
Attention-based Priority Learning for Limited Time Multi-Agent
Path Finding

Yibin Yang∗
Tsinghua University

Beijing, China
yyb19@mails.tsinghua.edu.cn

Mingfeng Fan∗
Central South University

Changsha, China
mingfan2001@gmail.com

Chengyang He
National University of Singapore
Singapore, Republic of Singapore

chengyanghe@u.nus.edu

Jianqiang Wang
Tsinghua University

Beijing, China
wjqlws@tsinghua.edu.cn

Heye Huang†
Tsinghua University

Beijing, China
hhy18@mails.tsinghua.edu.cn

Guillaume Sartoretti
National University of Singapore
Singapore, Republic of Singapore
guillaume.sartoretti@nus.edu.sg

ABSTRACT
Solving large-scale Multi-Agent Path Finding (MAPF) within a
limited time remains an open challenge, despite its importance
for many robotic applications. Recent learning-based methods
scale better than conventional ones, but remain suboptimal and
often exhibit low success rates within a limited time on large-scale
instances. These limitations often stem from their black-box nature.
In this study, we propose a hybrid approach that incorporates
prioritized planning with learning-based methods to explicitly
address these challenges. We formulate prioritized planning as
a Markov Decision Process and introduce a reinforcement learning-
based prioritized planning paradigm. In doing so, we develop
a novel Synthetic Score-based Attention Network (S2AN) to
learn conflict/blocking relationships among agents, and deliver
blocking-free priorities. By integrating priority mechanisms and
leveraging a new attention-based neural network for enhanced
multi-agent cooperative strategies, our method enhances solution
completeness while trading off scalability and maintains linear
time complexity, thus offering a robust avenue for large-scale
MAPF tasks. Comparisons demonstrate its superiority over current
learning-based methods in terms of solution quality, completeness,
and reachability within limited time constraints, especially in large-
scale scenarios. Moreover, an extensive set of numerical results
reveals superior completeness compared to restricted-time Priority-
Based Search (PBS) and Priority Inheritance with Backtracking
(PIBT) in medium to large-scale obstacle-dense scenarios.

KEYWORDS
Multi-Agent Path Finding; Attention-Based Network; Reinforce-
ment Learning; Prioritized Planning
ACM Reference Format:
Yibin Yang, Mingfeng Fan, Chengyang He, Jianqiang Wang, Heye Huang,
and Guillaume Sartoretti. 2024. Attention-based Priority Learning for
∗Both authors contributed equally to the paper
†Corresponding author

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

Limited Time Multi-Agent Path Finding. In Proc. of the 23rd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024),
Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

1 INTRODUCTION
Multi-Agent Path-Finding (MAPF) [1, 23] is a central multi-agent/-
robot problem, in which multiple agents have to plan collision-free
paths to their pre-assigned goals while minimizing total travel
times. There has been an increasing interest in large-scale MAPF
due to its broad applications in autonomous vehicles [12], multi-
robot systems [6, 19], and video games [16]. However, due to the
curse of dimensionality, solving large-scale MAPF in a limited
time still remains a significant challenge [9, 28]. For instance, in
gaming scenarios, real-time computation and rendering of paths
for a large number of agents are necessary to enable them to find
collision-free paths quickly and maintain player engagement. In
this work, we focus on large-scale MAPF, and present an approach
that aims to strike an efficient balance between high completeness
and computing times, by boosting the performance of prioritized
planning through machine learning.

Agent 1 Agent 3

Map

Agent 2

Grid World

Goal 1

Goal 2
Goal 3

Reachability

Repair Algorithm

Limited Feasible Path Finding

Multi-Agent Environment

MAPF

Cases

Trajec-

tories

Limited Time Multi-Agent Path-Finding

No

Yes

Repair?…

Feedback

Agent

ID

Initial

Trajectories

× 𝒏

Feature

Process Synthetic

Score-

based

Attention

Network

(S2AN)

P
rio

rity
 L

ea
rn

in
g

 F
ra

m
ew

o
rk

Low-

level

Planner

Figure 1: Limited Time MAPF Problem and Attention-based
Priority Learning Framework.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1993

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

MAPF algorithms can be categorized into non-learning and
learning approaches. Non-learning algorithms can be further
divided into systematic search algorithms, rule-based algorithms,
and prioritized algorithms. Systematic search algorithms, such as
CBS [22], offer optimal or bounded-suboptimal solutions. However,
due to the NP-Hard nature of MAPF problems, they face challenges
when handling large-scale scenarios and exhibit exponential-time in
the worst case. On the other hand, rule-based algorithms guarantee
finding a solution in polynomial time but may encounter planning
time or memory issues in practical applications. Prioritized algo-
rithms, such as MAPF-LNS2 [11] (the state-of-the-art unbounded
suboptimal MAPF algorithms) and PBS [14], perform well in
practice despite being incomplete. They decompose the MAPF
problem into a series of single-agent planning problems that can be
solved sequentially based on some underlying priority, each treating
higher-priority agents as obstacles. While low-level planning
can achieve optimality, it does not guarantee the optimality of
the overall plan, as high-level planners often lack the ability
to adequately consider global features and predict interactions
with lower-priority agents. In contrast, learning-based methods
have shown great abilities at leveraging global information and
achieving high performances in many other applications, such as
routing problems [8]. In particular, existing learning-based MAPF
approaches [17, 21, 27] often rely on distributed reinforcement
learning (RL) or partially centralized Multi-Agent Reinforcement
Learning (MARL) algorithms. They scale well across different team
sizes, world sizes, and obstacle densities. However, these methods
cannot guarantee optimality or completeness. Due to their black-
box nature, learning-based methods lack behavior consistency and
low-level optimality. This often leads to extended time requirements
for guiding all agents to their goals. In practice, learning methods
struggle to achieve optimality and may fail to solve problems within
a limited time, especially in highly obstructed, small-world-size, or
dense-agent scenarios [17, 21].

To address these limitations, this paper introduces a novel
paradigm for Multi-Agent Path Finding (MAPF) that combines
learning and prioritized planning.We harness the power of machine
learning to reason about global information and directly generate
high-quality priorities for the agents. These priorities are then
used to quickly find near-optimal low-level paths for the agents,
and thus solve the problem with high completeness and low time
complexity. In doing so, our approach directly learns cooperation in
the priority space of the agents. Specifically, we employ an encoder
to encode the MAPF instance and a decoder to sequentially output
the agent to be planned next, based on the encoded information
and information about all planned trajectories so far. To the
best of our knowledge, we are the first to utilize Reinforcement
Learning (RL) for learning priorities for MAPF. Accordingly, the
main contributions are outlined as follows.

(1) We introduce a novel hybrid paradigm for MAPF, which
combines machine learning and priority-based planning.
There, the behavior inconsistency and suboptimal low-level
planning challenges are explicitly addressed by building
upon the prioritized planning framework, also offering
promising scalability. Experiments demonstrate that our
method has better solution quality and higher completeness

than existing learning-based methods in highly obstructed
scenarios.

(2) Our framework is able to yield high-completeness solutions
to large-scale MAPF instances under strong time constraints,
typically within seconds for teams of up to 180 agents in
32*32 random 20% obstacle maps. It significantly outper-
forms a variety of MAPF algorithms in terms of success rate
on maps with large teams and high-density obstacles, while
keeping time complexity linear.

2 RELATEDWORK
2.1 MAPF Algorithms
Numerous algorithms have been developed to solve MAPF problem,
which is focused on finding the minimum-cost, conflict-free solu-
tion [6, 15]. Optimal MAPF resolution is NP-complete, frequently
encountering scalability issues [4]. Optimal MAPF resolution is NP-
complete, frequently encountering scalability issues [4]. Bounded
suboptimal solvers ensure that the cost of the solution is within a
given bound of the optimal value, and they operate at a relatively
accelerated pace [2]. However, they cannot handle large-scale
problems. Unbounded suboptimal solutions offer rapid computa-
tional speed and demonstrate admirable performance in large-scale
agent scenarios, finding applications in both research and industry
[2]. Accordingly, this paper concentrates on the elucidation of
unbounded suboptimal solutions. Unbounded suboptimal methods
for solving MAPF can be categorized into two broad classifications:
learning-based and non-learning-based approaches.

Classic non-learning-based approaches. These approaches
generally include rule-based algorithms [18, 20, 26], bounded-
suboptimal algorithms with an infinite bound factor [2, 24] and
prioritized planning algorithms. Rule-based algorithms generally
offer completeness guarantees and can be executed in polynomial
time under certain (weakened) conditions. However, in practical
applications, these methods often struggle with global optimal-
ity and are time-consuming for large-scale problems. Bounded-
suboptimal algorithms are based on CBS. While these methods no
longer require boundedness, their foundation in CBS techniques
still presents challenges when addressing larger-scale problems.
Prioritized planning algorithms have gained significant attention
due to their simplicity and efficiency. They can be seamlessly
extended with other algorithms and exhibit strong performance.

Learning-based approaches. These methods represent another
paradigm for computing approximate solutions to the MAPF
problem through the iterative refinement of temporal strategies
informed by feedback rewards. These approaches engage in policy
planning for each agent, employing local observations or messages
to determine the next action. Notable methods in this category
include distributed RL techniques such as PRIMAL [21], MARL
approaches like SCRIMP [27] and PICO [13]. PRIMAL initially
introduces RL and learns a fully decentralized policy in a partially
observable environment. Recent research has emphasized commu-
nication learning for the MAPF problem. While specific features
and networks enhance success rates, they often struggle to scale to
large scenarios due to communication complexity. Learning-based
methods show scalability under certain conditions. However, due
to the challenges associated with multimodal policy learning and

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1994

inconsistent behavior, they struggle to find feasible solutions for
scenarios involving hundreds or more agents.

2.2 Prioritized Planning
Prioritized planning algorithms are neither complete nor optimal;
however, they represent a computationally inexpensive and highly
effective approach to solving the MAPF problem [3, 7, 14]. These
methods are predicated on a straightforward prioritization scheme:
each agent is assigned a unique priority, and agents are subse-
quently ordered according to predefined global priorities. The
agent with the highest priority is enabled to compute its individual
optimal path first. The Attention routing problem shares similarities
withMAPF and is also NP-Hard [8, 10], requiring the generation of a
non-repeating sequence. It necessitates a trade-off between solution
quality and computational time [5]. Mainstream approaches can
be classified into three types: improvement, backtracking, and
construction methods.

Backtracking. These methods often necessitate iterative tra-
versal of the entire priority space, exemplified by algorithms like
PBS [14]. Such methods iteratively search through a subset of the
space until a feasible solution is discovered. Analogous to CBS [22],
this method partitions the space based on conflicts arising from the
generated paths and is provably p-complete.

Iteration. The iteration methods proceed to generate progres-
sively superior solutions, building upon previous ones, until com-
pletion. MAPF-LNS2 [11] employs the large neighborhood search
framework for its iterative procedure and currently represents the
state-of-the-art in unbounded MAPF methods.

Construction. The construction methods typically produce
a solution in a single pass, contrasting with improvement and
backtracking approaches, which require repetitive iteration and
search traversal. Hence, construction methods boast superior real-
time capabilities alongside a commendable success rate. It is well
known in the routing problems [8, 10] but is rare in MAPF. They
are capable of rapidly generating high-quality suboptimal solutions
and exhibit admirable scalability. Accordingly, this paper introduces
a construction-type attention routing method.

3 PRELIMINARIES
3.1 Multi Agent Path Finding
Definition 1 (Multi-Agent Path Finding). In a known 2D static
grid map containing multiple obstacles, we consider a scenario with
𝑛 agents. Each agent possesses a distinct starting location that does
not overlap with obstacles or other agents’ starting positions, as
well as unique goal locations that are similarly obstacle-free and
non-overlapping. At each discrete time step, agents can move to
neighboring cells or remain stationary at their current locations.
The primary objective is for each agent to plan a path that satisfies
the following conditions: 1) Begins at their respective starting
positions, 2) Avoids collisions with other agents and obstacles, and
3) all agents end up at their goal locations at some terminal time
step. The solution to this problem comprises a set of paths for all
agents. The optimization objective is to minimize the sum of the
path lengths. However, instead of seeking the optimal solution, our
focus is on efficiently finding a feasible solution within a limited
time frame.

Many decoupled Multi-Agent Path Finding (MAPF) algorithms
break down the multi-agent planning problem into multiple smaller
constrained single-agent planning problems. These single-agent
planners have been extensively studied and are typically governed
by non-learning methods. One such powerful single-agent planner
is SIPPS (Safe Interval Path Planning with Soft constraints) [11],
capable of efficiently handling scenarios involvingmoving obstacles.
We employ the SIPPS as the low-level single-agent path planner to
complete our framework.

𝑠1 𝑔1𝑔2

𝑔3

𝑠2 𝑠1

𝑔2

𝑔1

Obstacle𝑠1 𝑠2 Start points 1,2 𝑔1 𝑔2 𝑔3 Goals 1,2,3

(a) Failure: Target blocking (b) Failure: Run over

Figure 2: Priority Failure Reasons.

3.2 Prioritized Planning Failure Analysis
Prioritized planning is a prevalent decoupled method for MAPF.
It operates by assigning a fixed global order and then planning
the agents’ paths sequentially. The highest-priority agent begins
by optimally planning its path while avoiding static obstacles.
Subsequently, each agent plans its path, considering not only static
obstacles but also treating previously planned agents’ paths as
moving obstacles. This process repeats 𝑛 times, where 𝑛 is the
number of agents, ultimately solving the problem. This method
efficiently simplifies the multi-agent problem into a series of single-
agent problems.

Prioritized planning, while widely used, has been proven to be
incomplete and suboptimal. Randomly assigned priorities can lead
to poor or even failed solutions. Failures in prioritized planning
can be categorized into two main situations [11], as illustrated in
Figure 2. The first situation is goal blocking, where higher-priority
agents (e.g., 𝑎2 and 𝑎3) reach their goals early and occupy them,
entirely preventing lower-priority agents (e.g., 𝑎1) from reaching
their destinations. While feasible solutions can be generated when
𝑎1 has higher priority than 𝑎2 or 𝑎3, in dense obstacle environments,
agents can be blocked by different agents at various priority levels,
necessitating multiple visits to their goal before completing the task.
This makes it challenging to find a feasible priority assignment in
a single pass.

The second reason is run over, where higher-priority agents (e.g.,
𝑎2) plan paths that intersect with lower-priority agents (e.g., 𝑎1).
In such cases, 𝑎1 lacks the required maneuvering space to plan a
collision-free path. It is worth noting that if all agents can wait at
starts and goals without obstructing others, any priority assignment
would solve the problem. We refer to this as a well-formed problem.

4 METHOD
This section outlines our approach to the prioritized problem
within a Markov Decision Process (MDP) framework. We start by
formulating the problem as an MDP, subsequently highlighting two
critical and time-efficient features that enable our learning-based

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1995

model to learn patterns and relationships within the data pertaining
toMAPF problems. Next, we elaborate on our policy network, S2AN,
which extracts latent information from these critical features and
learns to deliver priority sequences with high completeness in an
encoding-decoding manner. Lastly, we present our reinforcement
learning technique, which efficiently trains this model.

𝑠1 𝑠2

𝑎1

Low-level

Planner

Avoid planned

State Transition Function High-level Priority Planner Agent ID𝑎𝑛

Transit

𝑎2

Low-level

Planner

Low-level

Planner
…

𝑠𝑛

𝑎𝑛

Low-level

Planner

Avoid planned

Figure 3: MDP Formulation of Prioritized Planning.

4.1 Markov Decision Process Formulation
A MAPF instance comprises three basic components: an obstacle
map, start locations, and goal locations. We describe the MDP of
prioritized planning in Figure 3. In the initial state 𝑠1, the high-
level priority planner selects an agent, such as 𝑎1, as its action.
Subsequently, the low-level single-agent path planner computes
the path for this agent while considering the paths of previously
planned agents as soft-moving obstacles. The low-level planner
provides feedback to the environment, leading to a transition to
state 𝑠2 based on this feedback. This iterative process repeats for
𝑛 times, ultimately progressing the state to its final configuration.
Given an instance with 𝑛 agents, we formally define the MDP of
prioritized planning as follows.

State. The state consists of two parts, a static and a dynamic
one. The static part contains the basic components of the instance,
i.e., the obstacle map, start, and goal locations, as well as additional
static features such as harmful features. On the other hand, the
dynamic part contains the agents that have been selected before
and their respective planned paths.

Action. The action of the MDP is the index of an agent, i.e.,
selecting the agent at the current time step. Since the high-level
planner cannot choose an agent more than once, the legal set of
actions consists of all the agents that have not been chosen.

State transition. We use SIPPS as the low-level path solver.
Once the policy network delivers an action, SIPPS generates the
corresponding agent’s path. This planned path constitutes as a
component of the dynamic state of the next state.

Reward. The goal is to find a feasible solution. We achieve this
by minimizing the collisions. When new collisions are detected,
𝑅(𝑠𝑡 , 𝑎𝑡) are equal to the negative number of new collision agents.
When the episode terminates and a collision-free solution is found,
we give a positive episode reward.

4.2 Feature Design
Effective feature engineering is the key to unlocking the full
potential of a learning-based model for solving MAPF problems.
In our paper, we employ two well-designed features including
harmful feature and target matrix, based on domain knowledge to
capture the essential information from data given a MAPF instance.
Harmful feature assesses local connectivity to determine whether
an agent’s goal is blocking its neighborhood or not. Figure 4 offers
an illustrative example of how this feature distinguishes whether
an agent’s goal is harmful or not. In practice, goal blocking is a
common occurrence. When an agent’s goal obstructs other agents,
its priority should be lowered. However, manually detecting all
blocking pairs can be time-consuming. Consequently, we aim to
autonomously discern these blocking relationships by utilizing the
provided harmful feature in a learning-based model. The harmful
feature allows the model to capture the blocking relationships
inherent in the data, enhancing its ability to address the MAPF
problem effectively.

1

2

3

4

1

3

4

harmful not harmful

1

2

3

4

1

3

4

harmful not harmful

(a) harmful goal (b) not harmful goal

Figure 4: Harmful Feature Illustration. The star indicates the
goal location. Assume the goal has up to four non-obstacle
neighbors 1,2,3,4. We examine the connectivity sequentially.
If any of them fail, then the goal is blocking a region and is
considered harmful. In sub-figure (a), 3 cannot find a path to
4 so it is harmful. In (b), all the non-obstacle neighbors are
connected so it is not harmful.

On the other hand, another feature target matrix is derived
from the Minimal Target Visit A* algorithm (MTVA*), inspired by
MAPF-LNS2 [11]. In the original A* algorithm, the search prioritizes
exploring the node with the minimal 𝑓 value from the open set
to find a path. 𝑓 is the sum of the node’s heuristic distance to
the goal and its traveled distance. However, in MTVA*, instead of
focusing solely on the minimal 𝑓 value, it explores the node with
the least visits to other agents’ goals, denoted as 𝑡𝑣 . In cases where
multiple nodes |𝑁 | share the minimum 𝑡𝑣 values, it will select the
node in |𝑁 | with the smallest 𝑓 value. We aggregate visiting pairs
and represent them as target matrix. Formally, 𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝑖 𝑗 = 1
if agent 𝑖 passes through agent 𝑗 ’s goal during the execution of
MTVA*; otherwise, 𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝑖 𝑗 = 0. Notably, target matrix is
a dynamic feature that changes whenever the high-level planner
generates an action. Hence, we integrate target matrix into the
decoding step to provide auxiliary knowledge to our learning-based
model. Similar to the algorithm for topological sorting with zero
in-degrees, when an agent no longer obstructs others, it can be
selected as the highest-priority agent among the remaining ones.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1996

0/1

Hybrid Initial Embeddings

EmbeddingResnet

𝑥1 𝑥2 ··· 𝑥𝑛

𝑥𝑖1 𝑥𝑖2

Multi-head Attention

Feed Forward

𝑥1
𝑙 𝑥2

𝑙 ··· 𝑥𝑛
𝑙

Add & Norm

Add & Norm

𝑥1
𝐿+1 𝑥2

𝐿+1 ··· 𝑥𝑛
𝐿+1

Scale
𝑇a𝑟𝑔𝑒𝑡𝑀𝑎𝑡r𝑖𝑥𝑡

𝑄

Linear

𝐾 𝑉 𝐾’

Mask Fill

𝑄𝑡 𝐾𝑡 𝑉𝑡 𝐾’𝑡

SoftMax

MatMul MatMul

Scale

MatMul

Linear

Harmful Detector

Harmful

Feature

Target-Obstacle Map

Sum

𝑷𝒓𝒐𝒃𝒕

Attention-based Encoder(× 𝑳) Synthetic Score-based Decoder
𝑿𝟏

𝒆𝒎𝒃

Concatenate

SoftMax

Figure 5: The Network Structure of Synthetic Score-based Attention Network(S2AN).

4.3 Policy Network
To solve the MAPF problem, we develop a novel learning-based
method namely S2AN. Our S2AN is built upon a Transformer-
style [25] architecture and consists of hybrid initial embeddings,
attention-based encoder, and synthetic score-based decoder, as
shown in Figure 5.

Hybrid Initial Embeddings. The hybrid initial embeddings
serve as inputs to S2AN and are obtained by mapping the raw
features associated with a MAPF instance into a high-dimensional
feature space. For a given instance S with 𝑛 agents, each agent
possesses two types of raw features: instance features (comprising
start location, goal location, and obstacle map) and a domain-
specific feature harmful feature. We process these two types of
features separately. Specifically, we employ a ResNet to project
instance features into a 𝑑1-dim vector denoted as 𝑥𝑖1. On the other
hand, we utilize a linear layer to map Harmful feature which
is a boolean variable into a 𝑑2-dim vector represented as 𝑥𝑖2.
Subsequently, these two vectors, 𝑥𝑖1 and 𝑥𝑖2, are concatenated to
form the 𝑑-dim hybrid initial embedding 𝑥𝑖 of agent 𝑖 .

Attention-based Encoder. The attention-based encoder takes
the hybrid initial embeddings 𝑋1 = {𝑥𝑖 }𝑛1 as inputs and generates
an advanced embedding matrix denoted as 𝑒𝑚𝑏 for all agents. We
employ an encoder structure similar to that of Transformer [25],
comprising 𝐿 attention layers. Each attention layer consists of a
multi-head attention (MHA) sublayer that facilitates communica-
tion between agents to capture their relationships more effectively
and a feed-forward (FF) sublayer that consists of two linear projec-
tion layers with a ReLU activate function in between. Each sublayer
is followed by a skip-connection and batch normalization(BN). Let
𝑋𝑙 represent the input to attention layer 𝑙 (𝑙 ∈ {1, · · · , 𝐿}). The core
of the MHA sublayer, based on 𝑋𝑙 , is formally defined as follows:

𝑄ℎ
𝑙
, 𝐾ℎ
𝑙
,𝑉ℎ
𝑙

=𝑊 ℎ
𝑄,𝑙
𝑋𝑙 ,𝑊

ℎ
𝐾,𝑙
𝑋𝑙 ,𝑊

ℎ
𝑉 ,𝑙
𝑋𝑙 , (1)

𝐴ℎ
𝑙
= 𝐴𝑡𝑡𝑒𝑛(𝑄ℎ

𝑙
, 𝐾ℎ
𝑙
,𝑉ℎ
𝑙
)

= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄ℎ
𝑙
∗ (𝐾ℎ

𝑙
)𝑇 /

√︁
𝑑𝑘)𝑉ℎ𝑙 , ℎ = 1, 2, · · · , 𝐻,

(2)

𝑀𝐻𝐴(𝑄𝑙 , 𝐾𝑙 ,𝑉𝑙) = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐴1
𝑙
, 𝐴2
𝑙
, ..., 𝐴𝐻

𝑙
)𝑊𝑂 , (3)

ℎ̂𝑙 = 𝐵𝑁 (𝑋𝑙 +𝑀𝐻𝐴(𝑄𝑙 , 𝐾𝑙 ,𝑉𝑙)), (4)

where 𝑄ℎ
𝑙
, 𝐾ℎ
𝑙
, and 𝑉ℎ

𝑙
represent Query, Key, and Value matrices,

respectively;𝐻 is the number of attention heads;𝑊 ℎ
𝑄,𝑙

,𝑊 ℎ
𝐾,𝑙

,𝑊 ℎ
𝑉 ,𝑙

∈
𝑅𝑑𝑘×𝑑 with 𝑑𝑘 = 𝑑/𝐻 , and𝑊𝑂 ∈ 𝑅𝑑×𝑑 are trainable parameters.
Eqs.(1) and (2) are applied for each attention head ℎ. Then the
output of the MHA sublayer, i.e., ℎ𝑙 , is fed into the FF sublayer
to get the output of the attention layer 𝑙 , i.e., 𝑋𝑙+1, expressed as
Eq.(5). After applying these operations for a total of 𝐿 attention
layers, we ultimately obtain the attention-based encoder’s output,
𝑒𝑚𝑏 = 𝑋𝐿+1, which serves as the input to the synthetic score-based
decoder.

𝑋𝑙+1 = 𝐵𝑁 (ℎ̂𝑙 + 𝐹𝐹 (ℎ̂𝑙)), (5)
Synthetic Score-based Decoder. Based on the embedding

matrix 𝑒𝑚𝑏, our synthetic score-based decoder constructs solutions
to MAPF problems in an autoregressive manner. The decoder
consists of one synthetic attention layer that integrates a domain-
specific feature,i.e., target matrix, into an MHA mechanism, and
one compatibility layer. We first calculate the Query, Key, and Value
matrixes, denoted as𝑄ℎ , 𝐾ℎ , and𝑉ℎ , respectively, for the synthetic
attention layer, and single head key termed 𝐾 ′ for the compatibility
layer through linear transformation, expressed as follows,

𝑍 =𝑊𝑍𝑒𝑚𝑏, 𝑍 ∈
{
𝑄ℎ, 𝐾ℎ,𝑉ℎ, 𝐾 ′

}
. (6)

Given the constraint that each agent can be selected no more
than once, we should forbid the actions representing selected agents
to be chosen again during the decoding process. To achieve this,
we explicitly eliminate the visited agents in the instance at each
step. Specifically, at each time step 𝑡 , we update 𝑄ℎ𝑡 , 𝐾

ℎ
𝑡 , 𝑉

ℎ
𝑡 , and

𝐾 ′
𝑡 , where𝑄

ℎ
1 , 𝐾

ℎ
1 ,𝑉

ℎ
1 , and 𝐾

′
1 are initialized as𝑄

ℎ , 𝐾ℎ ,𝑉ℎ , and 𝐾 ′,
respectively. This update is achieved by applying a mask fill layer
that sets the corresponding information of the selected agents to
zero in the original 𝑄ℎ , 𝐾ℎ , 𝑉ℎ , and 𝐾 ′, as shown below,

𝑍𝑡 = 𝑀𝑎𝑠𝑘𝐹𝑖𝑙𝑙 (𝑍,𝑚𝑎𝑠𝑘𝑡), 𝑍 ∈
{
𝑄ℎ, 𝐾ℎ,𝑉ℎ, 𝐾 ′

}
, (7)

where 𝑚𝑎𝑠𝑘𝑡 is a boolean tensor, and its value corresponding
to the selected agent is set to zero. In the synthetic attention
layer, it first computes multi-head self-attention score 𝛼ℎ

𝑠𝑒𝑙 𝑓
, i.e.,

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1997

𝛼ℎ
𝑠𝑒𝑙 𝑓

=𝑄ℎ𝑡 (𝐾ℎ𝑡)𝑇 /
√︁
𝑑𝑘 , ℎ = 1, 2, · · · , 𝐻 . Thereafter, we introduce

the domain-specific feature target matrix as our auxiliary atten-
tion score which further facilitates various feature embeddings.
Notably, the target matrix, i.e., 𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝑡 (𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑎𝑡𝑟𝑖𝑥1 =
𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑎𝑡𝑟𝑖𝑥), is a dynamic feature about the blocking pairs,
which also be updated by the mask fill layer. Then, the self-
attention score 𝛼ℎ

𝑠𝑒𝑙 𝑓
and target matrix are concatenated and fed

into a linear layer to obtain the synthetic attention score, i.e.,
𝛼ℎ = 𝑊𝑠𝑦𝑛𝑡ℎ (𝐶𝑜𝑛𝑐𝑎𝑡 (𝛼ℎ𝑠𝑒𝑙 𝑓 ,𝑇𝑎𝑟𝑔𝑒𝑡𝑀𝑎𝑡𝑟𝑖𝑥𝑡)), where 𝑊𝑠𝑦𝑛𝑡ℎ ∈
𝑅2𝐻×𝐻 is a trainable parameter. The synthetic attention score
is then normalized to 𝛼ℎ through SoftMax, which is further
used to calculate attention values for each head, i.e., ℎ𝑒𝑎𝑑ℎ =

𝛼ℎ𝑉ℎ𝑡 . Subsequently, all heads are concatenated together, which
then passes through a linear layer with a trainable parameter
𝑊𝑑 ∈ 𝑅𝑑×𝑑 to obtain the output of the synthetic attention layer,
i.e., 𝑄𝑝 = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, · · · , ℎ𝑒𝑎𝑑𝐻)𝑊𝑑 . Finally, we obtain the
probability of selecting actions via the compatibility layer, i.e.,
𝑃𝑟𝑜𝑏𝑡 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (Σ𝑛𝑖=1 (𝑄𝑝𝐾

′𝑇
𝑡 /

√︁
𝑑𝑘)) .

4.4 Training Algorithm
The S2AN model is trained using the REINFORCE algorithm [29],
which incorporates an entropy term to encourage exploration
during training. The REINFORCE loss is defined as the negative of
expectation of reward, i.e., L𝑅𝐿 = −E𝜏∽𝜋𝜃 [𝑅]. Then, the gradient
for minimizing the REINFORCE loss L𝑅𝐿 is defined as follows,

∇𝜃L𝑅𝐿 = −E𝜏 [
𝑇∑︁
𝑡=1

𝐺𝑡 · ∇𝜃 𝑙𝑜𝑔𝜋𝜃 (𝑎𝑡 |𝑠𝑡)], (8)

where the𝑇 is the total timesteps and equal to the number of agents
𝑛; 𝜏 is the selected action sequence (i.e. the solution) generated by
the policy 𝜋𝜃 ;𝐺𝑡 is the return at time 𝑡 , which is the discounted sum
of rewards. Additionally, an entropy loss is introduced to prevent
the model from converging to a suboptimal policy too quickly,
defined as follows,

L𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝜋𝜃) = E𝜏∽𝜋𝜃 [𝜋𝜃 (𝑎 |𝑠𝑡)𝑙𝑜𝑔(𝜋𝜃 (𝑎 |𝑠𝑡))] . (9)

Finally, the total gradient ∇𝜃L, is a combination of the REINFORCE
loss and the entropy loss, i.e.,∇𝜃L =∇𝜃L𝑅𝐿 +𝑘𝑒𝑛𝑡𝑟𝑜𝑝𝑦∇𝜃L𝑒𝑛𝑡𝑟𝑜𝑝𝑦,
where the 𝑘𝑒𝑛𝑡𝑟𝑜𝑝𝑦 is the coefficient of entropy loss to adjust the
importance of the entropy regularization during training, striking
a balance between exploration and exploitation.

In this paper, we employ two types of action-selection strategies:
a greedy strategy that always selects the action with the maximum
probability and a sampling strategy that samples actions based
on their probabilities. During the training process, we utilize the
sampling strategy to encourage exploration. In contrast, during the
inference process, we employ the greedy strategy to efficiently find
a feasible solution to the MAPF problem.

4.5 Reachability Repair Algorithm
In traditional non-distributed methods, the planned trajectory is
often either entirely feasible or plagued by collisions and cannot
be executed, presenting a binary outcome. On the other hand,
distributed methods, especially learning-based methods, frequently
yield collision-free solutions. When they fail to find a feasible

solution, they will output a collision-free solution, while not every
agent arrives at its goal. This characteristic is essential in certain
applications. However, our method is rooted in the prioritized
planning architecture. To address the limitation, we find it necessary
to provide a fast and effective post-processing method. In scenarios
where a collision solution is encountered, we aim to eliminate
collisions and enable the maximum number of agents possible to
reach their intended goals.

To address this issue, we propose a reachability repair algorithm
for S2AN, as shown in the appendix. The core idea of this method
involves replanning paths for all colliding agents, ensuring they
avoid collisions with others instead of reaching their goals. This
will be achieved by iteratively running SIPPS for the colliding
agents, and adjusting goals to start points to avoid collisions. An
obvious advantage is that the time complexity does not increase
significantly since most non-colliding agents can maintain their
initial paths. Specifically, we first decode the actions in a greedy
manner, resulting in obtaining the initial solution 𝑃 , where 𝑃 =

(𝑎1, 𝑃𝑎1) ∪ (𝑎2, 𝑃𝑎2) ∪ ...∪ (𝑎𝑛, 𝑃𝑎𝑛). Then, we select all the colliding
agents set 𝐶 in the solution 𝑃 . If there are no collisions, a feasible
solution will be found and returned as 𝑃 . Otherwise, the solution
needs to be repaired. Furthermore, since we change the goals of
colliding agents, some unmodified agents might share the same goal
as the modified ones, making the MAPF case invalid. Therefore, it
is critical to repeatedly adjust agents that collide with the modified
agent’s goal until no further collisions occur. Subsequently, we
remove the corresponding agents’ paths in 𝑃 and then replan their
paths using SIPPS to find a minimal number of collisions from their
start points to the new goals. If any agent fails to find a collision-
free path, the repair method will return an empty solution. If repair
is successful, the reach rate can be calculated as 𝑃𝑟𝑒𝑎𝑐ℎ = |𝐶𝐿 |/𝑛,
where |𝐶𝐿 | is the number of agents that altered their goals. Thus,
this method still has a linear time complexity and improves the
reach rate of S2AN.

5 EXPERIMENTS
In our research, we conducted an extensive experimental evaluation
for three aspects. 1) We compared the success rates of various
MAPF algorithms, under identical maximum planning times. This is
done to ascertain the high completeness of the proposed method in
relation to other prevalent algorithms. 2) We aimed to compare the
success rate, episode length, and reach rate against current learning
methods to present the advantages. 3) We embarked on an ablation
study to critically evaluate the effectiveness of a salient component
of our algorithm. For the purpose of these tests, we generated 100
randomized maps and scenarios. These were constructed with an
obstacle density of 20 percent, derived from the standard MAPF
benchmark suite. To further underscore the superiority of our
priority learning framework, an additional 100 random scenes were
generated using empty maps.

5.1 Settings and Metrics
Settings. In the training procedure, the batch size is set to 64, and
Ray is employed to accelerate our sampling process. For the initial
embedding network, we utilize ResNet18 to encode the maps. In
both the encoder and decoder networks, we incorporate 8 attention

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1998

heads with 128-dimensional features. The encoder consists of 2
layers. In the encoder and decoder network, we use 8 attention
heads with 128 dimension features. The encoder layer number is 2.
In terms of the learning procedure, we employ the Adam optimizer
with a learning rate of 3 × 10−4. The entropy weight is set at 0.3,
and the discount factor 𝛾 , is set to 0.95. The training is executed on
a server equipped with a 4x3090 GPU and an i9-10980XE CPU, but
only one GPU is used during the training process. Source codes are
in https://github.com/marmotlab/S2AN.

Metrics. In our evaluation of performance, we focus on five key
metrics: success rate, reach rate, makespan, episode length, and
runtime. These metrics serve to benchmark our approach against
other methods within the generated scenarios.

5.2 Limited Time Completeness Experiment
We select two representative algorithms for comparison to validate
our high completeness within a limited time. 1) PIBT [18].This
algorithm, based on priority inheritance, boasts linear time com-
plexity, which is on par with our S2AN algorithm. It operates at
high speed and provides a guarantee of reachability. It stands as
a convincing benchmark due to its matching time complexity. 2)
Same time constraint PBS [14]. PBS is a well-known prioritized
planning method due to its simplicity and efficiency. This priority-
based search algorithm with backtracking is capable of exploring
all possible priorities given sufficient time. To provide a fair
comparison, we evaluate it using the same time constraint applied in
our algorithm. To ensure amore robust evaluation of the algorithm’s
effectiveness, we calculate the success rates of the PBS algorithm
when subjected to time limits of 0.5T and 1.5T respectively.

0.0

0.5

1.0

Su
cc

es
s R

at
e

32*32 random map with 20% obstacles

60

80

M
ak

es
pa

n

50 100 150 200 250
num of agents

0

25

50

Ru
nt

im
e/

s

PIBT S2AN PBS with same time

Figure 6: Limited Time Completeness Experiment.

As illustrated in Figure 6, S2AN demonstrates superior per-
formance in terms of success rate when compared to both the
same-time PBS and PIBT. Although the average makespan remains
nearly identical, S2AN significantly reduces the required time while
maintaining a linear time complexity. PBS algorithm employs a tree
search approach to enumerate the priority space in search of a
feasible solution. In contrast, S2AN generates a specific priority,
thereby avoiding the need to search extensively through the
priority space. PBS, implemented in C++, exhaustively explores

numerous priorities within a similar time frame. In this context, the
neural network component of S2AN aids in learning the correct
dependencies among agents. For scenarios with a small agent count
(less than 100), collisions are infrequent, and PBS operates swiftly. It
can quickly iterate through the critical regions of the priority space
using conflict-based search, thereby maintaining a 100% success
rate in a short timeframe. However, as the agent count surpasses
100, the incidence of collisions increases. In such cases, exhaustive
priority space exploration by conflict becomes less efficient and
time-consuming. Particularly in scenarios involving 140 to 250
agents, PBS often fails to find any solutions within the allocated
time. In contrast, S2AN, guided by a global perspective, swiftly
identifies feasible priorities and resolves a substantial portion of the
problem just in one-shot. PIBT is a rule-based method, dynamically
adjusting priorities at each time step. It is noteworthy that PIBT
offers a distributed version that exhibits exceptional speed when
fully parallelized. It can be executed in less than 1 second. While
effective under specific graph conditions, it tends to struggle and
become unsuccessful as obstacle density rises. As in Figure 6,
PIBT exhibits a lower success rate compared to S2AN in scenarios
characterized by dense obstacles.

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

32*32 random map with 20% obstacles

50 100 150 200 250
num of agents

100

200

300

400

500

Ep
iso

de
 L

en
gt

h

0.00

0.25

0.50

0.75

1.00

Re
ac

h
Ra

te

S2AN DHC PRIMAL Success Reach

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

32*32 empty map

50 100 150 200 250
num of agents

100

200

300

400

500

Ep
iso

de
 L

en
gt

h

0.00

0.25

0.50

0.75

1.00

Re
ac

h
Ra

te

S2AN DHC PRIMAL Success Reach

Figure 7: Priority Learning Paradigm Effectiveness. In the
double y-axis sub-figure, the solid line represents the success
rate, and the dotted line represents the reach rate.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1999

Table 1: Ablation Performance. The values in parentheses
represent the percentage relative to the S2AN method.

Method Test Reward Converge TimeStep/103

S2AN 17.77 45.5
no Entropy 7.53(-57%↓) 21.8
No Target Matrix 7.13(-59%↓) 16.7
No Harmful 17.12(-4%↓) 73.0(+60%↑)
Random 3 None

5.3 Priority Learning Paradigm Effectiveness
To rigorously verify that our framework can achieve better results
due to its explicit evasion of multimodal policy learning and
inconsistent behavior, we compare the success rate, reach rate,
and episode length across various learning methods. Mainstream
learning methods adopt a distributed way. Given the current
position, field of view (FOV), and communication messages, these
methods produce an action at each timestep. By giving a maximum
episode length, we can quantify experimental outcomes. Given that
the average makespan in non-learning approaches is below 100, we
design the maximum episode length as 512. Herein, episode length
refers to the average length required to address the problem. The
reach rate denotes the fraction of agents who successfully reach
their goals by the episode’s conclusion. Even if an episode is not
deemed successful, learning techniques can still plan a not-feasible
solution within a constrained timeframe and achieve a high reach
rate. To thoroughly demonstrate the performance of our method,
we augmented it with a Reachability Repair Algorithm described
in Section 4.5.

As depicted in Figure 7, our performance results surpass those of
both PRIMAIL [21] and the communication-based learning method
DHC [17]. In scenarios with an empty map, S2AN demonstrates
comparable reach rates to PRIMAL. However, S2AN outperforms
PRIMAL in terms of success rate when the agent count exceeds
200. DHC leverages strong heuristic map features, but its efficacy
diminishes notably in empty map scenarios, resulting in lower
success and reach rates. Regarding average episode length, S2AN
excels primarily due to its ability to avoid inconsistent behaviors.
Notably, as the number of agents increases, the episode length
required for problem resolution experiences a significant increment,
accompanied by a drop in solution quality. In the 32×32 random
map with 20% obstacle density, S2AN consistently maintains an
advantage over the other two methods. S2AN exhibits lower reach
rates compared to PRIMAL when 𝑛 exceeds 180. This suggests
that the repair method employed may not be robust enough, even
though S2AN still outperforms PRIMAL. As discussed previously,
the reachability repair method proves valuable in enhancing S2AN’s
reach rate performance without imposing excessive computational
demands. Learning within the priority space appears to offer
improved completeness and solution quality, especially in scenarios
with a large number of agents. By providing a global map and
sacrificing a reasonable amount of time, we can achieve enhanced
performance through this learning approach.

5.4 Ablation Study
We conducted an ablation study to evaluate the effectiveness of
the Synthetic Score-Based Attention Network (S2AN) and the
entropy loss. In order to assess S2AN, we compared it to the
original Attention Model [8], with the key difference being the
inclusion of domain-specific features, harmful feature and the target
matrix. Therefore, we present results without these two features,
and separately without the entropy loss component. Additionally,
for this study, the success reward was set to a value of 20, resulting
in a maximum achievable reward of 20.

As shown in Table 1, when the entropy loss is omitted, we
observe a significant 57% decrease in the test reward. Nevertheless,
this performance remains better compared to a random policy,
suggesting that the network may quickly converge to a suboptimal
policy from which it struggles to escape. Another notable impact on
performance arises from the absence of the target matrix. This key
feature plays a crucial role in guiding the network by providing an
approximate feasible solution, effectively indicating which agents
should be retained to solve the problem. Its inclusion significantly
enhances the network’s ability to learn a good policy. Conversely,
the harmful feature has minimal impact on performance. In practice,
the network can acquire local connectivity information through the
ResNet, resulting in negligible performance differences. However,
the harmful feature can accelerate the learning process, reducing
the time required to reach the same policy by up to 60% when
compared to S2AN.

6 CONCLUSION
In this paper, we propose an effective learning-based paradigm
that fuses prioritized planning, which is aimed at addressing
the challenge of solving large-scale MAPF in a limited time by
fusing the advantages of both classes of methods. By incorporating
prioritized planning into the attention-based learning algorithm,
we have achieved comprehensive collaborative strategies among
multiple agents, elevating both completeness and solution quality
within linear time complexity. Simultaneously, by integrating
learning mechanisms into the prioritized planning framework and
formulating prioritized planning as the Markov Decision Process,
the method enables a more informed search process for MAPF.
Experiments demonstrate that our attention-based priority learning
method achieves a balance between computational time and
completeness, outperforming a range of learning-based planners
in large-scale pathfinding tasks in terms of success rate, reach rate,
and solution quality. Moreover, compared to PIBT and restricted-
time PBS, our proposed method exhibits high completeness in
medium to large-scale dense obstacle scenarios, making it suitable
for expediting various MAPF algorithms.

ACKNOWLEDGMENTS
This researchwas supported by the SingaporeMinistry of Education
(MOE) Academic Research Fund (AcRF) Tier 1 grant, as well as by
an Amazon Research Award. This work was also funded by the
National Natural Science Foundation of China, the Science Fund
for Creative Research Groups (52221005), and the National Natural
Science Foundation of China (Key Project 52131201), as well as the
China Scholarship Council.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2000

REFERENCES
[1] Anton Andreychuk, Konstantin Yakovlev, Pavel Surynek, Dor Atzmon, and Roni

Stern. 2022. Multi-agent pathfinding with continuous time. Artificial Intelligence
305 (April 2022), 103662. https://doi.org/10.1016/j.artint.2022.103662

[2] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. 2014. Suboptimal Variants
of the Conflict-Based Search Algorithm for the Multi-Agent Pathfinding Problem.
Proceedings of the International Symposium on Combinatorial Search 5, 1 (2014),
19–27. https://doi.org/10.1609/socs.v5i1.18315 Number: 1.

[3] Shao-Hung Chan, Roni Stern, Ariel Felner, and Sven Koenig. 2023. Greedy
Priority-Based Search for Suboptimal Multi-Agent Path Finding. Proceedings of
the International Symposium on Combinatorial Search 16, 1 (July 2023), 11–19.
https://doi.org/10.1609/socs.v16i1.27278 Number: 1.

[4] Liron Cohen, Tansel Uras, T. K. Kumar, and Sven Koenig. 2019. Optimal
and Bounded-Suboptimal Multi-Agent Motion Planning. Proceedings of the
International Symposium on Combinatorial Search 10, 1 (2019), 44–51. https:
//doi.org/10.1609/socs.v10i1.18501

[5] Ariel Felner, Roni Stern, Solomon Shimony, Eli Boyarski, Meir Goldenberg, Guni
Sharon, Nathan Sturtevant, Glenn Wagner, and Pavel Surynek. 2017. Search-
Based Optimal Solvers for the Multi-Agent Pathfinding Problem: Summary and
Challenges. Proceedings of the International Symposium on Combinatorial Search
8, 1 (2017), 29–37. https://doi.org/10.1609/socs.v8i1.18423

[6] Omri Kaduri, Eli Boyarski, and Roni Stern. 2020. Algorithm Selection for
Optimal Multi-Agent Pathfinding. Proceedings of the International Conference on
Automated Planning and Scheduling 30 (June 2020), 161–165. https://doi.org/10.
1609/icaps.v30i1.6657

[7] Kazumi Kasaura, Mai Nishimura, and Ryo Yonetani. 2022. Prioritized Safe
Interval Path Planning for Multi-Agent Pathfinding With Continuous Time on
2D Roadmaps. IEEE Robotics and Automation Letters 7, 4 (Oct. 2022), 10494–10501.
https://doi.org/10.1109/LRA.2022.3187265 Conference Name: IEEE Robotics and
Automation Letters.

[8] Wouter Kool, Herke van Hoof, and Max Welling. 2019. Attention, Learn to Solve
Routing Problems!. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net. https://
openreview.net/forum?id=ByxBFsRqYm

[9] Sarit Kraus. 1997. Negotiation and cooperation in multi-agent environments.
Artificial Intelligence 94, 1 (July 1997), 79–97. https://doi.org/10.1016/S0004-
3702(97)00025-8

[10] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon,
and Seungjai Min. 2020. POMO: Policy Optimization with Multiple Optima for
Reinforcement Learning. In Advances in Neural Information Processing Systems,
Vol. 33. Curran Associates, Inc., 21188–21198. https://proceedings.neurips.cc/
paper/2020/hash/f231f2107df69eab0a3862d50018a9b2-Abstract.html

[11] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven Koenig.
2022. MAPF-LNS2: Fast Repairing for Multi-Agent Path Finding via Large
Neighborhood Search. Proceedings of the AAAI Conference on Artificial Intelligence
36, 9 (June 2022), 10256–10265. https://doi.org/10.1609/aaai.v36i9.21266

[12] Jiaoyang Li, The Anh Hoang, Eugene Lin, Hai L. Vu, and Sven Koenig. 2023.
Intersection Coordination with Priority-Based Search for Autonomous Vehicles.
Proceedings of the AAAI Conference on Artificial Intelligence 37, 10 (June 2023),
11578–11585. https://doi.org/10.1609/aaai.v37i10.26368

[13] Wenhao Li, Hongjun Chen, Bo Jin, Wenzhe Tan, Hongyuan Zha, and Xiangfeng
Wang. 2022. Multi-Agent Path Finding with Prioritized Communication Learning.
In 2022 International Conference on Robotics and Automation (ICRA). IEEE, 10695–
10701. https://doi.org/10.1109/ICRA46639.2022.9811643 Place: Philadelphia,
PA, USA tex.eventtitle: 2022 IEEE International Conference on Robotics and
Automation (ICRA).

[14] Hang Ma, Daniel Harabor, Peter J. Stuckey, Jiaoyang Li, and Sven Koenig.
2019. Searching with Consistent Prioritization for Multi-Agent Path Finding.
Proceedings of the AAAI Conference on Artificial Intelligence 33, 1 (July 2019),
7643–7650. https://doi.org/10.1609/aaai.v33i01.33017643

[15] HangMa, Sven Koenig, Nora Ayanian, Liron Cohen,WolfgangHoenig, T. K. Satish
Kumar, Tansel Uras, Hong Xu, Craig Tovey, and Guni Sharon. 2017. Overview:

Generalizations of Multi-Agent Path Finding to Real-World Scenarios. Technical
Report. arXiv. https://doi.org/10.48550/arXiv.1702.05515 arXiv: 1702.05515 [cs].

[16] Hang Ma, Jingxing Yang, Liron Cohen, T. K. Kumar, and Sven Koenig. 2017.
Feasibility Study: Moving Non-Homogeneous Teams in Congested Video Game
Environments. Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment 13, 1 (2017), 270–272. https://doi.org/10.1609/
aiide.v13i1.12919

[17] Ziyuan Ma, Yudong Luo, and Hang Ma. 2021. Distributed Heuristic Multi-Agent
Path Finding with Communication. In 2021 IEEE International Conference on
Robotics and Automation (ICRA). 8699–8705. https://doi.org/10.1109/ICRA48506.
2021.9560748 ISSN: 2577-087X.

[18] Keisuke Okumura, Manao Machida, Xavier Défago, and Yasumasa Tamura. 2022.
Priority inheritance with backtracking for iterative multi-agent path finding.
Artificial Intelligence 310 (Sept. 2022), 103752. https://doi.org/10.1016/j.artint.
2022.103752

[19] Jingyao Ren, Vikraman Sathiyanarayanan, Eric Ewing, Baskin Senbaslar, and
Nora Ayanian. 2021. MAPFAST: A Deep Algorithm Selector for Multi Agent
Path Finding using Shortest Path Embeddings. In Proceedings of the 20th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS
’21). International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 1055–1063.

[20] Qandeel Sajid, Ryan Luna, and Kostas Bekris. 2012. Multi-Agent Pathfinding
with Simultaneous Execution of Single-Agent Primitives. Proceedings of the
International Symposium on Combinatorial Search 3, 1 (2012), 88–96. https:
//doi.org/10.1609/socs.v3i1.18243 Number: 1.

[21] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, T. K. Satish Kumar,
Sven Koenig, and Howie Choset. 2019. PRIMAL: Pathfinding via Reinforcement
and Imitation Multi-Agent Learning. IEEE Robotics and Automation Letters 4, 3
(July 2019), 2378–2385. https://doi.org/10.1109/LRA.2019.2903261

[22] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. 2015. Conflict-
based search for optimal multi-agent pathfinding. Artificial Intelligence 219 (Feb.
2015), 40–66. https://doi.org/10.1016/j.artint.2014.11.006

[23] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne
Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Kumar, Roman Barták,
and Eli Boyarski. 2019. Multi-Agent Pathfinding: Definitions, Variants, and
Benchmarks. Proceedings of the International Symposium on Combinatorial Search
10, 1 (2019), 151–158. https://doi.org/10.1609/socs.v10i1.18510

[24] Pavel Surynek. 2020. Bounded Sub-optimal Multi-Robot Path Planning Using
Satisfiability Modulo Theory (SMT) Approach. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 11631–11637. https://doi.
org/10.1109/IROS45743.2020.9341047 ISSN: 2153-0866.

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 6000–
6010.

[26] Hanlin Wang and Michael Rubenstein. 2020. Walk, Stop, Count, and Swap:
Decentralized Multi-Agent Path Finding With Theoretical Guarantees. IEEE
Robotics and Automation Letters 5, 2 (April 2020), 1119–1126. https://doi.org/
10.1109/LRA.2020.2967317 Conference Name: IEEE Robotics and Automation
Letters.

[27] Yutong Wang, Bairan Xiang, Shinan Huang, and Guillaume Sartoretti. 2023.
SCRIMP: Scalable Communication for Reinforcement- and Imitation-Learning-
Based Multi-Agent Pathfinding. https://doi.org/10.48550/arXiv.2303.00605

[28] Jens Weise, Sebastian Mai, Heiner Zille, and Sanaz Mostaghim. 2020. On the
Scalable Multi-Objective Multi-Agent Pathfinding Problem. In 2020 IEEE Congress
on Evolutionary Computation (CEC). IEEE, 1–8. https://doi.org/10.1109/CEC48606.
2020.9185585 Place: Glasgow, United Kingdom tex.eventtitle: 2020 IEEE Congress
on Evolutionary Computation (CEC).

[29] Ronald J. Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning 8, 3 (May 1992), 229–256.
https://doi.org/10.1007/BF00992696

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2001

https://doi.org/10.1016/j.artint.2022.103662
https://doi.org/10.1609/socs.v5i1.18315
https://doi.org/10.1609/socs.v16i1.27278
https://doi.org/10.1609/socs.v10i1.18501
https://doi.org/10.1609/socs.v10i1.18501
https://doi.org/10.1609/socs.v8i1.18423
https://doi.org/10.1609/icaps.v30i1.6657
https://doi.org/10.1609/icaps.v30i1.6657
https://doi.org/10.1109/LRA.2022.3187265
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://doi.org/10.1016/S0004-3702(97)00025-8
https://doi.org/10.1016/S0004-3702(97)00025-8
https://proceedings.neurips.cc/paper/2020/hash/f231f2107df69eab0a3862d50018a9b2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f231f2107df69eab0a3862d50018a9b2-Abstract.html
https://doi.org/10.1609/aaai.v36i9.21266
https://doi.org/10.1609/aaai.v37i10.26368
https://doi.org/10.1109/ICRA46639.2022.9811643
https://doi.org/10.1609/aaai.v33i01.33017643
https://doi.org/10.48550/arXiv.1702.05515
https://doi.org/10.1609/aiide.v13i1.12919
https://doi.org/10.1609/aiide.v13i1.12919
https://doi.org/10.1109/ICRA48506.2021.9560748
https://doi.org/10.1109/ICRA48506.2021.9560748
https://doi.org/10.1016/j.artint.2022.103752
https://doi.org/10.1016/j.artint.2022.103752
https://doi.org/10.1609/socs.v3i1.18243
https://doi.org/10.1609/socs.v3i1.18243
https://doi.org/10.1109/LRA.2019.2903261
https://doi.org/10.1016/j.artint.2014.11.006
https://doi.org/10.1609/socs.v10i1.18510
https://doi.org/10.1109/IROS45743.2020.9341047
https://doi.org/10.1109/IROS45743.2020.9341047
https://doi.org/10.1109/LRA.2020.2967317
https://doi.org/10.1109/LRA.2020.2967317
https://doi.org/10.48550/arXiv.2303.00605
https://doi.org/10.1109/CEC48606.2020.9185585
https://doi.org/10.1109/CEC48606.2020.9185585
https://doi.org/10.1007/BF00992696

	Abstract
	1 Introduction
	2 Related Work
	2.1 MAPF Algorithms
	2.2 Prioritized Planning

	3 Preliminaries
	3.1 Multi Agent Path Finding
	3.2 Prioritized Planning Failure Analysis

	4 Method
	4.1 Markov Decision Process Formulation
	4.2 Feature Design
	4.3 Policy Network
	4.4 Training Algorithm
	4.5 Reachability Repair Algorithm

	5 Experiments
	5.1 Settings and Metrics
	5.2 Limited Time Completeness Experiment
	5.3 Priority Learning Paradigm Effectiveness
	5.4 Ablation Study

	6 Conclusion
	Acknowledgments
	References

