method.

KEYWORDS
Q-learning; Double Q-learning; Overestimation; DQN; DDPG; TD3;
SAC
ACM Reference Format:
Zhaolin Xue, Lihua Zhang, and Zhiyan Dong ∗. 2024. Successively Pruned
Q-Learning: Using Self Q-function to Reduce the Overestimation. In Proc.
of the 23rd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS,
9 pages.

1 INTRODUCTION
Markovian decision problem is a mathematical model of tempo-
ral credit assignment problems and usually studied in stochastic
control theory [2]. Reinforcement Learning (RL) aims at learning
how to map situations to actions as to maximize a cumulative
reward [33]. One of the most popular model-free algorithms for
optimally solving the above problem is the Q-learning algorithm
introduced by [38]. Q-learning has been proven that can converge
to optimal value in tabular setting no matter in discounted case
or non-discounted case [16, 38]. Moreover, Q-learning can be ex-
tended to the deep neural network model which can directly map

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

high-dimensional inputs to estimated state-action value [23]. The
rapid development of Q-learning has accelerated the deployment
on practical RL problems such as navigation [25] and control [40].

However in practice, the performance of Q-learning can be
poor in stochastic MDPs due to the positive bias against the true
value. To mitigate the problem, Thrun et al. [34] analysed that
𝐸{max

𝑖
𝑄 (𝑠, 𝑎𝑖)} ≥ max

𝑖
𝐸{𝑄 (𝑠, 𝑎𝑖)} (𝑖 ∈ [1, 𝑀]) and based on that,

Hasselt et al. [15] proposed an alternative approach called the dou-
ble estimator dividing the process of choosing approximated maxi-
mum expected value estimation into two stages: action section stage
and state-action value estimation stage. Besides, other algorithms
are presented to utilize multiple Q-functions to accurately estimate
Q value such as [13, 19, 20, 24, 27, 37, 41]. Although multiple Q-
functions indeed improve the accuracy, splitting up all samples
into multiple sets causes the waste of resources and slows the con-
vergence speed. Based on that, we wonder whether the previous
values can be utilized to solve the overestimation and improve the
convergence speed and value. Hence, in this paper, we will discuss
how to use previous values to mitigate the overestimation in the
following sections. In Section 2, we introduce the basic background
of our method. In Section 3, we analyse the maximization bias of
Q-learning from two perspectives containing maximum expected
value estimation and averaged maximum expected value estima-
tion. In Section 4, we propose a novel but simple algorithm called
successively pruned q-learning which can solve the overestimation
bias and we demonstrate that our method can achieve minimum
bias under appropriate parameters and convergence to the optimal
value theoretically. In Section 5, successively pruned q-learning al-
gorithm is extended to deep neural network domain. In Section 6,
successively pruned q-learning and its generalization of off-policy
algorithms are examined on several experiments and the results
are shown through figures and tables. In Section 7, we conclude
this paper and propose future directions. In this paper, the main
contributions we make are as follows:

• We construct a serial model including the error against the
iteration time 𝑛 and the common error shared by all state-
action Q values.
• Based on the proposed model, we present a simple but effec-
tive method named successively pruned q-learning to balance
between the overestimation and the underestimation and
we demonstrate that under proper hyper-parameters, this
method can attain the minimum bias against the true value.
• This method is triumphantly stretched to deep neural net-
work domain [23]. Successively pruned DQN presented still
appears the superiority over other algorithms and some
classical off-policy actor-critic algorithms with successively
pruned tool outperform original algorithms.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1984

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Related Work. A growing number of algorithms are inspired to
promote the Q-learning algorithm in various aspects such as conver-
gence speed and value estimation. Fitted Q-iteration [12], Delayed
Q-learning [31] and Speedy Q-learning [4] have been proposed to
accelerate convergence speed of the Q-learning algorithm. As for
the value estimation, many algorithms tend to reduce the variance
and the expected value of maximization bias. Averaged-DQN [1],
TD3 [13] and TQC [19] have mitigated the instability and vari-
ability of Deep Reinforcement Learning (DRL) algorithms. Some
algorithms aim at alleviating the expected value of maximization
bias under specific assumptions like the Gaussian approximation
[9, 11]. Others concentrate on balancing between the overestima-
tion and the underestimation such as [21, 41, 42]. Zhang et al. [41]
propose to weight Q-learning and Double Q-learning to realize
the balance and Zhu et al. [42] present a self-correcting q-learning
method to weight 𝑄𝑛−1 and 𝑄𝑛 . In contrast with our method, self-
correcting q-learning omits the construction of 𝑄𝑛−1, generating
serious underestimation and fails to be extended to the continuous
control domain. Several algorithms continue to study the properties
of double q-learning like [7, 17, 27, 39]. Chen et al. [7] also use two
critic 𝑄-functions but decorrelate these two value functions to fur-
ther reduce the overestimation. Weng et al. [39] formulate Double
Q-learning and Q-learning as instances of Linear Stochastic Ap-
proximation (LSA) by a linearization technique in [10]. Jiang et al.
[17] devise an action candidate method based on the clipped double
estimator [13] to approximate the maximum expected value. Ren
et al. [27] reveal that underestimation bias may leads to multiple
non-optimal fixed points under an approximate Bellman operator.

Besides, ensemble methods [20, 24, 37] tackle this problem by
diminishing the MSE of the next state-action value. Maxmin Q-
learning [20] utilizes multiple 𝑄-functions to approximate the true
value. Peer et al. [24] demonstrate that the mean-squared-error
(MSE) of estimation can be reduced through the ensemble estimator.
Adaptive Ensemble Q-learning [37] leverages Model Identification
Adaptive Control (MIAC) [3] to control the ensemble size. Neverthe-
less, as we known, these aforementionedmethods neglect to analyse
the relation between 𝑄𝑛 and {𝑄𝑛−1, 𝑄𝑛−2, 𝑄𝑛−3 . . .}. Therefore, in
the following sections, we supplement the theoretical research and
experimental study.

2 MARKOV DECISION PROCESS
Markov decision process (MDP) is the problem that an agent acts
in a stochastic environment by sequentially choosing actions over
a sequence of time steps to maximize a cumulative reward. Usually,
the MDP framework consists of a five-tuple model (𝑆,𝐴, 𝑃, 𝑅,𝛾)
and a policy 𝜋 , where 𝑆 is a finite set of states, 𝐴 is a finite set of
actions, 𝑃 is a state transition distribution where 𝑃𝑠𝑠′ (𝑎𝑖) represents
the probability distribution of transitioning from state 𝑠 to state
𝑠′ (next state) after executing action 𝑎𝑖 (𝑖 denotes the index of 𝑎,
𝑖 ∈ [1, 𝑀], 𝑎𝑖 ∈ 𝐴 and𝑀 represents the number of 𝐴), 𝑅 is a reward
function and the agent gains a reward when the agent transitions
from state 𝑠 to state 𝑠′ after executing action 𝑎𝑖 , and 𝛾 ∈ [0, 1) is a
discount factor balancing between instant and future rewards. The
policy 𝜋 is a mapping from state 𝑠 to action 𝑎𝑖 .

We define a value function which is the expected sum of dis-
counted rewards beginning in state 𝑠 and executing policy 𝜋 :

𝑉𝜋 (𝑠) = 𝐸
{ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝜋 (𝑠𝑡)) |𝑠0 = 𝑠
}

(1)

The relation between the optimal state value and the optimal state-
action value can be shown:

𝑉 ∗ (𝑠) = max
𝑖
𝑄∗ (𝑠, 𝑎𝑖)

𝑄∗ (𝑠, 𝑎𝑖) = 𝑅(𝑠, 𝑎𝑖) + 𝛾
∑︁
𝑠′∈𝑆

𝑃𝑠𝑠′ (𝑎𝑖)max
𝑖′

𝑄∗ (𝑠′, 𝑎𝑖′)
(2)

Among the equation, 𝑖′ ∈ [1, 𝑀], 𝑅(𝑠, 𝑎𝑖) =
∑
𝑠′∈𝑆

𝑃𝑠𝑠′ (𝑎𝑖)𝑅(𝑠, 𝑠′, 𝑎𝑖)

and the optimal state-action function accords with Bellman’s equa-
tion. To find out the optimal value, the Q-learning algorithm is
proposed to estimate the optimal state-action value [38].

3 ANALYSIS OF MAXIMIZATION BIAS
In this section, we analyse the phenomenon of maximization bias
in Q-learning from two perspectives. The first perspective is to es-
timate the maximum expected value estimation and almost all cur-
rent algorithms aim to find an approximation for 𝐸{max

𝑖
𝑄 (𝑠, 𝑎𝑖)}.

Besides, we propose a novel perspective concerning averaged max-
imum expected value to estimate the maximization bias. In this
perspective, we decompose 𝑄𝑛+1 to all successive values to reveal
the cumulative error during the update process.

3.1 Maximum expected value estimation
Suppose that an agent can execute𝑀 actions and then there are a set
of𝑀 random variables {𝑄 (𝑠, 𝑎1), . . . , 𝑄 (𝑠, 𝑎𝑀)}. The goal is to find
the max

𝑖
𝐸{𝑄 (𝑠, 𝑎𝑖)} without any assumptions on underlying distri-

butions. Q-learning uses 𝐸{max
𝑖
𝑄 (𝑠, 𝑎𝑖)} to approximately replace

the maximum expected value estimation. However, this method
is positively biased since 𝐸{max

𝑖
{𝑄 (𝑠, 𝑎𝑖)} ≥ max

𝑖
𝐸{𝑄 (𝑠, 𝑎𝑖)} from

Jensen’s inequality. Focusing on mitigating the bias, many algo-
rithms propose various alternative estimations [7, 21, 39, 41, 42].

3.2 Averaged maximum expected value
estimation

In tabular setting, the update process of Q-learning is shown as
follows:

𝑄𝑛+1 (𝑠, 𝑎𝑖) = (1 − 𝛼𝑛 (𝑠, 𝑎𝑖))𝑄𝑛 (𝑠, 𝑎𝑖)
+ 𝛼𝑛 (𝑠, 𝑎𝑖) [𝑟𝑛 + 𝛾 max

𝑖′
𝑄𝑛 (𝑠′, 𝑎𝑖′)] (3)

where 𝑠′ denotes the next state, 𝑖 ∈ [1, 𝑀] , 𝑖′ ∈ [1, 𝑀] and 𝑀
represents the number of actions. In most cases, 𝛼𝑛 (𝑠, 𝑎𝑖) equals to
1
𝑛+1 . Simplifying Equ (3) by the definition of the 𝛼𝑛 (𝑠, 𝑎𝑖) and we
get the following equation:

𝐹𝑛 = 𝑟𝑛 + 𝛾 max
𝑖′

𝑄𝑛 (𝑠′, 𝑎𝑖′)

𝑄𝑛+1 (𝑠, 𝑎𝑖) = (1 −
1

𝑛 + 1)𝑄𝑛 (𝑠, 𝑎𝑖) +
1

𝑛 + 1𝐹𝑛

=
𝐹0 + 𝐹1 + · · · + 𝐹𝑛

𝑛 + 1

(4)

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1985

which illustrates that 𝑄𝑛+1 is determined by averaged 𝐹𝑙 , in which
𝑙 ∈ [0, 𝑛]. The randomness of 𝐹𝑙 leads to the stochasticity of
𝑄𝑛+1 (𝑠, 𝑎𝑖). To conveniently understand accumulative error, we
rectify the following assumption:

𝑄𝑛 (𝑠, 𝑎𝑖) = 𝑄∗ (𝑠, 𝑎𝑖) + 𝑜 (5)

where 𝑜 is a uniform random variable 𝑈 (−𝜏, 𝜏) for some 𝜏 > 0.
This assumption was proposed by Thrun et al. [34] and employed
by [7, 15, 20, 41, 42]. But it is improper if we directly assume
{𝑄𝑛, 𝑄𝑛−1, 𝑄𝑛−2, . . .} have the same error 𝑜 . Because we perceive
that 𝑄𝑛 (𝑠, 𝑎𝑖) approaches to the optimal value constantly with the
increase of iteration times 𝑛. Hence, the iteration times 𝑛 is a sig-
nificant factor in influencing the 𝑄 value. We extend the error
model and augment a uniform random variable 𝜖 𝑗 ∼ 𝑈 (−𝜂 𝑗 , 𝜂 𝑗)
for 𝑗 ∈ [1, 𝑛] and𝜂 𝑗 ≥ 0 to reflect the effect of iteration time. The
final model is as follows:

𝑄 𝑗 (𝑠, 𝑎𝑖) = 𝑄∗ (𝑠, 𝑎𝑖) + 𝛿 𝑗𝑖
𝛿 𝑗𝑖 = 𝛿 𝑗 = 𝑜 + 𝜖 𝑗

(6)

where 𝑎𝑖 denotes the selected action, 𝑖 ∈ [1, 𝑀], 𝑗 ∈ [1, 𝑛] and 𝑜 is
a common random error shared by all 𝑄 and mentioned in Equ (5).
We analyse the mathematical model including probability density
function (PDF) 𝑓𝛿 𝑗 (𝑥) and cumulative distribution function (CDF)
𝐹𝛿 𝑗 (𝑥) in Appendix A.1. When 𝜂 𝑗 = 0, Equ (6) become vestigial to
Equ (5).

We can get the following equation by utilizing Equ (2,4,6):

𝐸{𝑄𝑛 (𝑠, 𝑎𝑖)} −𝑄∗ (𝑠, 𝑎𝑖) = 𝛾

𝑛−1∑
𝑗=0

𝐸{max
𝑖′

𝑄 𝑗 (𝑠′, 𝑎𝑖′) −max
𝑖′′

𝑄∗ (𝑠′, 𝑎𝑖′′)}

𝑛

≤ 𝛾

𝑛−1∑
𝑗=0

𝐸{max
𝑖′′′
(𝑄 𝑗 (𝑠′, 𝑎𝑖′′′) −𝑄∗ (𝑠′, 𝑎𝑖′′′))}

𝑛

≤ 𝛾

𝑛−1∑
𝑗=0

𝐸{max
𝑖′′′
(𝛿 𝑗𝑖′′′)}

𝑛
(7)

where 𝑠′ denotes the next state from state 𝑠 , 𝑖′, 𝑖′′, 𝑖′′′ ∈ [1, 𝑀] and
𝑎𝑖′ , 𝑎𝑖′′ , 𝑎𝑖′′′ denote the actions derived from the next state. Similarly,
we can get the following equations combining Equ (2,4,6):

𝑖′′∗ = argmax
𝑖′′

𝑄∗ (𝑠′, 𝑎𝑖′′)

𝐸{𝑄𝑛 (𝑠, 𝑎𝑖)} −𝑄∗ (𝑠, 𝑎𝑖) = 𝛾

𝑛−1∑
𝑗=0

𝐸{max
𝑖′

𝑄 𝑗 (𝑠′, 𝑎𝑖′) −𝑄∗ (𝑠′, 𝑎𝑖′′∗)}

𝑛

≥ 𝛾

𝑛−1∑
𝑗=0

𝐸{𝑄 𝑗 (𝑠′, 𝑎𝑖′′∗) −𝑄
∗ (𝑠′, 𝑎𝑖′′∗)}

𝑛

≥ 0
(8)

Clearly, according to Equ (7,8), we have that:

0 ≤ 𝐸{𝑄𝑛 (𝑠, 𝑎𝑖)} −𝑄∗ (𝑠, 𝑎𝑖) ≤ 𝛾
𝑛−1∑︁
𝑗=0

𝐸{max
𝑖′′′
(𝛿 𝑗𝑖′′′)/𝑛 (9)

Therefore, the bias of Q-learning is bounded by the accumulated

error
𝑛−1∑
𝑗=0

𝐸{max
𝑖′′′
(𝛿 𝑗𝑖′′′)/𝑛. We specifically let 𝛼𝑛 (𝑠, 𝑎𝑖) = 1

𝑛+1 above,

and the condition can be extended to
𝑛−1∑
𝑗=0

𝑛−1∏
𝑘=𝑗+1

(1−𝛼𝑘)𝛼 𝑗𝐸{max
𝑖′′′
(𝛿 𝑗𝑖′′′)}

when 𝛼𝑛 is unknown. Obviously,
𝑛−1∑
𝑗=0

𝑛−1∏
𝑘=𝑗+1

(1 − 𝛼𝑘)𝛼 𝑗 = 1 and we

can modify 𝛼 to satisfy demand for different weights.

4 SUCCESSIVELY PRUNED Q-LEARNING
In this section, a novel algorithm called successively pruned q-
learning is proposed to reduce the bias. According to the aforemen-
tioned analysis, we know that the bias of 𝐸{𝑄𝑛 (𝑠, 𝑎𝑖)} is bounded

by the accumulated error
𝑛−1∑
𝑗=0

𝐸{max
𝑖′′′
(𝛿 𝑗𝑖′′′)/𝑛, meaning the bias

is influenced by the historical information, which inspires us to
explore whether historical information can be utilized to reduce
the overestimation bias. We notice that if the Q-learning algorithm
overestimates when 𝑛 = 𝑟 , and then the chain effect of sequen-
tial updates would lead to the amplification of overestimation. To
control the sequential error, we propose to minimize through the
historical values, which denotes that firstly selecting the action and
secondly choosing the value estimation:

𝑖′∗ = argmax
𝑖′

𝑄𝑛 (𝑠′, 𝑎𝑖′)

𝑌𝐾𝑛 = min(𝑄𝑛 (𝑠′, 𝑎𝑖′∗), 𝑄𝑛−1 (𝑠
′, 𝑎𝑖′∗), 𝑄𝑛−2 (𝑠

′, 𝑎𝑖′∗), . . .︸ ︷︷ ︸
𝐾

) (10)

where 𝑠′ denotes the next state from the state 𝑠 and 𝐾 represents
the parameter controlling the number of joining in the minimum.
The complete algorithm is shown in Algorithm 1.

4.1 Bias analysis of successively pruned
q-learning

Next, we analyse the bias between mean value estimation of suc-
cessively pruned q-learning and the true value. The bias satisfies:

𝐸{𝐵𝐾𝑛 } = 𝐸{𝑌𝐾𝑛 } − 𝐸{max
𝑖′′

𝑄∗ (𝑠′, 𝑎𝑖′′)}

𝑆1 =

∫ +∞

−∞
𝑥 𝑓𝑀 :𝑀 (𝑥)

𝐾−1∏
𝑙=1
(1 − 𝐹𝛿𝑛−𝑙 (𝑥))𝑑𝑥

𝑆2 =

∫ +∞

−∞
𝑥 (1 − 𝐹𝑀 :𝑀 (𝑥))

𝐾−1∑︁
𝑝=1

𝑓𝛿𝑛−𝑝 (𝑥)
𝐾−1∏

𝑞=1,𝑞≠𝑝
(1 − 𝐹𝛿𝑛−𝑞 (𝑥))𝑑𝑥

𝐸{𝐵𝐾𝑛 } = 𝐸{min(max(𝛿𝑛1, . . . , 𝛿𝑛𝑀), 𝛿𝑛−1, . . .︸ ︷︷ ︸
𝐾

)} = 𝑆1 + 𝑆2

(11)
where 𝑓𝑀 :𝑀 (𝑥) = 𝑀𝑓𝛿𝑛 (𝑥) (𝐹𝛿𝑛 (𝑥))𝑀−1 and 𝐹𝑀 :𝑀 (𝑥) = (𝐹𝛿𝑛 (𝑥))𝑀 ,
respectively representing the PDF and CDF of max(𝛿𝑛1, . . . , 𝛿𝑛𝑀).
The specific definition of 𝑓𝛿 (𝑥) and 𝐹𝛿 (𝑥) can refer to Appen-
dix A.1. Obviously, Equ (11) is hard to calculate and we can sim-
plify the analysis process. First of all, we analyse the situation of
𝐾 = 1. We know that the first item 𝐸{min(max(𝛿𝑛1, . . . , 𝛿𝑛𝑀))} =
𝐸{max(𝛿𝑛1, . . . , 𝛿𝑛𝑀)}. And according to lemma 1 in Appendix

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1986

A.2, we get that 0 < 𝐸{max(𝛿𝑛1, . . . , 𝛿𝑛𝑀)} < 𝜂𝑛 + 𝜏 . There-
fore, 𝐸{𝐵1𝑛} > 0. For 𝐾 > 1, let 𝑍𝑛 = max(𝛿𝑛1, . . . , 𝛿𝑛𝑀) and
𝑍𝑛−𝑤 = 𝛿𝑛−𝑤 ,𝑤 ∈ [1, 𝐾 − 1]. Define 𝑗∗ representing the index
of minimum item and 𝑗∗ ∈ [𝑛 − 𝐾 + 1, 𝑛]. The following formulas
are satisfied:

𝐸{𝐵𝐾𝑛 } = 𝑃 (𝑗∗ = 𝑛 − 𝐾 + 1)𝐸{𝐵𝐾𝑛 |𝑃 (𝑗∗ = 𝑛 − 𝐾 + 1)}

+ 𝑃 (𝑗∗ ≠ 𝑛 − 𝐾 + 1)𝐸{𝐵𝐾𝑛 |𝑃 (𝑗∗ ≠ 𝑛 − 𝐾 + 1)}

≤ 𝑃 (𝑗∗ = 𝑛 − 𝐾 + 1)𝐸{𝐵𝐾−1𝑛 |𝑃 (𝑗∗ = 𝑛 − 𝐾 + 1)}

+ 𝑃 (𝑗∗ ≠ 𝑛 − 𝐾 + 1)𝐸{𝐵𝐾−1𝑛 |𝑃 (𝑗∗ ≠ 𝑛 − 𝐾 + 1)}

≤ 𝐸{𝐵𝐾−1𝑛 }

(12)

where the inequality is strict if and only if 𝑃 (𝑗∗ = 𝑛−𝐾+1) > 0. Next,
we just need to give a special example to demonstrate the existence
of 𝑗∗ = 𝑛 − 𝐾 + 1. Because {𝑍𝑛, . . . , 𝑍𝑛−𝐾+1} are independent with
each other, we consider a situation where 𝑍𝑛 = . . . = 𝑍𝑛−𝐾+2 = 0
and 𝑍𝑛−𝐾+1 ∈ [−𝜂𝑛−𝐾+1 − 𝜏, 0). Obviously, in that situation, 𝑗∗
equals to 𝑛 − 𝐾 + 1. Therefore, the inequality is strict:

𝐸{𝐵𝐾𝑛 } < 𝐸{𝐵𝐾−1𝑛 } (13)

In summary, the bias is the overestimation when𝐾 = 1 and with the
increase of 𝐾 , the bias strictly decreases. Hence, it is existent that
𝐸{𝐵𝐾∗𝑛 } ≥ 0 and 𝐸{𝐵𝐾∗+1𝑛 } ≤ 0 for 𝐾 = 𝐾∗. This implies that our
algorithms attains the minimum bias within 𝐸{𝐵𝐾𝑛 }. More details
can be found in Appendix A.

4.2 Convergence of successively pruned
q-learning

This part is to demonstrate the convergence of successively pruned
q-learning. Firstly, we present lemma 1 and then lemma 2 can be
proved based on the lemma 1 and some lemmas in [16]. Finally,
lemma 2 is utilized to directly prove Theorem 1 without going into
technical details.
Lemma 1. Consider a random iterative process 𝑋𝑛+1 (𝑥) = (1 −
𝛼𝑛 (𝑥))𝑋𝑛 (𝑥)+𝛾𝛼𝑛 (𝑥) (∥𝑋𝑛 ∥+max

𝑡
∥𝑋𝑛−𝑋𝑛−𝑡 ∥) (𝑡 ∈ [0, 𝐾−1], 𝐾 >

0) converges to zero w.p.1 if provided the following conditions: (∥ ·
∥𝑊 =𝑚𝑎𝑥𝑥 | · /𝑊 (𝑥) |)
1). 𝑥 ∈ 𝑆, where 𝑆 is a finite set.
2).

∑𝑛
𝑖=0 𝛼𝑖 (𝑥) = ∞,

∑𝑛
𝑖=0 𝛼

2
𝑖
(𝑥) <∞.

3). 𝛾 ∈ (0, 1).
Proof. The proof is in the Appendix A.3.
Lemma2.Consider a random iterative processΔ𝑛+1 = (1−𝛼𝑛 (𝑥))Δ𝑛 (𝑥)+
𝛼𝑛 (𝑥)𝐹𝑛 (𝑥) under the following conditions:
1). 𝑥 ∈ 𝑆, where 𝑆 is a finite set.
2).

∑𝑛
𝑖=0 𝛼𝑖 (𝑥) = ∞,

∑𝑛
𝑖=0 𝛼

2
𝑖
(𝑥) <∞, where 𝛼𝑛 (𝑥) is a nonnegative

number.
3). ∥𝐸{𝐹𝑛 (𝑥) |𝑃𝑛}∥𝑊 ≤𝛾 (∥Δ𝑛 ∥𝑊 + max

𝑡
∥Δ𝑛 − Δ𝑛−𝑡 ∥𝑊), and 𝛾 ∈

(0, 1) , 𝑡 ∈ [0, 𝐾 − 1], 𝐾 > 0.
4). 𝑉𝑎𝑟 {𝐹𝑛 (𝑥) |𝑃𝑛} ≤ 𝐶 (1 + ∥Δ𝑛 ∥𝑊)2, where 𝐶 is some constant.

Among the above assumptions, 𝑃𝑛 = {𝑋𝑛, . . . , 𝑋0;𝛼𝑛, . . . , 𝛼0;
𝐹𝑛−1, . . . , 𝐹0}.

Δ𝑛 (𝑥) converges to zero with possibility one if the above conditions
are satisfied.
Proof. The proof is in the Appendix A.3.

Theorem 1. Let us define a stochastic iterative process satisfying the
following conditions: (𝑖 ∈ [1, 𝑀])

𝑖′∗ = argmax
𝑖′

𝑄𝑛 (𝑠′, 𝑎𝑖′)

𝑌𝐾𝑛 = min(𝑄𝑛 (𝑠′, 𝑎𝑖′∗), 𝑄𝑛−1 (𝑠
′, 𝑎𝑖′∗), 𝑄𝑛−2 (𝑠

′, 𝑎𝑖′∗), . . .︸ ︷︷ ︸
𝐾

)

𝑄𝑛+1 (𝑠, 𝑎𝑖) = (1 − 𝛼𝑛 (𝑠, 𝑎𝑖))𝑄𝑛 (𝑠, 𝑎𝑖) + 𝛼𝑛 (𝑠, 𝑎𝑖) [𝑟 + 𝛾𝑌𝐾𝑛]
(14)

1). the state and action spaces are finite.
2).

∑𝑛
𝑗=0 𝛼 𝑗 (𝑠, 𝑎𝑖) = ∞,

∑𝑛
𝑗=0 𝛼

2
𝑗
(𝑠, 𝑎𝑖) <∞, and where 𝛼 𝑗 (𝑠, 𝑎𝑖) ∈

[0, 1].
3). 𝛾 ∈ (0, 1) and 𝑉𝑎𝑟 {𝑟 } <∞.
The process converges to zero with possible one.
Proof.We next sketch how to apply lemma 2 to prove Theorem 1
without going into full technical details. By subtracting 𝑄∗ (𝑠, 𝑎𝑖)
from both sides of Equ (14), we get that 𝐹𝑛 (𝑠, 𝑎𝑖) = 𝑟+𝛾𝑌𝐾𝑛 −𝑄∗ (𝑠, 𝑎𝑖)
and define Δ𝑛 (𝑠, 𝑎𝑖) = 𝑄𝑛 (𝑠, 𝑎𝑖) − 𝑄∗ (𝑠, 𝑎𝑖). The maximum norm
of 𝐸{𝐹𝑛 (𝑠, 𝑎𝑖)} satisfies the condition 3) in lemma 2:

∥𝐸{𝐹𝑛 (𝑠, 𝑎𝑖)}∥ = 𝛾 ∥𝑌𝐾𝑛 −max
𝑖′′

𝑄∗ (𝑠′, 𝑎𝑖′′)∥

≤ 𝛾 ∥𝑌𝐾𝑛 −𝑄𝑛 (𝑠′, 𝑎𝑖′∗)∥ + 𝛾 ∥𝑄𝑛 (𝑠
′, 𝑎𝑖′∗) −max

𝑖′′
𝑄∗ (𝑠′, 𝑎𝑖′′)∥

≤ 𝛾 (max
𝑡,𝑖
∥Δ𝑛 (𝑠′, 𝑎𝑖) − Δ𝑛−𝑡 (𝑠′, 𝑎𝑖)∥ +max

𝑖
∥Δ𝑛 (𝑠′, 𝑎𝑖)∥)

(15)
where 𝑡 ∈ [0, 𝐾]. The update of 𝑄𝑛+1 (𝑠, 𝑎𝑖) primarily depends
on the linear sum of 𝛾𝑟 and the 𝑉𝑎𝑟 (𝑟) and 𝑄0 (𝑠, 𝑎) are bounded.
Accordingly, ∥Δ𝑛 ∥ and the variance of 𝐹𝑛 (𝑠, 𝑎𝑖) are bounded by
some values. The conditions are satisfied and successively pruned
q-learning can converge to the optimal value.

Algorithm 1 Successively Pruned Q-learning

1: Initialize s and 𝑄0 (𝑠, 𝑎) for all state-action pairs
2: Set step size 𝛼 ∈ (0, 1], discount factor 𝛾 ∈ (0, 1], recall size
𝐾 ≥ 1 and 𝜖 > 0

3: repeat
4: Choose 𝑎 from 𝑠 using the 𝜖−greedy policy in 𝑄
5: Take action 𝑎, observe 𝑟, 𝑠′ and update 𝑄𝑛 (𝑠, 𝑎) :
6: Define 𝑖′∗ = argmax

𝑖′
𝑄𝑛 (𝑠′, 𝑎𝑖′)

7: 𝑌𝐾𝑛 = min(𝑄𝑛 (𝑠′, 𝑎𝑖′∗), 𝑄𝑛−1 (𝑠
′, 𝑎𝑖′∗), 𝑄𝑛−2 (𝑠

′, 𝑎𝑖′∗), . . .︸ ︷︷ ︸
𝐾

)

8: 𝑄𝑛+1 (𝑠, 𝑎) = (1 − 𝛼𝑛 (𝑠, 𝑎))𝑄𝑛 (𝑠, 𝑎) + 𝛼𝑛 (𝑠, 𝑎) [𝑟 + 𝛾𝑌𝐾𝑛]
9: 𝑠 ← 𝑠′

10: until end

5 GENERALIZED TO OFF-POLICY
ALGORITHMS

In this section, we show that successively pruned q-learning can be
generalized to discrete and continuous control domain, combined
with Deep Q Network (DQN) [23], Deep Deterministic Policy Gradi-
ent (DDPG) [23], Twin Delayed Deep Deterministic policy gradient
algorithm (TD3) [13], and Soft Actor-Critic (SAC) [14].

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1987

5.1 Successively pruned DQN
We can naturally combine successively pruned q-learning with DQN
[23] to generate our deep neural network algorithm called Suc-
cessively Pruned DQN (SPDQN). As we all know, DQN has two
significant networks comprising online network and target net-
work. Online network presents advanced 𝑄 value and the target
network is devised to stabilize the learning process. The target
network is derived from the online network but uses a delayed
update mechanism that its parameters are copied every 𝐶 steps
according to the online network. The target network is a natural
concept to record the previous 𝑄 value. Therefore, multiple target
networks can be used to express {𝑄𝑛, 𝑄𝑛−1, 𝑄𝑛−2, . . .}. As for the
update method of multiple target network, we propose two meth-
ods: the first is to update 𝑗 th target network every 𝑗𝐶 steps through
online network, the second is to update 𝑗th target network every
𝑗𝐶 steps by 𝑗 − 1th target network. The target networks in the first
way can be synchronous with the online network but the target
networks in the second always delay a version, which decreases
the convergence speed. Therefore, the first update way is more
proper considering the training resources. Besides, we can view the
first target network as stable replacement of the online network,
so that the action selection can happen in the online network or
the first target network. In summary, the algorithmic framework is
as follows:

1). 𝑖′∗ = argmax
𝑖′

𝑄 (𝑆𝑡+1, 𝑎𝑖′ ;𝜃𝑡) or 𝑖′∗ = argmax
𝑖′

𝑄 (𝑆𝑡+1, 𝑎𝑖′ ;𝜃−𝑡)

2). 𝑌 SPDQN
𝑡 = 𝑅𝑡+1 + 𝛾 min (𝑄 (𝑆𝑡+1, 𝑎𝑖′∗ ;𝜃

−
𝑡), 𝑄 (𝑆𝑡+1, 𝑎𝑖′∗ ;𝜃

=
𝑡), . . .)︸ ︷︷ ︸

𝐾

where {𝜃−𝑡 , 𝜃=𝑡 , . . .} denote the delayed parameters of multiple tar-
get networks and according to the source of action selection, our
method evolves into SPDQN-T using the first target network to
choose action and SPDQN-O employing the online network.

5.2 Combined with off-policy actor-critic
algorithms

The construction of off-policy actor-critic algorithms is diverse
from DQN, which only owns several critic networks. In general,
off-policy actor-critic algorithms possess several critic networks
and actor networks. Owing to the existence of the actor networks,
the behavior of action selection can be ignored. Our method can be
employed straight to DDPG through minimizing between multiple
target networks. As for TD3 and SAC, two critic online networks are
utilized to reduce the overestimation on the actor-critic framework.
Successively pruned method can be directly augmented to clipped
double q-learning, further controlling the bias.

6 EXPERIMENTS
In this section, we conduct experiments to illustrate the effective-
ness of our proposed method. Firstly, we consider windy walking
task in [33] and augment random winds and rewards to challenge
the Q-learning algorithm and its variants. And then, we focus on
the Atari 2600 games, using the Arcade Learning Environment [5]
with performance comparison of several baseline algorithms. To
speed up the training procedure, we apply the asynchronous mode

0 10000 20000 30000

Number of steps

-225

-174

-123

-72

-21

A
cc

u
m

u
la

te
d

re
w

a
rd

ε = 0.1

Relative Variance = 1

0 10000 20000 30000

Number of steps

-225

-173

-122

-70

-19

A
cc

u
m

u
la

te
d

re
w

a
rd

ε = 1/
√
n(s)

0 10000 20000 30000

Number of steps

-247

-200

-154

-108

-62

ε = 0.1

Relative Variance = 9

0 10000 20000 30000

Number of steps

-244

-197

-150

-103

-56

ε = 1/
√
n(s)

0 10000 20000 30000

Number of steps

-253

-226

-199

-172

-145

ε = 0.1

Relative Variance = 25

0 10000 20000 30000

Number of steps

-258

-229

-200

-172

-143

ε = 1/
√
n(s)

Successively Pruned Q-Learning (K = 2)

Clipped Double Q-Learning

Double Q-Learning

Q-Learning

Figure 1: The stochastic rewards are sampled from -1 and 0
with equal probability, with relative variance considered as
1. (-2,1) (relative variance=9) and (-3,2) (relative variance=25)
are chosen as subsequent rewards in environments. All ex-
periments are run 30000 steps and averaged over 500 runs.

with cpu parallel samplers in the rlpyt [30], which uses many ac-
celerated methods mentioned in [29]. Finally, to evaluate off-policy
actor-critic algorithms, the suite of MuJoCo continuous control
tasks [35] are examined. All detailed description of experiment
settings is deferred to Appendix B.

6.1 Windy walking
An windy walking task in Example 6.5 of [33] contains the starting
state and the goal state. In contrast with standard grid world, there
exists upward winds that vary in intensity and location. The agent
can execute 4 actions including upwards, down, left and right. Each
column of wind power varies according to the number shown at
the bottom of each column. +𝑛 denotes that the agent is blew to
move upwards 𝑛 grids and −𝑚 is to move down𝑚 grids. Moreover,
stochastic wind power and reward are additionally augmented to
enhance the randomness of the task. The stochastic wind power
is mentioned in the Exercise 6.10 of [33] and means that the agent
can additionally move upwards 1 grid or down 1 grid with equal
possibility. The stochastic reward follows the definition in [15]
and the agent receives different rewards at each step with equal
probability.

We use accumulated reward to measure the performance of
different algorithms in Figure 1. We mainly analyse two explo-
ration strategies: 𝜖 = 0.1 and 𝜖 = 1/

√︁
𝑛(𝑠) and set the step size

𝛼𝑛 (𝑠, 𝑎) = 1/𝑛(𝑠, 𝑎), which 𝑛(𝑠, 𝑎) denotes the times (𝑠, 𝑎) has been
visited. Stochastic reward (−1, 0) is chosen in the initial experi-
ments, whose variance is small. From the first column of Figure
1, we can see that Successively Pruned Q-learning (𝐾 = 2) and
Q-learning have the almost same convergence speed with low-
variance reward. Conversely, Double Q-learning and Clipped Dou-
ble Q-learning converge more slowly than them due to the random
update of two Q-functions, which is consistent in both two strate-
gies. These experiments indicate that Double Q-learning is not good
at processing tasks with low-variance reward and Q-learning can
not tackle the tasks with high-variance reward well. Clipped Double
Q-learning performsmore similarly to ourmethodwith the increase
of the randomness. Our Successively Pruned Q-learning (𝐾 = 2)

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1988

0.0 2.0 4.0 6.0 8.0 10.0

Training steps (in millions)

-99

524

1148

1773

2397

G
am

e
sc

or
es

(a) Alien

0.0 0.8 1.6 2.4 3.2 4.0

Training steps (in millions)

-106

485

1077

1668

2260
(b) Assault

0.0 1.6 3.2 4.8 6.4 8.0

Training steps (in millions)

-77245

192345

461935

731526

1001117
(c) Atlantis

0.0 0.6 1.2 1.8 2.4 3.0

Training steps (in millions)

-79

-32

14

60

107
(d) Boxing

0.0 2.0 4.0 6.0 8.0 10.0

Training steps (in millions)

-19

91

202

313

425

G
am

e
sc

or
es

(e) Breakout

0.0 8.0 16.0 24.0 32.0 40.0

Training steps (in millions)

-18

1029

2078

3126

4174
(f) Chopper Command

0.0 8.0 16.0 24.0 32.0 40.0

Training steps (in millions)

-532

2535

5603

8672

11740
(g) Demon Attack

0.0 4.0 8.0 12.0 16.0 20.0

Training steps (in millions)

-712

3142

6997

10852

14707
(h) Kangaroo

0.0 0.4 0.8 1.2 1.6 2.0

Training steps (in millions)

-370

1682

3736

5790

7843

G
am

e
sc

or
es

(i) Krull

0.0 4.0 8.0 12.0 16.0 20.0

Training steps (in millions)

-2785

12842

28471

44099

59727
(j) Star Gunner

0.0 4.0 8.0 12.0 16.0 20.0

Training steps (in millions)

-14302

64371

143046

221720

300394
(k) Video Pinball

0.0 6.0 12.0 18.0 24.0 30.0

Training steps (in millions)

-707

1765

4239

6712

9185
(l) Zaxxon

DQN

DDQN

ScDQN (β = 3)

Adveraged DQN

Maxmin DQN

Clipped DDQN

SPDQN-O (K = 2) Ours

SPDQN-T (K = 2) Ours

Figure 2: Learning curves for the Atari tasks. The shaded region represents three-quarters of a standard deviation of the average
evaluation over 6 trials.

algorithm performs well in both variances due to its special up-
date rule, which mainly chooses the minimum between 𝑄𝑛 (𝑠′, 𝑎𝑖′∗)
and 𝑄𝑛−1 (𝑠′, 𝑎𝑖′∗). If the reward has low variance, 𝑄𝑛 (𝑠′, 𝑎𝑖′∗) and
𝑄𝑛−1 (𝑠′, 𝑎𝑖′∗) are close to each other. Hence, Successively Pruned
Q-learning algorithm is more similar to Q-learning and randomly
selecting between two Q-functions like Double Q-learning would
waste computational resources and slow the convergence speed. Al-
though Clipped Double Q-learning switches from two Q-functions,
the min operator can reduce the variance. If the reward has high
variance, single 𝑄𝑛 (𝑠′, 𝑎𝑖′∗) exists serious overestimation and it will
lead to bad performance. Converting between two 𝑄-functions
can reduce the overestimation, which is the reason why Succes-
sively Pruned Q-learning, Double Q-learning and Clipped Double
Q-learning work better.

6.2 Atari benchmark for DQN algorithms
To demonstrate the superiority of SPDQN-T and SPDQN-O, we
compare with six variants of deep Q-networks as baselines, includ-
ing DQN [23], Double DQN (DDQN) [36], Adveraged DQN (ADQN)
[1], Clipped DDQN (CDDQN) [13], Maxmin DQN (MDQN) [20]
and Self-correcting DQN (ScDQN) [42] in twelve atari tasks. To

ensure the fairness of comparison, ensemble methods employ the
parameter 𝑁 = 2. Given the recent concerns in reproducibility, our
experiments are run six times with fair evaluation metrics, and
open source both learning curves and open code 1. Our results
are shown in Figure 2 exhibiting learning curves over 6 trials and
Table 1 listing the average scores of final policies over 40 trials.
The results show that, overall, SPDQN-O or SPDQN-T performs
comparably to the baseline methods from convergence value and
stability particularly in Atlantis or Demon Attack games where
our methods perform stably although other algorithms drop down
with the increasing of training steps. In most tasks, although our
methods converge slower than others, our methods can achieve
more higher game scores. As for SPDQN-O and SPDQN-T, the per-
formance of SPDQN-T is better in most atari tasks and SPDQN-T
performs not worse in several tasks where SPDQN-O surpasses all
compared algorithms. This is because using the first target network
to determine the action is closer to other target networks so that
the training score can steadily rise. All hyper-parameters used in
the Atari tasks are listed in Appendix B.

1https://github.com/dfasdffe/Successively-Pruned-Q-Learning/tree/master

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1989

https://github.com/dfasdffe/Successively-Pruned-Q-Learning/tree/master

Environment SPDQN-T SPDQN-O DQN DDQN ScDQN ADQN MDQN CDDQN

Alien 1693± 536 1882 ± 569 1590 1632 1696 1520 1462 1688

Assault 1593 ± 656 1261 ± 452 1271 1202 975 1217 1245 1349

Atlantis 767361±297179 158562 ± 298223 175927 55601 297483 40879 428610 262630

Boxing 95 ± 5 72±22 69 85 54 26 87 87

Breakout 345 ± 90 334 ± 107 286 269 317 291 329 338

Chopper Command 2471 ±1452 1088± 435 736 1592 1059 589 1121 1076

Demon Attack 7570 ± 3170 8155 ± 3496 1439 1737 4476 4424 5848 3940

Kangaroo 11870 ±2876 8809 ± 3577 9475 8203 6025 9282 9638 10256

Krull 5082±1362 6613±1495 4675 5148 5501 3225 5099 4876

Star Gunner 43626 ± 11903 48998 ± 12599 27463 35696 33168 36954 42017 44838

Video Pinball 132727 ± 141796 113811 ± 136329 64878 84229 106464 80875 61636 109647

Zaxxon 6472 ± 2422 32 ± 237 2272 4325 4 4927 2836 41
Table 1: Average scores over 40 trials of final policies. Maximum value for each task is bolded. ± corresponds to a single standard
deviation over trials. The deviations of other baseline algorithms are shown in Appendix C.

0.0 2.0 4.0 6.0 8.0 10.0

Training steps (in millions)

-52

625

1302

1980

2658

G
am

e
sc

or
es

(a) Ms Pacman

0.0 2.0 4.0 6.0 8.0 10.0

Training steps (in millions)

-1020

6375

13771

21167

28563
(b) Battle Zone

SPDQN-T (K = 2)

SPDQN-T (K = 4)

SPDQN-T (K = 6)

SPDQN-T (K = 8)

Figure 3: Training curves for different 𝐾 over 6 runs and the
shaded region represents a standard deviation.

Selection of the parameter 𝐾 . 𝐾 presents the number of joining
inminimum.We chooseMs Pacman and Battle Zone to demonstrate
the effect of 𝐾 in Figure 3. The two tasks represent the different sit-
uations respectively. Some tasks are not sensitive to the parameter
𝐾 like Ms Pacman and in other tasks such as Battle Zone, larger 𝐾
decreases the convergence speed, but maybe can jump out of the
sub-optimal value and attain higher value, which demonstrated by
the gradient of 10M steps on 𝐾 = 8.

6.3 Mujoco environments for off-policy
actor-critic algorithms

The aim of experimental evaluations is to analyse the benefits the
off-policy actor-critic algorithms can gain from the successively
pruned tool. Off-policy methods do not presume that the samples
are derived from the current trained policy. In fact, this denotes the
samples on the replay buffer can be reused multiple times through
back-propagations. To equitably analyse the effect of successively

pruned method, we employ the open code stable-baselines3 2 and
the hyper-parameter setting basically obeys the default, listed in
Appendix B. The successively pruned tool is augmented to three
important off-policy algorithms, comprising Deep Deterministic
Policy Gradient (DDPG) [22], Twin Delayed Deep Deterministic
Policy Gradient (TD3) [13] and Soft Actor-Critic (SAC) [14]. A
range of challenging continuous control tasks from the OpenAI
gym benchmark suite [6] are chosen as the evaluation experiments.

Table 2 reveals average game scores of evaluation rollouts during
training for DDPG, TD3, TD3-CDQ (TD3 removing clipped dou-
ble q-learning section), SAC and their variants with successively
pruned tool, in which the numbers respectively correspond to the
mean and the standard deviation over 6 trials of 1 million steps.
Table 3 shows the benefits that different algorithms gain from suc-
cessively pruned tool, that is, we record average game scores over
10 trials of final policies on Table 2 and consider the ratio of spe-
cific algorithm with successively pruned tool to itself minus one
as the improvement. Particularly, we determine original TD3-CDQ
without any method concerning reducing the overestimation as
the comparison object for TD3 and TD3-SP. The results show that
our method added to the off-policy algorithms has ameliorated
performance in most environments. In general, the benefit that
SAC employs successively pruned tool is less than others. This
is because SAC uses a Update-To-Data (UTD) [8] of 1 and other
off-policy algorithms employs a UTD ≪ 1. Besides, the learning
rate used in the Adam optimizer [18] of SAC is 0.0003 and others
are 0.001. These factors ensure the stability of training process and
little gradient value and many updates are hard to benefit from the
tool of reducing the overestimation bias.

Deterministic policy gradient algorithm [28] proposes a challeng-
ing optimization situation of the policy parameterization, meaning
that the general benefits of over-parameterized networks do not

2https://github.com/DLR-RM/stable-baselines3

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1990

https://github.com/DLR-RM/stable-baselines3

Environment DDPG DDPG-SP (𝐾 = 4) TD3-CDQ TD3 TD3-SP (𝐾 = 4) SAC SAC-SP (𝐾 = 4)

Ant 513 ± 483 465 ± 440 338 ± 686 3327 ± 691 4469 ± 1666 4734 ±671 5428 ± 690

HalfCheetah 4117 ±188 5163 ±459 3329± 223 6779 ± 295 8978 ± 195 8810 ± 296 10293 ± 306

Hopper 1398 ± 1005 1899± 1029 1553 ±1185 1775± 1590 3508± 423 3280± 212 3469± 242

Humanoid 88 ± 22 302 ± 84 157±131 91 ± 28 400 ± 120 5145 ± 436 5540 ± 568

Pusher -32 ± 4 -37 ± 17 -31 ± 6 -50 ±7 -48 ± 7 -23 ± 2 -23 ± 2

Walker2d 2807 ± 1462 3478 ± 1543 2464 ± 1221 3991 ± 795 4288 ± 468 4536 ± 240 4762 ± 615

Table 2: Average scores over 10 trials of 1 million steps for the MuJoco continuous control tasks. ± corresponds to a single
standard deviation over trials. Maximum value for each algorithm is bolded. Corresponding learning curves defer to Appendix
C.

Environment DDPG-SP (𝐾 = 4) TD3 TD3-SP (𝐾 = 4) SAC-SP (𝐾 = 4)

Ant -9.36% 884.31% 1222.19% 14.66%

HalfCheetah 25.41% 103.63% 169.69% 16.83%

Hopper 35.84% 14.29 % 125.89% 5.76%

Humanoid 243.18% -42.04% 154.78 % 7.68%

Pusher -13.51% -61.29% -54.84% 0%

Walker2d 23.90% 61.97% 74.03% 4.98%
Table 3: The benefits that off-policy actor-critic algorithms gain from tools reducing the overestimation.

totally overcome issues concerning local optima, which is part of
the reason why different runs of the same algorithm can produce
drastically different solutions in DDPG and TD3. This characteris-
tic leads to the sensitivity to different 𝑄 values and our minor 𝑄
values maybe can conduct the policy to get out from many local
optima and reach a better point. In most environments, we can
observe that DDPG gains significant benefits from our method.
However, the structure of DDPG makes it hard to benefit from the
environments with large observation shape such as Ant and Pusher,
in which DDPG performs more like a kind of stochastic behavior.
TD3-CDQ transforms the network structure and augments target
policy smoothing regularization and delayed policy updates, which
help the methods of reducing the overestimation bias ameliorate
the algorithm performance. TD3 with clipped double q-learning
can stabilize the 𝑄 value and produces a marked effect, especially
in Ant and HalfCheetah environments and this is reflected empir-
ically that TD3-SP (𝐾 = 4) with successively pruned algorithm
incorporated into clipped double q-learning can further alleviate
the overestimation bias and enhance the performance. The same
principle applies to other variants relating to Q-learning.

7 CONCLUSION
We mainly have presented a novel algorithm called successively
pruned q-learning to alleviate the positive bias during the update
in this paper. Firstly, we analyse that the accumulated error on
Q-learning is bounded by the historical values and then propose to
utilize the preceding values to control the sequential error. After
that we demonstrate that our successively pruned estimator not

only balances between the overestimation and the underestimation,
but also can enjoy the minimum bias against the true value under
appropriate setting. Moreover, our algorithm can be naturally ex-
tended to deep learning domain. In tabular setting, we show that
our algorithm simultaneously owns the strengths of Q-learning
and Double Q-learning so that it dose well in the tasks with low-
variance and high-variance rewards. Our Successively Pruned DQN
outperforms DQN and other variants in most of the Atari games and
some classical off-policy actor-critic algorithms can gain significant
benefits from our method.

In our future directions, we expect to advance ourmodel from the
following items: 1) Incorporate our method with other variants of Q-
learning to explore the best way to reduce the overestimation bias.
2) No matter in DQN or other off-policy actor-critic algorithms,
the variance of our method does not give an advantage against
others and this requires us to devise more accurate model. 3) Our
algorithm can be enlarged to multi-agent reinforcement learning
and combined with value-based methods like Value-Decomposition
Networks [32] and QMIX [26] et al.

ACKNOWLEDGMENTS
This work is supported in part by Shanghai Municipal Science and
Technology Major Project (No.2021SHZDZX0103), the National
Key R&D Program of China (2021ZD0113503) and Ningbo Science
and Technology Bureau, Technology and Equipment of Intelligent
and All-terrain Unmanned Aerial System for Magmatic Exploration.
No.2020Z073. This project was also funded by the National Natural
Science Foundation of China 82090052.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1991

REFERENCES
[1] Oron Anschel, Nir Baram, and Nahum Shimkin. 2017. Averaged-dqn: Variance

reduction and stabilization for deep reinforcement learning. In International
conference on machine learning. PMLR, 176–185.

[2] Masanao Aoki. 2016. Optimization of stochastic systems: topics in discrete-time
systems. Elsevier.

[3] K Johan Astrom. 1987. Adaptive feedback control. Proc. IEEE 75, 2 (1987), 185–217.
[4] Mohammad Gheshlaghi Azar, Remi Munos, Mohammad Ghavamzadeh, and

Hilbert Kappen. 2011. Speedy Q-learning. In Advances in neural information
processing systems.

[5] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. 2013. The
arcade learning environment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research 47 (2013), 253–279.

[6] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[7] Gang Chen. 2020. Decorrelated double q-learning. arXiv preprint arXiv:2006.06956
(2020).

[8] Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. 2021. Randomized
ensembled double q-learning: Learning fast without a model. arXiv preprint
arXiv:2101.05982 (2021).

[9] Carlo D’Eramo, Andrea Cini, Alessandro Nuara, Matteo Pirotta, Cesare Alippi, Jan
Peters, and Marcello Restelli. 2021. Gaussian approximation for bias reduction in
Q-learning. The Journal of Machine Learning Research 22, 1 (2021), 12690–12740.

[10] Adithya M Devraj and Sean P Meyn. 2017. Fastest convergence for Q-learning.
arXiv preprint arXiv:1707.03770 (2017).

[11] Carlo D’Eramo, Marcello Restelli, and Alessandro Nuara. 2016. Estimating maxi-
mum expected value through gaussian approximation. In International Conference
on Machine Learning. PMLR, 1032–1040.

[12] Damien Ernst, Pierre Geurts, and Louis Wehenkel. 2005. Tree-based batch mode
reinforcement learning. Journal of Machine Learning Research 6 (2005).

[13] Scott Fujimoto, Herke Hoof, and David Meger. 2018. Addressing function ap-
proximation error in actor-critic methods. In International conference on machine
learning. PMLR, 1587–1596.

[14] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International conference on machine learning. PMLR, 1861–
1870.

[15] Hado Hasselt. 2010. Double Q-learning. Advances in neural information processing
systems 23 (2010).

[16] Tommi Jaakkola, Michael Jordan, and Satinder Singh. 1993. Convergence of
stochastic iterative dynamic programming algorithms. Advances in neural infor-
mation processing systems 6 (1993).

[17] Haobo Jiang, Jin Xie, and Jian Yang. 2021. Action candidate based clipped double
q-learning for discrete and continuous action tasks. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 35. 7979–7986.

[18] D Kinga, Jimmy Ba Adam, et al. 2015. A method for stochastic optimization.
In International conference on learning representations (ICLR), Vol. 5. San Diego,
California;, 6.

[19] Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov.
2020. Controlling overestimation bias with truncated mixture of continuous
distributional quantile critics. In International Conference on Machine Learning.
PMLR, 5556–5566.

[20] Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. 2020. Maxmin
q-learning: Controlling the estimation bias of q-learning. arXiv preprint
arXiv:2002.06487 (2020).

[21] Donghun Lee, Boris Defourny, and Warren B Powell. 2013. Bias-corrected q-
learning to control max-operator bias in q-learning. In 2013 IEEE Symposium
on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). IEEE,
93–99.

[22] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[24] Oren Peer, Chen Tessler, Nadav Merlis, and Ron Meir. 2021. Ensemble bootstrap-
ping for Q-Learning. In International Conference on Machine Learning. PMLR,
8454–8463.

[25] Riccardo Polvara, Massimiliano Patacchiola, Sanjay Sharma, Jian Wan, Andrew
Manning, Robert Sutton, and Angelo Cangelosi. 2018. Toward end-to-end control
for UAV autonomous landing via deep reinforcement learning. In 2018 Interna-
tional conference on unmanned aircraft systems (ICUAS). IEEE, 115–123.

[26] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson. 2020. Monotonic value function
factorisation for deep multi-agent reinforcement learning. The Journal of Machine
Learning Research 21, 1 (2020), 7234–7284.

[27] Zhizhou Ren, Guangxiang Zhu, Hao Hu, Beining Han, Jianglun Chen, and
Chongjie Zhang. 2021. On the estimation bias in double Q-learning. Advances in
Neural Information Processing Systems 34 (2021), 10246–10259.

[28] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. 2014. Deterministic policy gradient algorithms. In International
conference on machine learning. Pmlr, 387–395.

[29] Adam Stooke and Pieter Abbeel. 2018. Accelerated methods for deep reinforce-
ment learning. arXiv preprint arXiv:1803.02811 (2018).

[30] Adam Stooke and Pieter Abbeel. 2019. rlpyt: A research code base for deep
reinforcement learning in pytorch. arXiv preprint arXiv:1909.01500 (2019).

[31] Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L
Littman. 2006. PAC model-free reinforcement learning. In Proceedings of the 23rd
international conference on Machine learning. 881–888.

[32] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vini-
cius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl
Tuyls, et al. 2017. Value-decomposition networks for cooperative multi-agent
learning. arXiv preprint arXiv:1706.05296 (2017).

[33] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[34] Sebastian Thrun and Anton Schwartz. 1993. Issues in using function approxima-
tion for reinforcement learning. In Proceedings of the Fourth Connectionist Models
Summer School, Vol. 255. Hillsdale, NJ, 263.

[35] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine
for model-based control. In 2012 IEEE/RSJ international conference on intelligent
robots and systems. IEEE, 5026–5033.

[36] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement
learning with double q-learning. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 30.

[37] Hang Wang, Sen Lin, and Junshan Zhang. 2021. Adaptive ensemble q-learning:
Minimizing estimation bias via error feedback. Advances in Neural Information
Processing Systems 34 (2021), 24778–24790.

[38] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8 (1992), 279–292.

[39] Wentao Weng, Harsh Gupta, Niao He, Lei Ying, and R Srikant. 2020. The mean-
squared error of double Q-learning. Advances in Neural Information Processing
Systems 33 (2020), 6815–6826.

[40] Fangyi Zhang, Jürgen Leitner, Michael Milford, Ben Upcroft, and Peter Corke.
2015. Towards vision-based deep reinforcement learning for robotic motion
control. arXiv preprint arXiv:1511.03791 (2015).

[41] Zongzhang Zhang, Zhiyuan Pan, and Mykel J Kochenderfer. 2017. Weighted
double Q-learning.. In IJCAI. 3455–3461.

[42] Rong Zhu and Mattia Rigotti. 2021. Self-correcting q-learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 35. 11185–11192.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1992

	Abstract
	1 Introduction
	2 Markov Decision Process
	3 Analysis of Maximization Bias
	3.1 Maximum expected value estimation
	3.2 Averaged maximum expected value estimation

	4 Successively Pruned Q-learning
	4.1 Bias analysis of successively pruned q-learning
	4.2 Convergence of successively pruned q-learning

	5 Generalized to Off-policy algorithms
	5.1 Successively pruned DQN
	5.2 Combined with off-policy actor-critic algorithms

	6 Experiments
	6.1 Windy walking
	6.2 Atari benchmark for DQN algorithms
	6.3 Mujoco environments for off-policy actor-critic algorithms

	7 Conclusion
	Acknowledgments
	References

