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ABSTRACT
Constrained reinforcement learning (RL) algorithms have attracted
extensive attentions nowadays to tackle sequential decision-making
problems that contain constraints defined under various risk mea-
sures. However, most works only search policies within the station-
ary policy class and fail to capture a simple intuition: adjust the
action-selecting distribution at each state according to the accu-
mulated cost so far. In this work, we design a novel quantile-level-
driven policy class to fully realize such intuition, within which
each policy additionally takes the quantile level of the accumulated
cost as input. Such quantile level is obtained via a novel Invertible
Backward Distributional Critic (IBDC) framework, which utilizes
invertible function approximators to estimate the accumulated cost
distribution and outputs the required quantile level with their in-
verse forms. Further, the estimated accumulated cost distribution
also helps to decompose the challenging trajectory-level constraints
into state-level constraints, and Risk-Aware Constrained RL (RAC)
algorithm is designed then to solve the decomposed problem with
Lagrangian multipliers. Experimental results in various environ-
ments validate the effectiveness of RAC versus state-of-the-art
baselines.
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1 INTRODUCTION
Sequential decision-making problems often involve various con-
straints introduced by physical limitations [37], budget restrictions
[7, 9], as well as requirements on certain performance metrics [34].
Constrained Markov Decision Process (CMDP), whose goal is to
maximize the expected long-term reward while limiting the ex-
pected long-term cost below the constraint threshold, is a natural
choice to formulate such problems and has become a research hot
spot recently [2, 3, 26].

However, CMDP becomes insufficient for many applications (e.g.,
autonomous driving and industrial robotics [6, 27]) with safety-
critical constraints, as it only constrains the expected long-term
cost, and even the optimal policy of a CMDP may still violate the
constraints in each execution. Several works have noticed such
gap and propose formulations by taking the distribution of the
long-term cost into consideration with various risk measures. For
instance, [11, 32] utilize the Conditional Value-at-Risk (CVaR𝛼 )
measure to limit the expectation of the top 𝛼 fraction of the long-
term cost distribution below the constraint threshold. [15, 27, 29, 31]
impose hard constraints in problems and require the cost of any
trajectory below the constraint threshold.

Nevertheless, the above formulations may still be sub-optimal,
as they fail to capture a simple intuition about the non-stationarity
of policies on the accumulated cost. Take the problems with hard
constraints as an example. When the agent visits the same state
with two different accumulated costs, say one is very close to the
threshold and the other is far less than the threshold, the optimal
action-selecting distribution at this state should also be distinct.
That is, the one with little cost could be more adventurous to collect
more reward, while the other should be more conservative to not
violate the constraint. However, such distinction is unrealizable
in the above formulations as they only consider the stationary
policy class, where each policy always generates the same action-
selecting distribution at the same state. Recently, such intuition has
motivated works [23, 24], where the left budget is recorded and
augmented to the state space. However, one major limitation of
their algorithms is that they require the risk measure to be hard
constraints or risk-neural constraints, and they are inapplicable for
other classical risk measures, such as CVaR𝛼 .

To address the limitations discussed above, this paper aims to
propose and solve a new problem formulation for safety-critical
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applications, which fully captures the above non-stationarity in-
tuition and is applicable for general risk measures. Firstly, a new
quantile-level-driven policy class is designed as the space to search
policies, within which each policy not only takes the state as in-
put, but also takes the quantile level of the current accumulated
cost as input. The quantile level is obtained via a novel Invertible
Backward Distributional Critic (IBDC) framework, where invertible
function approximators are designed to estimate the accumulated
cost distribution by approximating its quantile function, and the
inverse forms of such approximators take the current accumulated
cost as input and output the corresponding quantile level.

In addition to providing information to help decision-making,
the IBDC framework is also essential for decomposing the original
trajectory-level constraints imposed only on the initial state into
state-level constraints imposed on each state along the trajectory
due to the estimated accumulated cost distribution. Such decom-
position is necessary to obtain better solutions as the former one
constrains the cost of the full-trajectory but provides no informa-
tion on how to and how much to update policy at each state along
the trajectory. Finally, we propose the Risk-Aware Constrained RL
(RAC) algorithm to solve the decomposed problem with Lagrangian
multipliers. Our main contributions are as follows.
• We propose a novel quantile-level-driven policy class for con-
strained RL problems, and demonstrate its advantages versus
the common stationary policy class with an intuitive example. A
novel IBDC framework is designed then to estimate the accumu-
lated cost distribution and obtain the required quantile level in
the policy class.
• With the estimated accumulated cost distribution, we also decom-
pose the challenging trajectory-level constraints into state-level
constraints, and desgin the RAC algorithm to solve it by alterna-
tively updating the policy and the Lagrangian multipliers.
• Finally, we visualize the proposed IBDC framework in two en-
vironments to show its effectiveness for outputting the quan-
tile levels to help decision-making. Later, experiments in safety
gym benchmarks and simulations of two real-world applications
demonstrate the superiority of RAC versus state-of-the-art base-
lines.

2 PROBLEM FORMULATION
We consider the finite-horizon constrainedMarkov decision process
represented by (T ,S,A, 𝑝, 𝑟, 𝑐, 𝑠0). T = {0, 1, · · · ,𝑇 }, where𝑇 ∈ N,
contains all the time steps. S denotes the state space. 𝑠0 ∈ S is the
initial state, and A denotes the action space. Given the state 𝑠𝑡 and
𝑎𝑡 at time step 𝑡 ∈ T , 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) gives the transition probability
to the next state 𝑠𝑡+1. 𝑟 (𝑠𝑡 , 𝑎𝑡 ) and 𝑐 (𝑠𝑡 , 𝑎𝑡 ) output the deterministic
reward and cost, respectively.

The stationary policy class1 Πsta = {𝜋 |𝜋 : S → Δ(A)} is the
primary policy class considered in previous constrained RL works,
where each policy always generates the same action distribution at
the same state. However, such policy class may lead to sub-optimal
solutions, as shown in Sec. 3 with an intuitive example. Instead,
this paper considers the following non-stationary2 policy class.
1We use Δ( ·) to denote the space of all distributions over ·.
2We clarify that, term "non-stationarity" in this work refers that the policies also depend
on the quantile level additionally, instead of the state alone. In fact, "non-stationarity" in
literatures means the ever-changing environment [10], which is substantially different

Definition 2.1 (Quantile-level-driven Policy Class). For any tra-
jectory 𝑠0, 𝑎0, · · · , 𝑠𝑡−1, 𝑎𝑡−1, 𝑠𝑡 , policy 𝜋 samples actions at state 𝑠𝑡
according to 𝜋 (·|𝑥𝑡 ), where 𝑥𝑡 = (𝑠𝑡 , 𝜏𝑡 ) ∈ X, and X = S × [0, 1].
Let 𝑍 (𝑠𝑡 , 𝜋) be the random variable of the accumulated cost dis-
tribution before reaching state 𝑠𝑡 . Then, 𝜏𝑡 ∈ [0, 1] is the quantile
level3 of 𝑍 (𝑠𝑡 , 𝜋) at realization

∑𝑡 ′=𝑡−1
𝑡 ′=0 𝑐 (𝑠𝑡 ′ , 𝑎𝑡 ′ ). The set of all

such policies Πnsta =
{
𝜋
��𝜋 : X → Δ(A)

}
is referred to as the

quantile-level-driven policy class.

Note that the additional 𝜏𝑡 keeps the definitions of reward and
cost function unchanged, and it transits deterministically to 𝜏𝑡+1
for any (𝑠𝑡 , 𝑎𝑡 ) pair given policy 𝜋 . Hence, we will use 𝑥𝑡 ∈ X
to replace 𝑠𝑡 ∈ S in reward, cost and transition function with
slight notation abuse. For each policy 𝜋 ∈ Πnsta, 𝑅𝜋 (𝑥𝑡 , 𝑎𝑡 ) =∑𝑇
𝑡 ′=𝑡 𝑟 (𝑥𝑡 ′ , 𝑎𝑡 ′ ) and 𝐶

𝜋 (𝑥𝑡 , 𝑎𝑡 ) =
∑𝑇
𝑡 ′=𝑡 𝑐 (𝑥𝑡 ′ , 𝑎𝑡 ′ ) are the random

variables of the long-term reward and cost under policy 𝜋 that start
from (𝑥𝑡 , 𝑎𝑡 ), respectively. Then, the classical action-value function
is 𝑄𝜋 (𝑥𝑡 , 𝑎𝑡 ) = E𝑅𝜋 (𝑥𝑡 , 𝑎𝑡 ). Let the distorted expectation of 𝐶𝜋

be Φ𝑔𝑐
[
𝐶𝜋 (𝑥𝑡 , 𝑎𝑡 )

]
=

∫ 1
0 𝐹−1

𝐶𝜋 (𝑥𝑡 ,𝑎𝑡 ) (𝜏)𝑔𝑐 (𝜏)𝑑𝜏 , where 𝐹−1
𝐶𝜋 (𝑥𝑡 ,𝑎𝑡 )

is the quantile function of random variable 𝐶𝜋 (𝑥𝑡 , 𝑎𝑡 ), and 𝑔𝑐 :
[0, 1] → [0, 1] is the distortion risk measure that specifies the
weights for quantile levels. Based on these definitions, this paper
aims to solve the following Risk-Aware Constrained Optimization
(RACO) problem, which finds policy 𝜋∗ such that

𝜋∗ ∈ argmax𝜋∈ΠnstaE𝑎0∼𝜋 ( · |𝑥0 )
[
𝑄𝜋 (𝑥0, 𝑎0)

]
s.t. E𝑎0∼𝜋 ( · |𝑥0 )Φ𝑔𝑐

[
𝐶𝜋 (𝑥0, 𝑎0)

]
≤ 𝑑,

(1)

where 𝑑 is the constraint threshold, 𝑥0 = (𝑠0, 1) is the initial state.
In problem (1), 𝑄𝜋 can be evaluated by applying the classical Bell-
man operator iteratively [25], while evaluating the distribution
of 𝐶𝜋 (𝑥𝑡 , 𝑎𝑡 ) requires the distributional Bellman operator T𝜋 :
T𝜋𝐶 (𝑥𝑡 , 𝑎𝑡 )

𝐷
= 𝑐 (𝑥𝑡 , 𝑎𝑡 ) + 𝐶 (𝑥𝑡+1, 𝑎𝑡+1), where 𝑥𝑡+1 ∼ 𝑝 (·|𝑥𝑡 , 𝑎𝑡 ),

𝑎𝑡+1 ∼ 𝜋 (·|𝑥𝑡+1), and 𝐶 is initialized from any random distribution.
𝐷
= indicates equality in distribution. It has been shown that T𝜋 is a
1 − 1/𝑇 -contraction in the Wasserstein distance [5], and 𝐶𝜋 is the
unique fixed point of T𝜋 .

Generality of RACO. RACO takes several classical constrained RL
formulations as specical cases. For instance, when𝑔𝑐 = Uniform( [0,
1]), Φ𝑔𝑐 (𝐶𝜋 (𝑠𝑡 , 𝑎𝑡 )) = 𝑄𝜋

𝑐 (𝑠𝑡 , 𝑎𝑡 ) recovers the classical action-cost
function, and RACO reduces to the risk-neutral CMDP formula-
tion [3]. When 𝑔𝑐 = Uniform( [𝜉, 1]), 𝜉 ∈ (0, 1), Φ𝑔𝑐 becomes the
classical CVaR [19, 20] measure, and RACO reduces to the CVaR-
constrained formulation considered in [11, 32].When𝑔𝑐 is the Dirac
delta distribution at 1, RACO constrains the maximal long-term cost
among the supports of the distribution of 𝐶𝜋 (𝑠0, 𝑎0) to be lower
than the threshold 𝑑 , which in fact reduces to the hard-constraint
case [23, 24, 27, 29]. Furthermore, RACO also induces several novel
formulations with specific distortion risk measure 𝑔𝑐 . For example,
RACO is risk-averse when 𝑔𝑐 = Uniform( [𝜉, 1]) and becomes risk-
seeking when 𝑔𝑐 = Uniform( [0, 𝜉]). The latter one may be attrac-
tive in financial applications like portfolio management. Other risk

from ours. Nevertheless, we still use the term to emphasize the policy dependence on
the quantile level other than the state alone.
3In this paper, for any random variable 𝑌 with quantile function 𝐹 −1

𝑌
(𝜏 ) = 𝑦, we

define the input probability 𝜏 as the quantile level, and the output value 𝑦 as the
quantile.
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Figure 1: HIHR environment.

measures compatible here include cumulative probability weighting
(CPW) [28] that defines 𝑔𝑐 (𝜏) = 𝜏𝛽/(𝜏𝛽 + (1 − 𝜏)𝛽 )

1
𝛽 ; Wang [30]

that has 𝑔𝑐 (𝜏) = 𝐹N (𝐹−1N (𝜏) + 𝛽), where 𝛽 is the hyper-parameter
and 𝐹N is the Cumulative Distribution Function (CDF) for standard
Gaussian distribution.

3 LIMITATIONS OF STATIONARY POLICIES
We illustrate the limitations of the stationary policy class Πsta by
an intuitive High Income High Risk (HIHR) environment, as shown
in Fig. 1. In HIHR, 𝑠0 is the initial state, 𝑠1, 𝑠2 have two available
actions, and 𝑠2, 𝑠3 have non-zero reward and cost. HIHR has total
horizon 10. To further simplify the computation, 𝛽 is set to be 10−6
by default, and 𝛼 ∈ [0, 1] becomes the only decision variable.

Intuitively, an agent will get the maximal expected reward 25
and cost 25 in the unconstrained setting by letting 𝛼 = 1. In the con-
strained settings, we set the threshold to be 15,𝑔𝑐 = Uniform( [𝜉, 1.0
]) with 𝜉 ∈ {0.0, 0.5, 0.9}. We solve the instantiated RACO problems
with brute-force enumeration of 𝛼 . Note that each policy in the
stationary policy class Πsta can only set one value of 𝛼 , while for
each policy in Πnsta, it could set different values of 𝛼 every time vis-
iting state 𝑠1 along the trajectory due to inputting different quantile
levels. The approximately maximal expected return among feasible
policies in the stationary policy class Πsta is 15.00, 12.07, 9.40, re-
spectively, and 15.00, 14.40, 13.93 in Πnsta. The results suggest that
the non-stationary policy class Πnsta always has a better policy
than the stationary policy class Πsta, as policies within Πnsta could
"adjust" the action-selecting distribution at 𝑠1 timely to become
adventurous on reward or conservative for constraint-satisfaction
according to the level of the current accumulated cost. More results
including the solved values of 𝛼 are shown in Appendix B.1 due to
space limits.

4 INVERTIBLE BACKWARD
DISTRIBUTIONAL CRITICS

One major challenge for solving problem (1) is that Πnsta requires
the quantile level of the accumulated cost. In this section, we tackle
such challenge with a novel IBDC framework. Moreover, the accu-
mulated cost distribution estimated by IBDC is also essential for
the decomposed problem shown in Sec. 5.

4.1 Backward Markov Chain and Backward
Cost Distribution

We firstly make the following mild assumption to guarantee the
existence of unique stationary state distribution, which is widely
adopted in literatures [18, 21].

Assumption 4.1. For any policy 𝜋 ∈ Πnsta, we assume the Markov
chain induced by transition 𝑝𝜋 (𝑥𝑡+1 |𝑥𝑡 ) =

∑
𝑎∈A 𝑝 (𝑥𝑡+1 |𝑥𝑡 , 𝑎)𝜋 (𝑎 |𝑥𝑡 )

to be irreducible and aperiodic.

Let the unique stationary state distribution be 𝜇𝜋 , then 𝜇𝜋 (𝑥𝑡+1) =∑
𝑥𝑡 ∈X 𝑝𝜋 (𝑥𝑡+1 |𝑥𝑡 )𝜇𝜋 (𝑥𝑡 ) by definition. From Bayesian’s rule, we

note the following probability

←
𝑝 𝜋 (𝑥𝑡 |𝑥𝑡+1) =

∑
𝑎∈A 𝑝 (𝑥𝑡+1 |𝑥𝑡 , 𝑎)𝜋 (𝑎 |𝑥𝑡 )𝜇𝜋 (𝑥𝑡 )

𝜇𝜋 (𝑥𝑡+1)
characterizes the probability that a previous state 𝑥𝑡 has been visited
to reach the current state 𝑥𝑡+1. The Markov chain characterized by
←
𝑝 𝜋 is referred to as the backward Markov chain.
With the backward Markov chain, the random variable of the

backward cost distribution4 at some state𝑥𝑡 is defined as
←
𝐶 𝜋 (𝑥𝑡 , 𝑎𝑡 ) =∑𝑇𝐵

𝑘=0 𝑐 (𝑥𝑡−𝑘 , 𝑎𝑡−𝑘 ), where𝑎𝑡−𝑘 ∼ 𝜋 (·|𝑥𝑡−𝑘 ), 𝑥𝑡−𝑘−1 ∼
←
𝑝 𝜋 (·|𝑥𝑡−𝑘 ),

and 𝑇𝐵 is the steps it takes for reaching state 𝑥0. Note that 𝑇𝐵 is
well-defined as [18, 21] have shown that the backward Markov
chain is also ergodic with Assump. 4.1. Thus, each policy 𝜋 will
reach the initial state 𝑥0 (i.e., the terminal state in the backward
Markov chain) in finite steps.

However, estimating
←
𝐶 𝜋 (𝑥𝑡 , 𝑎𝑡 ) by definition is intractable as

←
𝑝 𝜋 is unknown. To mitigate this, we firstly show that

←
𝐶 𝜋 (𝑥𝑡 , 𝑎𝑡 ) is

equivalent in distribution to the random variable of the accumulated
cost from a forward view (Lemma 4.2), and then complete the
estimation with a novel backward distributional Bellman operator
(Lemma 4.3).

Lemma 4.2.
←
𝐶 𝜋
𝑘
(𝑥𝑡 , 𝑎𝑡 )

𝐷
= 𝐶𝜋

𝑘
(𝑥𝑡−𝑘 , 𝑎𝑡−𝑘 ),∀𝑘 ∈ N.

In the lemma,
←
𝐶 𝜋
𝑘
(𝑥𝑡 , 𝑎𝑡 ) =

∑𝑘
𝑘 ′=0 𝑐 (𝑥𝑡−𝑘 ′ , 𝑎𝑡−𝑘 ′ ) is the random

variable of the distribution of the accumulated cost in the last 𝑘
steps to 𝑥𝑡 from a backward view, where 𝑥𝑡−𝑘 ′ ∼

←
𝑝 𝜋 (·|𝑥𝑡−𝑘 ′+1) and

𝑎𝑡−𝑘 ′ ∼ 𝜋 (·|𝑥𝑡−𝑘 ′ ). 𝐶𝜋
𝑘
(𝑥𝑡−𝑘 , 𝑎𝑡−𝑘 ) =

∑𝑘
𝑘 ′=0 𝑐 (𝑥𝑡−𝑘+𝑘 ′ , 𝑎𝑡−𝑘+𝑘 ′ ) is

the random variable of the distribution of the accumulated cost
in the future 𝑘 steps, starting from 𝑥𝑡−𝑘 ∼ 𝜇𝜋 (·), and 𝑥𝑡−𝑘+𝑘 ′ ∼
𝑝𝜋 (·|𝑥𝑡−𝑘+𝑘 ′−1), 𝑎𝑡−𝑘+𝑘 ′ ∼ 𝜋 (·|𝑥𝑡−𝑘+𝑘 ′ ). Proof is given in Appen-
dix A.1 Essentially, Lemma 4.2 reveals that the cumulative cost from
𝑥𝑡−𝑘 to 𝑥𝑡 shares the same distribution from the forward view (i.e.,
with transition 𝑝𝜋 ) and the backward view (i.e., with transition

←
𝑝 𝜋 ).

Hence, one can estimate the distribution of
←
𝐶 𝜋 (𝑥𝑡 , 𝑎𝑡 ) unbiasedly

with samples from the forward chain.

Moreover, utilizing the recursive property
←
𝐶 𝜋 (𝑥𝑡 , 𝑎𝑡 )

𝐷
= 𝑐 (𝑥𝑡 , 𝑎𝑡 )+

←
𝐶 𝜋 (𝑥𝑡−1, 𝑎𝑡−1), we define the backward distributional Bellman op-

erator as
←
T𝜋
𝑐

←
𝐶 (𝑥𝑡 , 𝑎𝑡 )

𝐷
= 𝑐 (𝑥𝑡 , 𝑎𝑡 ) +

←
𝐶 (𝑥𝑡−1, 𝑎𝑡−1), where

←
𝐶 is

drawn from any distribution. By iteratively applying
←
T𝜋
𝑐 over

←
𝐶 ,

the distribution of
←
𝐶 converges to

←
𝐶 𝜋 as

←
T𝜋
𝑐 is a contraction map-

ping. Proof is given in Appendix A.2.

Lemma 4.3.
←
T𝜋
𝑐 is a contraction mapping in the Wasserstein dis-

tance, and
←
𝐶 𝜋 is the fixed point, i.e.,

←
𝐶 𝜋 =

←
T𝜋
𝑐

←
𝐶 𝜋 .

4We use term backward cost distribution and accumulated cost distribution interchange-
ably in this paper.
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4.2 Invertible Backward Distributional Critic
With Lemma 4.2 and 4.3, one can estimate

←
𝐶 𝜋 with popular dis-

tributional RL approaches, such as categorical-based DRL [5] and
quantile-based DRL [12, 16]. However, these approaches cannot
obtain the quantile level that Πnsta needs, as they target at uncon-
strained problems and they are not designed for such purpose.

To mitigate such challenge, our inspiration comes from the fact
that what we need for Πnsta is actually the CDF of the backward
cost distribution, and CDF is the inverse of the quantile function.
Hence, it becomes straightforward to get the CDF if invertible
function approximators are used in the quantile-based DRL [12, 16]
approaches to estimate the quantile function of the backward cost
distribution. We refer these invertible function approximators as
Invertible Backward Distributional Critic (IBDC). In practice, one
can initialize any 𝑓 from an IBDC class, and get 𝑓 updated with
classical losses adopted in quantile-based DRL approaches, such
as the Huber quantile regression losses. Meanwhile, the quantile
level of any realized accumulated cost 𝐶 can be obtained by simply
inputting𝐶 into the inverse form of 𝑓 . We consider two such IBDC
classes in experiments, namely F𝑙𝑖𝑛𝑒𝑎𝑟 and F𝑛𝑛 .

F𝑙𝑖𝑛𝑒𝑎𝑟 =

{
𝑓

���𝑓 (𝑥𝑡 , 𝑎𝑡 , 𝜏𝑡 ) = 𝑤𝑇 · [𝑠𝑡 , 𝑎𝑡 , 𝜏𝑡 ] + 𝑏,𝑤 ∈ R𝑛, 𝑏 ∈ R
}
,

F𝑛𝑛 =

{
𝑓

���𝑓 (𝑠𝑡 , 𝑎𝑡 , 𝜏𝑡 ) = 𝑤1N1 (𝑠𝑡 , 𝑎𝑡 ) cos(𝜋𝜏𝑡 ) +𝑤2N2 (𝑠𝑡 , 𝑎𝑡 ),

𝑤1 = N3 (𝑠𝑡 , 𝑎𝑡 ),𝑤2 = 1 −𝑤1
}
.

In F𝑙𝑖𝑛𝑒𝑎𝑟 , linear function approximators are used with state
𝑠𝑡 , action 𝑎𝑡 and quantile 𝜏𝑡 stacked as the feature vector. 𝑛 rep-
resents the dimension of the stacked vector. With realized cost
𝐶 , the corresponding quantile level 𝜏𝑡 can be calculated as 𝜏𝑡 =
𝐶−𝑏−𝑤𝑇

[1:𝑛−1] · [𝑠𝑡 ,𝑎𝑡 ]
𝑤𝑛

. In F𝑛𝑛 , N1,N2 : S × A → R, N3 : S × A →
[0, 1] are neural networks, and N3 assigns weights to trade-off the
two additive terms. Quantile level of the realized cost 𝐶 can be
calculated by 𝜏𝑡 = 1

𝜋 ·arccos
𝐶−𝑤2N2 (𝑠𝑡 ,𝑎𝑡 )
𝑤1N1 (𝑠𝑡 ,𝑎𝑡 ) . In practice, we also add

small positive 𝜖 into denominator and clip operations during the
calculation to keep it valid when outputting the quantile level.

5 RACWITH DECOMPOSED CONSTRAINED
POLICY IMPROVEMENT

Another challenge for solving problem (1) is that its constraint is
defined on the long-term cost of the full trajectory. Since the cost of
the full trajectory is influenced by the action-selecting distributions
at each state along the trajectory, problem (1) is hard to solve directly
as it provides no information on how to and how much to update
policy at each state along the trajectory. In this section, we mitigate
such challenge by decomposing the trajectory-level constraint into
state-level constraint, and solve the latter one by explicitly control
the decisions at each state along the trajectory, given the quantile
level of the accumulated cost up to the state.

5.1 Decomposed Constrained Policy
Improvement

The decomposition of the trajectory-level constraint relies on the
following lemma on the cost quantile function. The proof is inspired
by the Frechet-Hoeffding inequality and is given in Appendix A.3.

Lemma 5.1. For any trajectory {(𝑥𝑖 , 𝑎𝑖 )}𝑇𝑖=0 generated by ∀𝜋 ∈
Π𝑛𝑠𝑡𝑎 , we have

𝐹−1
𝐶𝜋 (𝑥0,𝑎0 ) (𝜏) ≤ 𝐹−1←

𝐶𝜋 (𝑥𝑡−1,𝑎𝑡−1 )
(𝜈) + 𝐹−1

𝐶𝜋 (𝑥𝑡 ,𝑎𝑡 ) (1 − 𝜈 + 𝜏),

where 𝑡 ∈ [1, · · · ,𝑇 ], 𝜈 ∈ [0, 1] is the quantile level of random

variable
←
𝐶 𝜋 (𝑥𝑡−1, 𝑎𝑡−1) at realization

∑𝑡 ′=𝑡−1
𝑡 ′=0 𝑐 (𝑥𝑡 ′ , 𝑎𝑡 ′ ), and ∀𝜏 ∈

[0, 𝜈].

Lemma 5.1 shows that, the𝜏-quantile of randomvariable𝐶𝜋 (𝑥0, 𝑎0)
can be decomposed into two parts. The first part 𝐹−1←

𝐶𝜋 (𝑥𝑡−1,𝑎𝑡−1 )
(𝜈)

is the 𝜈-quantile of the backward cost distribution before reaching
𝑥𝑡 , and the second part 𝐹−1

𝐶𝜋 (𝑥𝑡 ,𝑎𝑡 ) (1 − 𝜈 + 𝜏) is the (1 − 𝜈 + 𝜏)-
quantile of the future cost distribution when executing action 𝑎𝑡
at state 𝑥𝑡 . Thus, if agent is at state 𝑥𝑡 right now and has collected
cost with quantile level 𝜈 , he could control the 𝜏-quantile of the
long-term cost distribution of the full trajectory by deciding the
future cost at quantile level (1 − 𝜈 + 𝜏). Such intuition inspires the
following Decomposed Constrained Policy Improvement (DCPI)
problem: ∀𝑥𝑡−1, 𝑎𝑡−1, 𝑥𝑡 ,

𝜋𝑘+1 ∈ argmax
𝜋∈Πnsta

〈
𝜋 (·|𝑥𝑡 ), 𝑄𝜋𝑘 (𝑥𝑡 , ·)

〉
s.t. 𝐹−1←

𝐶𝜋𝑘 (𝑥𝑡−1,𝑎𝑡−1 )
(𝜈)+〈

𝜋 (·|𝑥𝑡 ), 𝐹−1𝐶𝜋𝑘 (𝑥𝑡 ,· ) (1 − 𝜈 + 𝜏)
〉
≤ 𝑑

𝑔𝑐 (𝜏)𝐻 (𝑔𝑐 )
,

(2)

where 𝜋𝑘 is the current policy,𝐻 (𝑔𝑐 ) =
∫ 1
0 𝑔𝑐 (𝑥)𝑑𝑥 , 𝜈 ∈ [0, 1] is the

quantile level of realized cost
∑𝑡 ′=𝑡−1
𝑡 ′=0 𝑐 (𝑥𝑡 ′ , 𝑎𝑡 ′ ), and ∀𝜏 ∈ [0, 𝜈] is

in the supports of 𝑔𝑐 . Note that 𝜈 is contained in 𝑥𝑡 as 𝑥𝑡 = (𝑠𝑡 , 𝜈) by
definition. It could be sub-optimal in DCPI to substitute the original
quantile function with the two decomposed parts given in Lemma
5.1, however, empirical results in various environments still show
superior performance of our algorithm (Sec. 7). We aim to mitigate
the optimality gap (if any) in our future works.

Moreover, we have the following guarantee on the feasibility
of the solved policy 𝜋𝑘+1 for problem (1). Formal guarantees with
proofs are given in Appendix A.4.

Theorem 5.2 (Informal Guarantee). Assume each policy in Πnsta is
log-Lipschitz in 𝜏 with coefficient 𝐿. Assume 𝜋𝑘+1 (𝑎 |𝑥 )

𝜋𝑘 (𝑎 |𝑥 ) ∈ [1 − 𝛿, 1 +
𝛿], 𝜋𝑘 (𝑎 |𝑥) > 0,∀𝑥, 𝑎 with 𝛿 ∈ [0, 1), and 𝐿 = 𝐿𝛿𝛿 for some 𝐿𝛿 ∈
R>0. Then, if𝑔𝑐 = Uniform( [𝜉, 1.0]),E𝑎0∼𝜋𝑘+1 ( · |𝑥0 )Φ𝑔𝑐

[
𝐶𝜋𝑘+1 (𝑥0, 𝑎0)

]
≤ 𝑑

1−𝛿 + 𝐷 (𝛿, 𝜉,𝑇 ).

In the theorem, 𝐷 (𝛿, 𝜉,𝑇 ) is the solution value to a constrained
problem shown in Appendix A.4. The theorem suggests that, when
𝐿 is linear to 𝛿 , and as 𝛿 tends to 0, 𝐷 (𝛿, 𝜉,𝑇 ) also tends to 0. Based
on these findings, we have chosen to use PPO for smooth policy
updates in our experiments, and we have selected very small values
for the 𝛿 . Moreover, the theorem has no assumptions on the feasibil-
ity of 𝜋𝑘 , which suggests that DCPI always projects the (possibly)
infeasible policy to an approximately feasible one.

5.2 Practical Implementation
With the above theorem, we can safely solve the surrogate problem
DCPI instead of solving the challenging problem (1) directly. Our
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proposed algorithm for DCPI, Risk-Aware Constrained rl (RAC),
is shown in Alg. 1. RAC alternates between the policy evaluation
stage and the policy improvement stage, which are introduced in
detail in the following sections.

Policy evaluation. In the policy evaluation stage, the action-value
function 𝑄𝜍 is trained by minimizing the squared TD-error [25].
The distributional cost critic𝑈𝜂 (𝑥, 𝑎, 𝜏) is instantiated with the IQN
structure [12] to approximate the quantile function 𝐹−1

𝐶𝜋𝜃 (𝑥,𝑎) (𝜏).
The IBDC 𝐼𝜙 (𝑥, 𝑎, 𝜏) is instantiated from class F𝑙𝑖𝑛𝑒𝑎𝑟 or F𝑛𝑛 to
approximate the quantile function 𝐹−1←

𝐶𝜋𝜃 (𝑥,𝑎)
(𝜏).

Let D = {(𝑥𝑖−1, 𝑥𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑐𝑖 , 𝑥𝑖+1)}𝐵𝑖=1 be a random mini-batch
with size 𝐵. Then, 𝜂 is updated by minimizing the empirical Huber
quantile regression loss 1

𝐵

∑𝐵
𝑖=1 L𝜅 (𝛽𝑖 , 𝜏𝑖 ), where

L𝜅 (𝛽𝑖 , 𝜏𝑖 ) =
{
|𝜏𝑖 − 1(𝛽𝑖 < 0) | · 𝛽2𝑖 /(2𝜅), if |𝛽𝑖 | ≤ 𝜅,

|𝜏𝑖 − 1(𝛽𝑖 < 0) | · ( |𝛽𝑖 | − 𝜅/2), otherwise,
(3)

and 𝛽𝑖 = 𝑐𝑖 +𝑈𝜂′ (𝑥𝑖+1, 𝑎𝑖+1, 𝜏 ′𝑖 ) −𝑈𝜂 (𝑥𝑖 , 𝑎𝑖 , 𝜏𝑖 ), 𝑎𝑖+1 ∼ 𝜋𝜃 (·|𝑥𝑖+1). 𝜂′
denotes the parameters of the target network. 𝜅 is Huber thresh-
old, and 𝜏𝑖 , 𝜏

′
𝑖
∼ Uniform( [0, 1]). The parameters 𝜙 of IBDC 𝐼𝜙

is updated in a similar way with 𝛽𝑖 = 𝑐𝑖 + 𝐼𝜙 ′ (𝑥𝑖−1, 𝑎𝑖−1, 𝜏 ′𝑖 ) −
𝐼𝜙 (𝑥𝑖 , 𝑎𝑖 , 𝜏𝑖 ), 𝑎𝑖−1 ∼ 𝜋𝜃 (·|𝑥𝑖−1).

Policy improvement. In the policy improvement stage, RAC solves
DCPI by introducing an additional Lagrangian multiplier 𝜆 ≥ 0 to
convert DCPI to an unconstrained min-max problem, and solves
the latter one by alternatively updating 𝜆 and policy parameter 𝜃
until convergence. 𝜆 is updated by

𝜆′ =Γ≥0

[
𝜆 + 𝜔𝜆

𝐵

𝐵∑︁
𝑖=1

(
𝐼𝜙 (𝑥𝑖 , 𝑎𝑖 , 𝜈𝑖 ) − 𝑐𝑖+

𝑈𝜂 (𝑥𝑖 , 𝑎𝑖 , 1 − 𝜈𝑖 + 𝜏) −
𝑑

𝑔𝑐 (𝜏)𝐻 (𝑔𝑐 )
) ]
,

(4)

where Γ is the projection operator, 𝜔𝜆 is the learning rate, and 𝜏 ∈
[0, 𝜈𝑖 ] is sampled uniformly from supports of 𝑔𝑐 . Note that we make
a simplification here by instantiating 𝐹−1←

𝐶𝜋𝑘 (𝑥𝑡−1,𝑎𝑡−1 )
(𝜈) in DCPI

with 𝐼𝜙 (𝑥𝑖 , 𝑎𝑖 , 𝜈𝑖 )−𝑐𝑖 to make sampling decorrelated, where 𝜈𝑖 is the
quantile level contained in 𝑥𝑖 = (𝑠𝑖 , 𝜈𝑖 ). Further, policy parameter
𝜃 is updated with the PPO algorithm [22], as it could restrict the
ratio 𝜌𝑖 =

𝜋𝜃 (𝑎𝑖 |𝑥𝑖 )
𝜋𝜃𝑘 (𝑎𝑖 |𝑥𝑖 )

that is required in Thm. 5.2. The loss for

policy network is 𝐿𝜃 = − 1
𝐵

∑𝐵
𝑖=1min

(
𝜌𝑖𝐴𝑖 , clip(𝜌𝑖 , 1 − 𝛿, 1 + 𝛿)𝐴𝑖

)
,

where 𝐴𝑖 = 𝑄𝜍 (𝑥𝑖 , 𝑎𝑖 ) − 𝜆′ ·
(
𝐼𝜙 (𝑥𝑖 , 𝑎𝑖 , 𝜈𝑖 ) − 𝑐𝑖 +𝑈𝜂 (𝑥𝑖 , 𝑎𝑖 , 1 − 𝜈𝑖 +

𝜏) − 𝑑
𝑔𝑐 (𝜏 )𝐻 (𝑔𝑐 )

)
is the shifted advantage function, and 𝜃𝑘 is the

parameters of the current policy.

RAC Algorithm. Alg. 1 shows the RAC algorithm block. Firstly,
the experience buffer, the Lagrangian multiplier and the parameters
of (distributional and expected) critic networks and policy network
are initialized (line 1). The execution of the policy is shown in line
3-12. At each time step 𝑡 , action 𝑎𝑡 is sampled according to 𝜋𝜃 (·|𝑥𝑡 )
(line 5). After executing 𝑎𝑡 , the reward 𝑟𝑡 , cost 𝑐𝑡 and the next
state 𝑠𝑡+1 are obtained from the environment (line 6). Then, the
accumulated cost 𝐶 is updated (line 7). Line 8 infers the quantile

Algorithm 1 Risk-Aware Constrained RL (RAC)

1: Initialize: buffer B as empty ∅; policy 𝜋𝜃 ∈ Πnsta; Lagrangian
multiplier 𝜆 = 0; parameters of 𝑄𝜍 ; parameters of𝑈𝜂 ; IBDC 𝐼𝜙
from class F𝑙𝑖𝑛𝑒𝑎𝑟 or F𝑛𝑛 ;

2: repeat
3: 𝜏0 = 1,𝐶 = 0, 𝑥𝑡−1 = None, Concat 𝑥0 = (𝑠0, 𝜏0);
4: for 𝑡 = 0 to 𝑇 do
5: Sample action 𝑎𝑡 ∼ 𝜋𝜃 (·|𝑥𝑡 );
6: Execute 𝑎𝑡 and obtain 𝑠𝑡+1, 𝑟𝑡 , 𝑐𝑡 ;
7: Update accumulate cost 𝐶 = 𝐶 + 𝑐𝑡 ;
8: Infer quantile level of 𝐶: 𝜏𝑡+1 =

←
𝐼 𝜙 (𝑠𝑡 , 𝑎𝑡 ,𝐶);

9: Concat 𝑥𝑡+1 = (𝑠𝑡+1, 𝜏𝑡+1);
10: Store (𝑥𝑡−1, 𝑥𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑐𝑡 , 𝑥𝑡+1) into buffer B;
11: Update 𝑥𝑡−1 = 𝑥𝑡 ;
12: end for
13: Sample a random batch of 𝐵 transitions D =

{(𝑥𝑖−1, 𝑥𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑐𝑖 , 𝑥𝑖+1)}𝐵𝑖=1 from B;
14: Update 𝑄𝜍 by minimizing TD-error; update distributional

cost critics𝑈𝜂 and IBDC 𝐼𝜙 with corresponding Huber quan-
tile regression losses;

15: Update Lagrangian multiplier 𝜆 with equation (4);
16: Update policy parameter 𝜃 with loss 𝐿𝜃 ;
17: Update target networks of critics;
18: Set buffer B as empty ∅;
19: until policy 𝜋𝜃 converges

level for the next state 𝑠𝑡+1 by inputting 𝐶 into
←
𝐼 𝜙 , the inverse

form of 𝐼𝜙 , as shown in Sec. 4.2. Line 9 concatenates the next state
𝑠𝑡+1 and the inferred quantile level 𝜏𝑡+1 to constitute the input for
the next round. Line 10 stores the whole transition into buffer. After
replacing the old 𝑥𝑡−1 with 𝑥𝑡 , the iteration goes on until step 𝑇 .

The updating stage of RAC is shown in line 13-18. A random
batch is sampled firstly from the buffer (line 13). Then, it will be
used to update the action-value function on reward using TD-error,
and the distributional critic and IBDC on cost using Huber quantile
regression losses (line 14). Then, the Lagrangian multiplier and the
policy parameter are updated in sequence (line 15-16). Finally, the
target networks are updated in a soft manner (line 17) and the buffer
is emptied (line 18). RAC terminates when the policy converges.

6 RELATEDWORKS
Recently, CMDPs, which search for policies to maximize expected
reward return while satisfy constraints on the expected cost return,
have raised a lot of attentions in constrained RL community [2–
4, 21, 26, 33, 36]. However, the ignorance on the variance of the
cost return makes even the optimal policies of CMDPs highly risky,
especially in safety-critical applications. Several works have noticed
such deficit, and they take the distribution of the long-term cost
into consideration by formulating constraints under various risk
measures [11, 32, 35, 39]. For example, Yang et al., Ying et al. utilize
CVaR𝛼 measure to constrain the expectation of the top 𝛼 fraction of
the long-term cost distribution below the threshold, while chance-
constrained RL considered in [11] utilizes VaR𝛼 measure to limit its
probability below some threshold. Meanwhile, Luo and Ma, Sootla
et al., Sootla et al., Thananjeyan et al., Wachi and Sui, Wang et al.
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(a) (b) (c)

Figure 2: The TWS Environment is shown in Fig. 2(a). Fig.2(b) compares the cost distribution under different 𝜉 ; Fig.2(c) shows
the trending of the probability of choosing action 1 and 2 at state 𝑆3 when the input quantile level changes.

consider problems with hard constraints, whose goal is to maximize
expected reward and limit the cost of any trajectory below the
constraint threshold. In contrast, our RAC is not restricted to any
specific risk measure, as discussed on the generality of RACO in Sec.
2. More importantly, RACO searches policies within the quantile-
level-driven policy class Πnsta instead of the common stationary
policy class Πsta, whose advantages are shown in Sec. 3 and Sec. 7
with various empirical studies.

Perhaps the most related works to ours are [8, 23, 24, 38, 39]. In
[8, 38, 39], distributional critics are used to estimate the distribution
of the cost return. While RAC also relies on distributional critics to
estimate the future cost distribution, as described in detail in Sec.
5.2, the IBDC framework is completely novel as it estimates the
backward cost distribution and is invertible to output the required
quantile level. Moreover, Sootla et al., Sootla et al. also relies on the
idea to augment the state space, where the left budget is recorded
and added. However, as discussed in their paper, such augmentation
method can only solve problems with hard constraints or expected
constraints, while our RAC fills the gap and is able to solve RACOs
with general risk measures 𝑔𝑐 , as discussed in Sec. 2.

7 EXPERIMENTS
We conduct experiments in various environments to demonstrate
the performance of RAC. We begin with a toy and a classic grid
environment, which are friendly for visualizations, to present the
advantages and rationality of the RAC algorithm and the IBDC
framework. Later, we compare RACwith state-of-the-art algorithms
in the safety gym benchmarks and two real-world applications.

7.1 Two-way Selection Environment
The two-way selection environment (TWS) is shown in Fig. 2(a). 𝑆0
is the initial state and 𝑆5 is the terminal state. At each non-terminal
state, agent chooses action 1 or 2 and transits to the next state
deterministically. Agent also obtains an immediate reward and cost
10 for taking action 1, and 5 for taking action 2. The threshold
𝑑 = 40, and risk measure 𝑔𝑐 = Uniform( [𝜉, 1.0]) with 𝜉 ∈ {0.0, 0.9}.
RAC utilizes linear function approximators for policy and class
F𝑙𝑖𝑛𝑒𝑎𝑟 for IBDC. More settings and results are in Appendix B.2.

Fig. 2(b) shows the cost distribution of policies trained with RAC
under different 𝜉 . The figure shows that the cost distribution under

𝜉 = 0.0 has much larger mass in range 40-50 comparing to the case
when 𝜉 = 0.9. Such difference makes sense as the RACO problem
constrains the expectation of the top 10% in the cost distribution
to be lower than 40 when 𝜉 = 0.9, while it only constrains the
expectation of the full cost distribution to be lower than 40 when
𝜉 = 0.0. To get more intuitive interpretations on such difference,
we visualize the probabilities to choose action 1 and 2 as the input
quantile level changes at state 𝑆3 in Fig. 2(c). When 𝜉 = 0.9, the
probability of selecting action 1 descends straightly as the quantile
level increases, while it stays nearly unchanged when 𝜉 = 0.0. In
other words, when 𝜉 = 0.9, the policy becomes much more con-
servative by choosing action 2 with higher probability when the
accumulate cost gets higher before reaching state 𝑆3. The distinct
trending curves of different 𝜉 suggest RAC is able to fit different
risk levels and learn policies accordingly by manipulating the sen-
sitivity on the input quantile level. Essentially, such visualization
results validate our motivation for using non-stationary policies
with quantiles as input, especially in the risk-averse setting.

7.2 Constrained Four Room Environment
The constrained four room environment (CFR) is an extension of
the classical four room environment [13], as shown in Fig. 3(a).
Agent locates at grid S initially in CFR, and the goal grid is G. The
total horizon of CFR is 100. At each step, agent can move to one of
its neighboring grids with direction up, right, down or left. The move
is successful only if the next grid is within CFR and is not a wall,
i.e., black grid. Agent also gets reward -1 when unsuccessful move
is made. When the next grid has the circle sign, the square sign or
the triangle sign, agent gets reward 10, 5, 1, respectively. When the
next grid has the stop sign, agent gets cost 1. The rewarding signs
will disappear once being visited, while the stop signs will stay the
same. The negative Manhattan distance from agent’s location to
grid G counts as the reward at step 100. The goal grid G is absorbing
and generates reward 20 when agent is at grid G at step 100.

In CFR, the threshold 𝑑 = 5 and risk measure𝑔𝑐 = Uniform( [0.5,
1.0]). The unconstrained PPO algorithm and the state-of-the-art
algorithm for solving CVaR-constrained problems,WCSAC [32],
are compared here. RAC utilizes F𝑛𝑛 as the function class for IBDC.
The training curves in Fig. 3(b) suggest that both PPO and WCSAC
are constraint-violating as they have cost larger than 5 at the end of
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(a) (b)
Figure 3: Fig.3(a) shows the CFR environment; Fig.3(b) shows the training curves of algorithms.

(a) (b)
Figure 4: Visualizations of the trained policy in 100 test episodes in CFR. Fig.4(a) shows quantile level heatmap along the
trajectories, where unvisited grids have value -1; Fig.4(b) shows the action-selecting probabilities at grid V with different input
quantile levels.
training, while RAC satisfies the constraint threshold and achieves
the second-best in reward.

We also visualize the policy learned with the RAC algorithm to
get more intuitions and interpretations. We test the learned policy
with 100 episodes, and Fig. 4(a) shows the heatmap of quantile
levels along the trajectories. Grids that are unvisited have value -1.
Apparently, the quantile level is lower around the initial grid S, and
gets larger when it moves closer to goal grid G, since the cost is also
accumulated along the trajectory. Such quantile level is crucial for
decision-making that is evidenced by Fig. 4(b), where we visualize
the action-selecting probabilities at grid V when different quantile
levels are inputted. As the quantile level increases from 0.0 to 1.0,
the probability for selecting up decreases while the probability for
selecting right increases. Such phenomenon is intuitive because
when the quantile level is high, it means that the agent has already
accumulated a large cost before reaching grid V. Hence, it becomes
sub-optimal to still go up as it may violate the constraint threshold
easily. Conversely, the agent has larger probability to go up than
right when the quantile level is little as going up is more rewarding.
Such distinct action-selecting probabilities when different quantile
levels are inputted will adjust the policy to be conservative or
adventurous, which in fact underlies its outperformance.

7.3 Safety Gym Benchmarks
We compare RACwith state-of-the-art algorithm for CVaR-constrained
problems,WCSAC [32], in two safety gym benchmarks, PointGoal1

and CarGoal1. A cubic box is controlled in PointGoal1 and a tiny
car is controlled in CarGoal1, and they aim to reach the destina-
tion point while avoiding unsafe regions. In both benchmarks, the
threshold 𝑑 = 25 and risk measure 𝑔𝑐 = Uniform( [𝜉, 1.0]) with
𝜉 ∈ {0.1, 0.5, 0.9}. F𝑛𝑛 is used for the IBDC class. More details of
benchmarks and RAC are given in Appendix B.4. Table 1 shows
the testing results of trained policies. For different 𝜉 , we report the
mean and std of long-term reward and the corresponding fraction
of long-term cost in the table. The results suggest that RAC outper-
forms WCSAC as RAC satisfies all the constraints under different 𝜉
in both benchmarks, while WCSAC violates the constraint heavily.

7.4 Simulations of Real-World Applications
Finally, we test RAC in two simulations of real-world applications
with hard constraints: UAV Maneuvering (UAVM) [14, 31] and Bud-
geted Load Balancing (BLB). UAVM (Fig. 5) simulates the movement
of UAV in an area with unsafe regions, which are represented as
cylinders between the initial position and the destination. The goal
of UAVM is to control UAV to reach the destination as possible
while bypassing the unsafe regions.

BLB (Fig. 6) originates from the unconstrained load balancing
environment [17], which simulates the load balancing task with
heterogeneous servers in datacenters. The goal of BLB is to mini-
mize the average job completion time, while limiting the maximal
computational expense of servers below the budget. More details
of environments can be found in Appendix B.5.
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Table 1: Testing results in 100 episodes in safety gym benchmarks. W is short for WCSAC and R is short for RAC. The suffix of
algorithms are values of 𝜉 . The mean and std of reward, top 10% cost, top 50% cost and top 90% cost of the 100 testing episodes
are given in the table. - represents the objective is not optimized under the algorithms.

Algs PointGoal1 CarGoal1
Reward 10% 50% 90% Reward 10% 50% 90%

W-0.1 6.0±4.2 - - 39.4±14.0 14.0±9.1 - - 27.6±69.6
R-0.1 2.0±2.1 - - 15.9±13.3 -5.2±7.7 - - 8.7±10.7
W-0.5 2.3±3.8 - 32.0±47.6 - 7.0±4.8 - 42.8±36.7 -
R-0.5 -3.1±3.7 - 16.3±14.7 - -22.5±7.6 - 12.3±7.0 -
W-0.9 4.1±1.6 25.0±20.6 - - 5.1±2.8 46.2±37.7 - -
R-0.9 -3.7±2.3 20.0±3.6 - - -28.8±1.1 13.0±0.8 - -

Table 2: Testing results (mean±std) in 100 episodes in UAVM and BLB.

Algorithms UAV Maneuvering Budgeted Load Balancing
Reward Violation Rate Reward Violation Rate

PPO -27.16±0.16 100% -454.91±61.40 93.07%±0.25%
PPO-Lagrangian -29.92±2.07 0% -560.71 ± 87.11 46.19%±1.12%

GSBF -29.10±2.55 0.4%±0.3% - -
Saute-n1 -30.94±2.01 100% -441.18±67.12 88.60%±1.61%
Saute-n2 -33.26±0.25 100% -453.68±66.50 91.94%±1.78%
Saute-n3 -128.00±36.03 0% -471.22±77.76 83.12%±1.77%
RAC -28.28±0.10 0% -638.82±74.72 11.80%±2.02%

Figure 5: Illustration of the UAVM environment.

Figure 6: Illustration of the BLB environment.

In both UAVM and BLB, 𝑔𝑐 is the Dirac delta distribution at
1. IBDC is initialized from class F𝑛𝑛 for RAC. The baselines for
comparison are follows. PPO is an unconstrained algorithm to
show the maximal reward when no constraints are imposed. PPO-
Lagrangian is a classical algorithm for solving CMDP problems
[1]. GSBF achieves state-of-the-art results in UAVM [31]. Saute
[24] relies on state augmentations and is the state-of-the-art al-
gorithm for solving hard constraint problems. In Saute, we also

set three increasing hyper-parameters 𝑛1, 𝑛2, 𝑛3 for each environ-
ment. Their detailed values are listed in Appendix B.5 as they are
domain-specific.

The testing results of algorithms are summarized in Table 2. In
UAVM, RAC, PPO-Lagrangian and RAC-n3 have zero violations on
safety, while RAC has the largest reward. In fact, RAC achieves the
highest reward among all the constrained algorithms. In BLB, GSBF
is not applicable here as the transition function and the unsafety
regions of BLB are unknown. Among all applicable baselines, BLB
achieves the minimal violation rate in budget constraint with slight
conservativeness in reward. It turns out that Saute is sensitive to
the hyper-parameter 𝑛 from the results of two environments, and
it needs domain specific knowledge to tune the optimal 𝑛.

8 CONCLUSION AND DISCUSSION
This paper targets at solving constrained RL problems, for which our
major novelty lies in searching policies within the quantile-level-
driven policy class and decomposing the challenging trajectory-
level constraints into state-level constraints. As discussed in Sec.
2, our problem formulation RACO is general and applicable for
various risk measures. Moreover, the experimental results in Sec. 7
demonstrate the effectiveness of RAC for real-world applications,
such as maneuvering the UAV to avoid unsafe regions and control-
ling the expense in load-balancing tasks. Hence, we argue that our
work has positive effects on the deployment of RL for wider real-
world applications, especially those with safety-critical constraints.
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