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ABSTRACT

Consider a directed network where each node is either red (using
the red product), blue (using the blue product), or uncolored (unde-
cided). Then in each round, an uncolored node chooses red (resp.
blue) with some probability proportional to the number of its red
(resp. blue) out-neighbors.

What is the best strategy to maximize the expected final number
of red nodes given the budget to select 𝑘 red seed nodes? After
proving that this problem is computationally hard, we provide
a polynomial time approximation algorithm with the best possi-
ble approximation guarantee, building on the monotonicity and
submodularity of the objective function and exploiting the Monte
Carlo method. Furthermore, our experiments on various real-world
and synthetic networks demonstrate that our proposed algorithm
outperforms other algorithms.

Additionally, we investigate the convergence time of the afore-
mentioned process both theoretically and experimentally. In par-
ticular, we prove several tight bounds on the convergence time
in terms of different graph parameters, such as the number of
nodes/edges, maximum out-degree and diameter, by developing
novel proof techniques.
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1 INTRODUCTION

The emergence of online social networks, such as Facebook, Twitter,
WeChat, and Instagram, has precipitated a paradigm shift in com-
munication methods in the 21st century. These digital platforms
have fundamentally transformed the manner in which individuals
interact and exchange information.

The proliferation of online social networking sites, coupled with
advancements in information technology, has sparked a keen in-
terest in leveraging social networks to advertise new products or
promote political campaigns. Nowadays, many firms are opting out
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of utilizing online social networks for advertising purposes, in lieu
of more traditional methods.

Corporations frequently employ diverse strategies to persuade a
specific segment of consumers on social media platforms to adopt
their new products, such as targeted advertising, providing free
samples, or monetary incentives. By harnessing the influence of
these individuals and encouraging them to recommend the product
to their social circles, a chain reaction of recommendations can
be created, usually referred to as viral marketing, cf. [36, 40]. This
technique has emerged as a prominent method for promoting new
products, as it enables companies to achieve extensive reach and
exposure while keeping costs low.

The question then becomes how to choose an initial subset of
so-called early adopters to maximize the number of people that
will eventually be reached, given some fixed marketing budget. To
tackle this question, several stochastic models, such as the Inde-
pendent Cascade (IC) and Linear Threshold (LT) model [30], have
been introduced to simulate the product adoption process. In most
of these models, one considers a graph where each node is either
colored (active) or uncolored (inactive). Then, in each round of the
process, some uncolored nodes become colored following a prede-
fined stochastic updating rule. The nodes correspond to individuals,
and the edges represent relationships such as friendship, interest,
or collaboration. A node is colored when it has adopted the product,
and the updating rule defines the way the adoption progresses.

The problem of finding a seed set of size 𝑘 which maximizes
the expected final number of colored nodes has turned out to be
NP-hard in various setups, cf. [12, 30, 35, 50]; however, several
greedy-based and centrality-based approximation algorithms have
been developed, cf. [17, 35]. Another aspect of diffusion processes
which has been studied extensively is the convergence time, where
tight bounds in terms of different network parameters or for special
classes of networks have been provided, cf. [7, 25, 33].

The extant body of prior work has predominantly centered on
single cascade models, cf. [2, 17, 35, 52], albeit this presupposition
proves inadequate in numerous practical situations, particularly
in the presence of multiple rival products. It is not uncommon for
creators of consumer technologies to introduce a new product in
a market where a competitor is presenting a comparable product.
Consequently, several extensions of the single cascade models such
as the IC and LTmodel have been introduced to capture themultiple
cascade framework, cf. [5, 8, 36, 37, 40, 43, 51, 53]. Given a state
where nodes are either uncolored (undecided) or blue (use the
blue product), the objective is to maximize the final reach of red
color (adoption of the red product) with a given budget to make 𝑘
uncolored nodes red. It is often presumed that nodes do not switch
between red and blue color as this may entail incurring a transition
cost that could outweigh the direct advantages of the competitive
technology, cf. [23]. Furthermore, the red company is aware of its

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2047

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


competitor’s early adopters, for example through extensive market
research or industrial espionage.

In contrast to single cascade, our knowledge of the multiple cas-
cade framework is constrained. Therefore, gaining a more profound
understanding of the driving mechanisms behind multiple products
adoption processes is very fundamental. This is especially critical
given that the limited work done on this topic have employed a
contrived generalization of existing single cascade models rather
than devising models tailored for the multiple products’ setup. To
close this gap, the present work develops a natural, simple, and
intuitive model for the adoption of multiple products. We draw
inspiration from the rich literature on opinion formation models,
such as the Majority model [55] and Voter model [27], in which
each node has an opinion from a range of opinions and updates its
opinion through interactions with its peers. In our model, called
Random Pick, nodes are uncolored, red, or blue and in each round
an uncolored node picks one of its out-neighbors at random and
adopts its color. This process particularly possesses the property
that the probability of an uncolored node 𝑣 adopting red (resp. blue)
color is proportional to the number of red (resp. blue) nodes in its
out-neighborhood.

We prove that the problem of maximizing the expected final
number of red nodes by selecting 𝑘 red seed nodes in the Random
Pick model is computationally hard and provide a polynomial time
approximation algorithm with theoretical guarantees. We also give
several tight bounds on the convergence time of the Random Pick
process in terms of different graph parameters, in both worst case
and average setups. We complement our theoretical findings with
a large set of experiments on real-world and synthetic graph data.

1.1 Basic Definitions

Graph Definitions. Consider a directed graph 𝐺 = (𝑉 , 𝐸), with
the node set𝑉 and edge set 𝐸 ⊆ 𝑉 ×𝑉 . Let 𝑛 := |𝑉 | and𝑚 := |𝐸 |. For
a node 𝑣 ∈ 𝑉 , let Γ+ (𝑣) := {𝑢 : (𝑣,𝑢) ∈ 𝐸} and Γ− (𝑣) := {𝑢 : (𝑢, 𝑣) ∈
𝐸} be the set of out-neighbors and in-neighbors of 𝑣 . Furthermore,
𝑑+ (𝑣) := |Γ+ (𝑣) | and 𝑑− (𝑣) := |Γ− (𝑣) | denote the out-degree and
in-degree of node 𝑣 . We define Δ+ (𝐺) := max𝑣∈𝑉 𝑑+ (𝑣) to be the
maximum out-degree of 𝐺 . The node sequence 𝑣1, · · · , 𝑣𝑘 is a walk
if (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for each 1 ≤ 𝑖 ≤ 𝑘 − 1. A path is a walk in which all
nodes are distinct. The distance 𝑑 (𝑣,𝑢) from 𝑣 to 𝑢 is the length of
the shortest path from 𝑣 to 𝑢. The distance 𝑑 (𝑣,𝑢) = ∞ if there is
no path from 𝑣 to 𝑢, i.e., 𝑢 is not reachable from 𝑣 . The diameter of
𝐺 is denoted by 𝐷 (𝐺) := max𝑣,𝑢∈𝑉 ,𝑑 (𝑣,𝑢 )≠∞ 𝑑 (𝑣,𝑢). (Note that we
exclude the unreachable pairs.) We simply use 𝐷 and Δ+, when 𝐺
is clear from the context.

Assume that in𝐺 , if (𝑣,𝑢) ∈ 𝐸, then (𝑢, 𝑣) ∈ 𝐸. Then, we say that
𝐺 is undirected. In that case, we simply use Γ(𝑣) instead of Γ− (𝑣)
and Γ+ (𝑣) and use Δ instead of Δ+.
Model Definition. A state is a function S : 𝑉 → {𝑏, 𝑟,𝑢}, where
𝑏, 𝑟 , and 𝑢 represent blue, red, and uncolored, respectively. We say a
node is colored if it is blue/red.

Definition 1 (Random Pick). In the Random Pick model for

a given initial state S0, in each round every node 𝑣 picks an out-

neighbor 𝑤 (i.e., a node in Γ+ (𝑣)) uniformly and independently at

random; then, 𝑣 adopts 𝑤 ’s color if 𝑣 is uncolored and 𝑤 is colored.

See Figure 1 for an example.

𝑣!

𝑣" 𝑣#

𝑣$ 𝑣%

𝑣!

𝑣" 𝑣#

𝑣$ 𝑣%

Figure 1: One application of Random Pickmodel, where bold

edges show the picked random out-neighbor for each node.

Note that the red/blue nodes and the uncolored nodes with no
blue/red out-neighbors remain unchanged, regardless of their ran-
dom choice of out-neighbor. Thus, we could redefine themodel such
that only uncolored nodes with at least one colored node choose a
random out-neighbor. However, the model is defined as described
in Definition 1 since it makes our analysis more straightforward.

The probability of an uncolored node 𝑣 adopting red/blue color is
proportional to the number of red/blue nodes in Γ+ (𝑣). Furthermore,
we could define the model in a push-based manner (rather than pull-

based), where each node pushes its color to all of its in-neighbors
and then each uncolored node picks one of the received colors
uniformly at random. This description perhaps matches the reality
more accurately, but the described models are identical.

Let S𝑡 , for 𝑡 ≥ 0, denote the state in the 𝑡-th round. Furthermore,
we define S𝑏 , S𝑟 , and S𝑢 to be the set of red/blue/uncolored nodes
in the state S. We define 𝑅𝑡 = S𝑟𝑡 , 𝐵𝑡 = S𝑏𝑡 and𝑈𝑡 = S𝑢𝑡 to be the
set of red, blue, and uncolored nodes in S𝑡 . Set 𝑟𝑡 := |𝑅𝑡 |, 𝑏𝑡 := |𝐵𝑡 |,
and 𝑢𝑡 := |𝑈𝑡 |. Note that they are all random variables.

Convergence Properties. A node 𝑣 ∈ 𝑈0 will be eventually

colored red/blue if and only if it can reach a node𝑤 ∈ 𝑅0∪𝐵0. Thus,
the Random Pick process will eventually reach a stable state, where
no node can update, that is, no uncolored node can be colored. (In
other words, in the correspondingMarkov chain there is a path from
every state to some stable state and the stable states are absorbing.)
The number of rounds the process needs to reach such a stable state
is called the convergence time of the process.

Pick Sequence. Let 𝑝𝑠 (𝑣) ∈ 𝑉 × 𝑉 × · · · denote the pick se-

quence for a node 𝑣 , where the 𝑡-th element of the sequence is
the random out-neighbor picked by node 𝑣 in the 𝑡-th round. We
use 𝑝𝑠𝑡 (𝑣) to denote the 𝑡-th element of the sequence. Let P(𝐺) :=
(𝑝𝑠 (𝑣1), · · · , 𝑝𝑠 (𝑣𝑛)) be the pick profile of𝐺 = (𝑉 = {𝑣1, · · · , 𝑣𝑛}, 𝐸).
We observe that given an initial state S0 and a pick profile P, the
final color of all nodes can be inferred deterministically.

Product Adoption Maximization. For a state S which con-
tains only blue/uncolored nodes (i.e., the red product has not en-
tered the market yet) and a set 𝐴 ⊂ S𝑢 = 𝑉 \ S𝑏 , let FS (𝐴) be the
expected final number of red nodes in the Random Pick process
starting from the state S′ obtained from setting the colors of all
nodes in 𝐴 to red in S.

Definition 2 (Product Adoption Maximization). Given a

directed graph 𝐺 = (𝑉 , 𝐸), a state S, and a budget 𝑘 , compute F ∗S :=
max |𝐴 | ≤𝑘,𝐴∩S𝑏=∅ FS (𝐴).

We impose the restriction that𝐴∩S𝑏 = ∅, that is, the customers
of the blue product cannot be targeted. However, it is straightfor-
ward to see all our results also hold when this restriction is relaxed.
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Submodularity andMonotonicity.Consider an arbitrary func-
tion 𝑓 (·) which maps subsets of a ground set𝑉 to non-negative real
values. Function 𝑓 is submodular if for all 𝑣 ∈ 𝑉 and 𝐴 ⊆ 𝐴′ ⊆ 𝑉 ,
𝑓 satisfies 𝑓 (𝐴′ ∪ {𝑣}) − 𝑓 (𝐴′) ≤ 𝑓 (𝐴 ∪ {𝑣}) − 𝑓 (𝐴). Furthermore,
we say that 𝑓 is monotonically increasing if 𝑓 (𝐴 ∪ {𝑣}) ≥ 𝑓 (𝐴).

ApproximationAlgorithms.We say thatA is a 𝜌-approximation
algorithm for a maximization problem 𝑃 and some 𝜌 > 0 if the
output of A is not smaller than the optimal solution times 𝜌 for
any instance of problem 𝑃 .

Some Inequalities.We utilize some standard probabilistic in-
equalities, cf. [21].

Theorem 1.1 (Chernoff bound). Suppose that 𝑥1, · · · , 𝑥𝑛 are

independently distributed in [0, 1] and let 𝑋 denote their sum, then

• Pr[(1 + 𝜂)E[𝑋 ] ≤ 𝑋 ] ≤ exp
(
−𝜂

2E[𝑋 ]
3

)
,

• Pr[𝑋 ≤ (1 − 𝜂)E[𝑋 ]] ≤ exp
(
−𝜂

2E[𝑋 ]
2

)
.

Theorem 1.2 (Markov’s ineqality). Let 𝑋 be a non-negative

random variable with finite expectation and 𝑎 > 0, then

Pr[𝑋 ≥ 𝑎] ≤ E[𝑋 ]
𝑎

.

Theorem 1.3 (Chebyshev’s ineqality). Let 𝑋 be a random

variable with finite variance and 𝑎 > 0, then

Pr[|𝑋 − E[𝑋 ] | ≥ 𝑎] ≤ 𝑉𝑎𝑟 [𝑋 ]
𝑎2 .

Furthermore, we sometimes use the basic inequalities 1 − 𝑧 ≤
exp(−𝑧) for any 𝑧 and 4−𝑧 ≤ 1 − 𝑧 for any 0 < 𝑧 < 1/2.

Assumptions.We let 𝑛 (the number of nodes) tend to infinity.
We say an event E occurs with high probability (w.h.p.) if it happens
with probability 1 − 𝑜 (1).

1.2 Our Contribution

We prove that there is no (1 − 1
𝑒 + 𝜖)-approximation algorithm

(for any constant 𝜖 > 0) for the Product Adoption Maximiza-
tion problem, under some plausible complexity assumptions, by a
reduction from the Maximum Coverage problem [24].

We show that the objective function F𝑆 (·) is monotone and sub-
modular. Given a pick profile, we build an extended sequence 𝑒𝑠 (𝑣)
for each node 𝑣 . This sequence has the distinctive characteristic that
the final color adopted by 𝑣 is the same as the color of the first node
in this sequence which is red/blue in the initial state S0 (if such
a node does not exist, 𝑣 will be uncolored). This will be the main
building block of our proof of monotonicity and submodularity.
Consequently, a greedy Hill Climbing approach would provide us
with an approximation ratio of 1 − 1

𝑒 , cf. [41]. However, for that we
need to repeatedly compute FS (·), which seems to be computation-
ally expensive. Thus, we resort to the Monte Carlo approximation
for estimating FS (·), which overall provides us with a polynomial
time (1 − 1

𝑒 − 𝜖)-approximation algorithm for any 𝜖 > 0. Moreover,
our empirical evaluations on a large spectrum of real-world and syn-
thetic networks illustrate that our proposed algorithm consistently
outperforms the classic centrality-based algorithms. Therefore, our
algorithm not only boasts proven theoretical guarantees, but also
demonstrates highly satisfactory performance in practice.

In the second part, we provide several tight bounds on the conver-
gence time of the Random Pick process in terms of different graph

parameters. This is not only very fundamental and interesting by its
own sake, but also a prerequisite for bounding the time complexity
of our algorithm. Specifically, we prove the upper bounds of Õ(𝑚)
and Õ(𝐷Δ+), where Õ is used to hide poly-logarithmic terms in
𝑛. We prove that these bounds are the best possible and further
derive stronger bounds for undirected graphs. To prove the bounds,
we introduce the novel concept of traversed node chain and rely
on various Markov chain analyses. For the tightness proofs, we
present explicit constructions. We also consider the randomized
setup, where each node is colored independently with probability
(w.p.) 𝑞 > 0 and prove the bound of Õ(1/𝑞2) for directed graphs
and Õ(1/𝑞) for undirected graphs. Additionally, we investigate the
convergence time on various real-world and synthetic networks.

Finally, we prove that the problem of determining whether there
exists an initial state with 𝑘 colored nodes with the expected con-
vergence time 𝑡 , is NP-hard (even in very restricted setups) by a
reduction from the Vertex Cover problem.

1.3 Related Work

ICModel. The Independent Cascade (IC) model, popularized by the
seminal work of Kempe et al. [30], has obtained substantial popular-
ity to simulate viral marketing, cf. [35, 48]. In this model, initially
each node is uncolored (inactive), except a set of seed nodes which
are colored (active). Once a node is colored, it gets one chance to
color each of its out-neighbors. The problem of finding a seed set of
size 𝑘 which maximizes the expected final number of colored nodes
have been studied extensively and a large collection of approxi-
mation and heuristic algorithms (mostly using greedy approaches)
have been developed, cf. [17, 30, 35]. Different extensions of the IC
model have been introduced to investigate the diffusion of multiple
competing products, cf. [8, 13, 20, 36, 38, 40, 58]. They usually sup-
pose that both products (red or blue) spread following the IC model
and define how the spread of one can influence the other. Similar
to our work, their main goal is to design efficient algorithms for
the selection of a set of red seed nodes. The problem is proven to
be NP-hard in most scenarios and thus the previous works have
resorted to approximation algorithms for general case [13, 20, 38]
or exact algorithm for special cases [8].
Threshold Model. In the Threshold model, each node 𝑣 has a
threshold 𝜏 (𝑣). From a starting state, where each node is either
colored or uncolored, an uncolored node becomes colored once
𝜏 (𝑣) fraction of its out-neighbors are colored. The problem of
selecting 𝑘 colored seed nodes cannot be approximated within
the ratio of 𝑂 (2log1−𝜖 𝑛), for any constant 𝜖 > 0, unless 𝑁𝑃 ⊆
𝐷𝑇𝐼𝑀𝐸 (𝑛𝑝𝑜𝑙𝑦𝑙𝑜𝑔 (𝑛) ) [15]. However, the problem is traceable for
trees [14] and there is a (1 − 1/𝑒)-approximation algorithm for the
Linear Threshold (LT) model, where the threshold 𝜏 (𝑣) is chosen
uniformly and independently at random in [0, 1], cf. [30]. Several
works [9, 37, 43, 53] have considered the setup with two colors,
where for a node 𝑣 , once 𝜏 (𝑣) fraction of its out-neighbors are col-
ored, it picks one of the two colors following a certain updating rule.
Again due to the NP-hard nature of the problem, approximation
techniques using submodularity [37] and rapidly mixing Markov
chains [43] and various heuristics [53] have been developed.
Majority-based Model. Let each node be either red or blue. Then,
in the Majority model [18, 55, 56, 59], in every round each node
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updates its color to the most frequent color in its out-neighborhood
and in the Voter model [19, 27, 46] each node chooses one of its
out-neighbors at random and adopts its color. Unlike the IC or
Threshold model, here a node can switch back and forth between
red and blue. These models aim to mimic opinion formation process
(where individuals might change their opinions constantly) while
the IC and Threshold model goal to simulate product adoption
process (where once a customer adopts a product, it is costly to
switch to the other). For the problem ofmaximizing the final number
of red nodes using a budget 𝑘 , a logΔ-approximation algorithm is
known for the Majority model [39] and a Fully Polynomial Time
Approximation Scheme [22] for the Voter model (when selecting
each seed node 𝑣 has a given cost 𝑐 (𝑣)).
Convergence Time. The convergence time is one of the most
well-studied characteristic of dynamic processes, cf. [3, 4]. For the
Majority model on undirected graphs, it is proven [44] that the
process converges in O(𝑛2) rounds (which is tight up to some
poly-logarithmic factor [25]). Better bounds are known for special
graphs [55]. The convergence properties have also been studied for
directed acyclic graphs [18], weighted graphs [29], and when the
updating rule is biased [33]. For the Voter model, an upper bound
of O(𝑛3 log𝑛) has been proven in [27] using reversible Markov
chain argument. For the Threshold model on undirected graphs, it
is proven [54] that when 𝜏 (𝑣) = 𝑟/𝑑+ (𝑣) for a fixed 𝑟 , then the con-
vergence time can be bounded by O(𝑟𝑛/𝛿), where 𝛿 is the minimum
degree.

2 PRODUCT ADOPTION MAXIMIZATION

2.1 Inapproximability Result

Theorem 2.1. There is no polynomial time (1− 1
𝑒 +𝜖)-approximation

algorithm (for any constant 𝜖 > 0) for the Product Adoption Maxi-

mization problem, unless 𝑁𝑃 ⊆ 𝐷𝑇𝐼𝑀𝐸 (𝑛O(log log𝑛) ).

Proof Sketch. The reduction is from the Maximum Coverage
problem, where for a given collection of subsets 𝑆 = {𝑆1, 𝑆2, · · · , 𝑆𝑙 }
of an element set 𝑂 = {𝑂1, · · · ,𝑂ℎ} and an integer 𝑘 , the goal is
to find the maximum number of elements covered by 𝑘 subsets. It
is known that there is no polynomial time (1 − 1

𝑒 )-approximation
algorithm for the Maximum Coverage problem, unless 𝑁𝑃 ⊆
𝐷𝑇𝐼𝑀𝐸 (𝑛O(log log𝑛) ), cf. [24]. Given an instance of Maximum
Coverage problem, we can construct an instance of the Prod-
uct Adoption Maximization problem in polynomial time such
that 𝑂𝑃𝑇𝑀𝐶 = (𝑂𝑃𝑇𝑃𝐴𝑀 − 𝑘)/⌈1/𝜖⌉, where 𝑂𝑃𝑇𝑀𝐶 and 𝑂𝑃𝑇𝑃𝐴𝑀
correspond to the optimal solution in theMaximum Coverage and
Product Adoption Maximization problem. Combining this with
the aforementioned hardness result forMaximum Coverage con-
cludes the proof. A complete proof is given in the full version [57].
□

2.2 Greedy Algorithm

Our first goal here is to prove Theorem 2.2, which states that the
function FS (·) is monotone and submodular. Let us present a refor-
mulation of our model, which facilitates the proof of the theorem.

Extended Sequence. Consider a pick profile P (defined in Sec-
tion 1.1), then we establish the notion of extended sequence 𝑒𝑠 (𝑣)
for a node 𝑣 . Let us define 𝑒𝑠𝑡 (𝑣) for 𝑡 ≥ 0 in a constructive manner.

Define 𝑒𝑠0 (𝑣) = 𝑣 and for 𝑡 ≥ 1, 𝑒𝑠𝑡 (𝑣) = 𝑒𝑠𝑡−1 (𝑣), 𝑒𝑠𝑡−1 (𝑣 ′), where
𝑣 ′ is the node 𝑣 picks in the 𝑡-th round, i.e., 𝑣 ′ is the 𝑡-th element in
the pick sequence 𝑝𝑠 (𝑣). (We use “,” for concatenation.) Then, the
extended sequence 𝑒𝑠 (𝑣) is just 𝑒𝑠𝑡 (𝑣) when we let 𝑡 go to infinity.
Note that this definition is well-defined since we can first calculate
𝑒𝑠0 for all nodes, then 𝑒𝑠1, and so on. However, the time complex-
ity of computing these sequences does not concern us since they
are solely utilized to provide a reformulation of our model, which
simplifies the proof of submodularity and monotonicity.

The functionality of the extended sequence 𝑒𝑠 (𝑣) is that, based
on Lemma 1, if we keep traversing its nodes until we reach a node
which is colored red/blue in the initial state S0, then that would
be the final color picked by 𝑣 . The idea is to trace back where the
color of 𝑣 comes from. Please refer to the full version [57] for an
example.

Lemma 1. Consider the Random Pick process on a graph 𝐺 =

(𝑉 , 𝐸) with an initial state S0 and pick profile P. For a node 𝑣 , let𝑤
be the first node in 𝑒𝑠𝑡 (𝑣) such that S0 (𝑤) ≠ 𝑢, then S𝑡 (𝑣) = S0 (𝑤),
and if there is no such node then S𝑡 (𝑣) = 𝑢.

The proof of Lemma 1 follows from an induction on 𝑡 . A proof
is provided in the full version [57].

Theorem 2.2. For an arbitrary state S on a graph𝐺 = (𝑉 , 𝐸), the
function FS (·) is monotonically increasing and submodular.

Proof. Submodularity. Consider a node 𝑣 ∈ 𝑉 and subsets
𝐴 ⊆ 𝐴′ ⊆ S𝑢 . We want to prove that FS (𝐴′ ∪ {𝑣}) − FS (𝐴′) ≤
FS (𝐴 ∪ {𝑣}) − FS (𝐴). Note that for FS (·), we need to compute
the expected final number of red nodes, which seems difficult to
deal with directly. However, if we fix all the random choices of out-
neighbors, then it perhaps becomes easier to handle. Let F PS (·) be
the same as FS (·) but conditioning on the pick profile P. Then,
we can rewrite FS (·) as

∑
all profiles P Pr[P] · F PS (·). Since a non-

negative linear combination of submodular functions is also sub-
modular, it suffices to prove that F PS (·) is submodular.

Consider a node𝑤 which counts as a final red node in F PS (𝐴
′ ∪

{𝑣}) but not in F PS (𝐴
′). According to Lemma 1, this implies that in

the extended sequence 𝑒𝑠 (𝑤) (with respect to P): (i) there is a node
from S𝑏 before any node from 𝐴′ ∪ S𝑟 or there is no node from
𝐴′ ∪S𝑏 ∪S𝑟 , (ii) node 𝑣 appears before any node in 𝐴′ ∪S𝑏 ∪S𝑟 .
(Note that 𝐴′ ∪ S𝑏 ∪ S𝑟 is the set of colored nodes.) Condition (i)
is true since𝑤 does not count as a final red node in F PS (𝐴

′) and
condition (ii) holds since it does in F PS (𝐴

′ ∪ {𝑣}). Note that since
𝐴 ⊆ 𝐴′, both conditions will remain true if we replace 𝐴′ with 𝐴.
This implies that𝑤 counts as a final red node inF PS (𝐴∪{𝑣}) but not
in F PS (𝐴). Therefore, we can conclude F

P
S (𝐴

′ ∪ {𝑣})−F PS (𝐴
′) ≤

F PS (𝐴 ∪ {𝑣}) − F
P
S (𝐴).

Monotonicity. Consider an arbitrary node 𝑣 ∈ 𝑉 and set 𝐴 ⊂
𝑉 . We aim to show that FS (𝐴) ≤ FS (𝐴 ∪ {𝑣}). Again using
FS (·) =

∑
all profiles P Pr[P] · F PS (·), it suffices to prove that

F PS (𝐴) ≤ F
P
S (𝐴 ∪ {𝑣}). Let node 𝑤 count as a final red node

in F PS (𝐴). According to Lemma 1, in the extended sequence 𝑒𝑠 (𝑤)
(with respect to P), there is a node from S𝑟 ∪ 𝐴 which appears
before any node from S𝑏 . This condition obviously remains true if
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we replace 𝐴 with 𝐴 ∪ {𝑣}. Therefore,𝑤 counts as a final red node
in F PS (𝐴 ∪ {𝑣}) too. □

The greedy Hill Climbing algorithm for the Product Adop-
tion Maximization problem, repeatedly finds the element 𝑣 ∈
(𝑉 \ S𝑏 ) \𝐴 which maximizes FS (𝐴 ∪ {𝑣}) and adds it to 𝐴 until
|𝐴| = 𝑘 . (This is essentially the same as Algorithm 1 if we replace
𝐸𝑠𝑡S (𝐴 ∪ {𝑤}) with FS (𝐴 ∪ {𝑤}).) Since FS (·) is non-negative,
monotone, and submodular (see Theorem 2.2), the Hill Climb-
ing algorithm has the approximation ratio of (1 − 1

𝑒 ), according
to [41]. However, since computing FS (·) seems to be computation-
ally expensive, we use the Monte Carlo method, which results in
Algorithm 1 whose analysis is given in Theorem 2.3.

Algorithm 1: Monte Carlo Greedy Algorithm
Input: Graph𝐺 = (𝑉 , 𝐸 ) , state S, budget 𝑘 , error factor 𝜖 > 0.
Output: Selected seed nodes.

1 Initialize 𝐴← ∅
2 for 𝑖 = 1 to 𝑘 do

3 𝑣 ← arg max
𝑤∈ (𝑉 \S𝑏 )\𝐴 𝐸𝑠𝑡S (𝐴 ∪ {𝑤})

4 𝐴← 𝐴 ∪ {𝑣}
5 end

6 return 𝐴

7 Function EstS (𝐴):
8 count ← 0
9 for 𝑗 = 1 to 𝑅 = (27𝑛𝑘2 ln𝑛3 )/𝜖2

do

10 Simulate Random Pick with the state obtained
from S by making 𝐴 red.

11 𝑟 ← final number of red nodes
12 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 𝑟
13 end

14 return 𝑐𝑜𝑢𝑛𝑡/𝑅
15 end

Theorem 2.3. Algorithm 1 w.h.p. achieves approximation ratio of

1 − 1
𝑒 − 𝜖 in time O(𝑘𝑅𝑛𝑚𝑇 ), where 𝑇 = 𝐷Δ+.

Proof. In the context of Hill Climbing approach, it is known
(e.g., Theorem 3.6 in [16]) that if 𝐸𝑠𝑡S (·) is a multiplicative 𝜂-error
estimate of FS (·) for 𝜂 = 𝜖/(3𝑘), then Algorithm 1 has an approxi-
mation ratio of 1 − 1

𝑒 − 𝜖 .
Consider an arbitrary seed set 𝐴. Let random variable 𝑥 𝑗 , for

1 ≤ 𝑗 ≤ 𝑅, be the number of red nodes in the 𝑗-th simulation (i.e.,
the 𝑗-th iteration of for loop in line 9 of Algorithm 1) divided by 𝑛.
Define 𝑋 :=

∑𝑅
𝑗=1 𝑥 𝑗 and 𝑋 := 𝑋/𝑅. Applying the Chernoff bound,

we have Pr[|𝑋 − E[𝑋 ] | ≥ 𝜂E[𝑋 ]] = Pr[|𝑋 − E[𝑋 ] | ≥ 𝜂E[𝑋 ]] ≤
2 exp(−𝜂2E[𝑋 ]/3) ≤ 2/𝑛3. In the last step, we used 𝜂2 = 𝜖2/(9𝑘2),
E[𝑋 ] ≥ 𝑅/𝑛 (since 𝑥𝑖 ≥ 1/𝑛) and 𝑅 = (27𝑛𝑘2 ln𝑛3)/𝜖2.

Since there are at most 𝑛𝑘 ≤ 𝑛2 calls to 𝐸𝑠𝑡S (·), a union bound
implies that 𝐸𝑠𝑡S (·) is a multiplicative 𝜂-error estimate of FS (·)
w.h.p.

The algorithm performs at most 𝑘𝑛𝑅 simulations of the Random
Pick process. The time to execute one round of a simulation is
in O(𝑚). Furthermore, in Section 3 (Theorems 3.1) we prove that
w.h.p. the convergence time of the process is in O(𝐷Δ+). Therefore,
the overall run time of the algorithm is in O(𝑘𝑅𝑛𝑚𝑇 ) w.h.p. □

Figure 2: The final ratio of red nodes for 𝑘 seed nodes and

𝑏0 = (a) 10, (b) 20, (c) 50 and (d) 100 initial blue nodes on the

Food network.

Run Time on Real-world Networks. According to Theo-
rem 2.3, the run time of Algorithm 1 in Õ(𝑘3𝑛2𝑚𝐷Δ+/𝜖2). In real-
world social networks, it is commonly observed that𝑚 = Θ(𝑛) and
𝐷 and Δ+ are small, cf. [1]. Thus, for fixed values of 𝑘 and 𝜖 , the
algorithm runs in Õ(𝑛3). We pose devising heuristic algorithms
which run in nearly linear time as a potential avenue for future
research in Section 4.

Extensions. The Random Pick process can be naturally ex-
tended to encompass the case of more than two colors, where again
an uncolored node picks an out-neighbor at random and adopts
its color. In the Product Adoption Maximization problem, we
can let the initial colored nodes be of different colors (rather than
just blue) and we again simply add red seed nodes. Then, all of our
results can be easily extended to this setup.

Furthermore, we can extend the greedy algorithm to the case
where the costs of selected nodes are non-uniform and the total
cost of selected nodes cannot exceed a given budget. The adapted
greedy algorithm again achieves an approximation ratio of 1− 1

𝑒 −𝜖 ,
cf. [31, 49].

2.3 Experiments: Comparison of Algorithms

Datasets. Our experiments are conducted on real-world social net-
works fromKONECT [32], Network Repository [47], and SNAP [34].
We also consider the BA (Barabási–Albert) model [1] which is a
synthetic graph model tailored to capture fundamental properties
observed in real-world networks, such as small diameter and scale-
free degree distribution. For the BA graphs, we set the parameters
such that the average degree is comparable to that of experimented
real-world networks with similar number of nodes. The list of ex-
perimented networks is in Table 1.

Machine. All our experiments, programmed in Julia, were con-
ducted on a Linux server with 128G RAM and 4.2 GHz Intel i7-7700
CPU, using a single thread.

Algorithms. We compare our algorithm against several classic
centrality based algorithms which choose 𝑘 uncolored nodes to be
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the seed nodes according to some centrality measure for an instance
of the Product AdoptionMaximization problem: PageRank [42]
(highest PageRank), Closeness [6, 11] (highest closeness), Between-
ness [10, 11] (highest betweenness), InDegree [6, 11]: (highest in-
degree), OutDegree [6, 11] (highest out-degree). (For undirected
graphs, we only consider the OutDegree algorithm because InDe-
gree and OutDegree are identical.)

Furthermore, we consider a Community based algorithm where
we run a community detection algorithm [45] to find at least 2𝑘
communities. Then, we sort the communities based on the number
of blue nodes in them in the ascending order. In each of the first 𝑘
communities, we select an uncolored node at random and color it
red. (The idea is that the red marketer targets communities which
are “untouched” or “less touched” by the blue marketer.) We set
𝑅 = 300 for our greedy algorithm in all the experiments.

Comparison. For each network, we randomly selected 𝑏0 =

10, 20, 50, 100 nodes and colored them blue. Then, we chose 𝑘 =

1, 2, . . . , 50 initial red nodes from uncolored nodes using each of the
aforementioned algorithms. We ran the process and computed the
final number of red nodes. We repeated this process 300 times and
computed the average final ratio of red nodes for each algorithm.
The results for Food network are depicted in Figure 2. Similar
diagrams are given in the full version [57] for other networks.

We observe that our proposed algorithm consistently outper-
forms other algorithms. Therefore, it not only possesses proven
theoretical guarantees, but also performs very well in practice.

Another interesting observation is that the outcomes of our
experiments emphasize on the importance of following a clever
marketing strategy. For example, in Figure 2 (a), 10 blue nodes are
chosen randomly. If the red marketer follows our greedy approach,
even with 1 red seed node it can win almost 70% of the customers at
the end and with 10 red seed nodes, it wins over 90% of the whole
network. A similar behavior can be observed in other setups.

3 CONVERGENCE TIME

3.1 Tight Upper Bounds

In the Random Pick process on a graph 𝐺 = (𝑉 , 𝐸) with the initial
state S0, if an uncolored node does not have a path to (i.e., cannot
reach) any node in 𝑅0 ∪ 𝐵0, it remains uncolored forever, and oth-
erwise, it eventually becomes colored (i.e., red/blue). To bound the
convergence time of the process, it suffices to bound the number
of rounds required for all such nodes to be colored. (Note that we
only focus on whether a node is colored or uncolored since the
exact color of a node (red/blue) does not affect the consensus time.)
Before proving our bounds and their tightness, we provide some
preliminaries

Observation 1. In the Random Pick process on a graph 𝐺 =

(𝑉 , 𝐸), the expected number of rounds a node 𝑣 needs to pick a specific

out-neighbor𝑤 ∈ Γ+ (𝑣) is equal to 1/𝑑+ (𝑣).

Traversed Node Chain. Consider a node chain𝑤0,𝑤1, · · · ,𝑤ℎ

in a graph 𝐺 = (𝑉 , 𝐸) where (𝑤𝑖 ,𝑤𝑖−1) ∈ 𝐸 for each 1 ≤ 𝑖 ≤ ℎ. In
the Random Pick process on 𝐺 , we say𝑤0,𝑤1, · · · ,𝑤ℎ is traversed
if there is a sequence of rounds such that 𝑤1 picks 𝑤0, then 𝑤2
picks 𝑤1, and so on until 𝑤ℎ picks 𝑤ℎ−1. More precisely, there is
1 ≤ 𝑡1 < 𝑡2 < · · · < 𝑡ℎ such that 𝑝𝑠𝑡𝑖 (𝑤𝑖 ) = 𝑤𝑖−1 for 1 ≤ 𝑖 ≤ ℎ.

Now, we state Lemma 2, which is a main building block of our
proofs in this section.

Lemma 2. Consider the Random Pick process on a graph 𝐺 =

(𝑉 , 𝐸). The expected number of rounds for a node chain𝑤0,𝑤1, · · · ,𝑤ℎ

to be traversed is equal to

∑ℎ
𝑖=1 𝑑+ (𝑤𝑖 ).

Proof. For any 1 ≤ 𝑖 ≤ ℎ, the expected number of rounds for
𝑤𝑖 to pick node𝑤𝑖−1 is 𝑑+ (𝑤𝑖 ). This is because𝑤𝑖 has 𝑑+ (𝑤𝑖 ) out-
neighbors, and it picks one of them uniformly and independently
at random in each round. Thus, the expected number of rounds to
traverse the node chain𝑤0,𝑤1, · · · ,𝑤ℎ is equal to

∑ℎ
𝑖=1 𝑑+ (𝑤𝑖 ). □

Theorem 3.1. The convergence time of the Random Pick process

w.h.p. is at most 4𝐷Δ+ log2 𝑛 if 𝐺 is directed and 20𝑛 log2 𝑛 if 𝐺 is

undirected.

Proof. Directed. Consider an arbitrary initial state S0 on 𝐺 .
Let 𝑤 be a node which has a path to some node 𝑤0 ∈ 𝑅0 ∪ 𝐵0.
Consider the node chain w = 𝑤0,𝑤1, · · · ,𝑤ℎ corresponding to the
shortest path from 𝑤 = 𝑤ℎ to 𝑤0, where ℎ = 𝑑 (𝑤,𝑤0). Let 𝑇𝑤 be
the number of rounds required for w to be traversed. Applying
Lemma 2 yields E[𝑇𝑤] ≤

∑ℎ
𝑖=1 𝑑+ (𝑤𝑖 ) ≤ ℎΔ+ ≤ 𝐷Δ+, where we

used 𝑑+ (𝑤𝑖 ) ≤ Δ+ and ℎ ≤ 𝐷 which are correct by definition. Using
Markov’s inequality, we have Pr[𝑇𝑤 ≥ 2𝐷Δ+] ≤ E[𝑇𝑤 ]2𝐷Δ+

≤ 1
2 .

Let 2𝐷Δ+ consecutive rounds be called a phase. Let us partition
the rounds of the process into phases: rounds 1 to 2𝐷Δ+ build phase
1, rounds 2𝐷Δ++1 to 4𝐷Δ+ build phase 2 and so on. The probability
that w is not traversed in any of the first 2 log2 𝑛 phases is at most
(1/2)2 log2 𝑛 = 1/𝑛2. Thus, after 2 log2 𝑛 phases (i.e., 4𝐷Δ+ log2 𝑛
rounds) w.p. at least 1 − 1/𝑛2, the node chain w is traversed. By a
simple inductive argument, ifw is traversed, then node𝑤 is colored.
Thus, node𝑤 will be colored after 4𝐷Δ+ log2 𝑛 rounds w.p. 1−1/𝑛2.
Since there are at most 𝑛 nodes which will be colored eventually
(i.e., the uncolored nodes which have a path to 𝑅0 ∪ 𝐵0), a union
bound implies that w.p. 1 − 1/𝑛 in 4𝐷Δ+ log2 𝑛 rounds all such
nodes are colored, and the process has converged.

Undirected. It suffices to prove that if 𝐺 is undirected, then∑ℎ
𝑖=1 𝑑+ (𝑤𝑖 ) ≤ 5𝑛 (instead of

∑ℎ
𝑖=1 𝑑+ (𝑤𝑖 ) ≤ 𝐷Δ+). Then, the rest

of the proof is identical to the one for the directed case by replacing
𝐷Δ+ with 5𝑛.

Consider a node 𝑣 which is not among the nodes in the node
chainw. Node 𝑣 can be adjacent to two nodes𝑤𝑖 and𝑤 𝑗 only if they
are at most one apart on the node chain (e.g., 𝑣 cannot be adjacent
to both𝑤𝑖 and𝑤𝑖+3) because otherwise there is a path from𝑤ℎ to
𝑤0 whose length is smaller than ℎ, which is in contradiction withw
corresponding to a shortest path from𝑤ℎ to𝑤0. (We are using the
fact that if 𝑣 has an edge to𝑤𝑖 , then𝑤𝑖 has an edge to 𝑣 too since𝐺
is undirected.) Hence, node 𝑣 is adjacent to at most 3 nodes onw. If
we look at all the edges which count against the sum

∑ℎ
𝑖=1 𝑑+ (𝑤𝑖 ),

they are either between nodes in w or between a node in w and a
node outside it. There are at most 2𝑛 edges between nodes inw (we
are using the point that there is no edge between𝑤𝑖 and𝑤𝑖−2, again
becausew corresponds to a shortest path). Furthermore, the number
of edges of the second type is upper-bounded by 3𝑛 according to
our observation from above. Thus, we get

∑ℎ
𝑖=1 𝑑+ (𝑤𝑖 ) ≤ 5𝑛. □
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Tightness. Consider a node set 𝑉1 of size 𝑛/2, a node set 𝑉2
of size 𝑛/2 − 1, and a node 𝑣 . Add an edge from every node in
𝑉1 to every node in 𝑉2 ∪ {𝑣} to construct graph 𝐺 and assume
that initially only node 𝑣 is colored. Note that Δ+ (𝐺) = 𝑛/2 and
𝐷 (𝐺) = 1. Theorem 3.1 states that the convergence time is at most
4Δ+𝐷 log2 𝑛 = 2𝑛 log2 𝑛 w.h.p. We show that this bound is tight up
to a constant factor. More precisely, we prove that if we replace
2𝑛 log2 𝑛 with 𝑡∗ = (1/8)𝑛 log2 𝑛, the statement is no longer true.

Let us label nodes in 𝑉1 from 𝑣1 to 𝑣𝑛/2. Let Bernoulli random
variable 𝑥𝑖 , for 1 ≤ 𝑖 ≤ 𝑛/2, be 1 if and only if 𝑣𝑖 is uncolored in
round 𝑡∗. Node 𝑣𝑖 becomes colored only if it picks 𝑣 ; thus, E[𝑥𝑖 ] =
Pr[𝑥𝑖 = 1] ≥ (1 − 2/𝑛)𝑡∗ ≥ (1/4)2𝑡∗/𝑛 = (1/2)log2 𝑛

1/2
= 1/
√
𝑛,

where we used the estimate 1 − 𝑧 ≥ (1/4)𝑧 for 0 < 𝑧 < 1/2. Let
random variable 𝑋 :=

∑𝑛/2
𝑖=1 𝑥𝑖 be the number of uncolored nodes

in 𝑉1 in round 𝑡∗. Then, we have E[𝑋 ] ≥ (𝑛/2) · (1/
√
𝑛) =

√
𝑛/2.

Since 𝑥𝑖 ’s are independent, applying the Chernoff bound gives
us Pr[𝑋 ≤

√
𝑛/4] ≤ exp(−

√
𝑛/16) = 𝑜 (1). Hence, w.h.p. after 𝑡∗

rounds, there is at least one uncolored node in 𝑉1, which implies
that the process has not converged.

Bound in Number of Edges. We also provide an upper bound
in terms of the number of edges in Theorem 3.2, whose proof and
tightness are discussed in the full version [57]. The main idea of
the proof is to introduce a generalization of traversed node chains.

Theorem 3.2. The convergence time of the random Pick process

on a directed graph 𝐺 = (𝑉 , 𝐸) is at most𝑚/𝛽 w.p. 1 − 𝛽 , for any

0 < 𝛽 < 1.

3.2 Random Initial State

In a 𝑞-random state, for some 0 < 𝑞 < 1, each node is colored
independently w.p. 𝑞 and uncolored otherwise. We bound the con-
vergence time of the Random Pick process for a 𝑞-random state in
Theorem 3.3.

For a graph 𝐺 = (𝑉 , 𝐸) and an integer 𝑠 , let Γ (𝑠 )+ (𝑣) := {𝑤 ∈ 𝑉 :
𝑑 (𝑣,𝑤) ≤ 𝑠} be the 𝑠-out-neighborhood of node 𝑣 ∈ 𝑉 . In particular,
Γ
(1)
+ (𝑣) = Γ+ (𝑣) ∪ {𝑣}. We define ℎ𝑞 (𝑣), for some 0 < 𝑞 < 1,
to be the minimum 𝑠 such that |Γ (𝑠 )+ (𝑣) | ≥ (2 ln𝑛)/𝑞 and ∞ if
such 𝑠 does not exist. We define H(𝑞) := {𝑣 ∈ 𝑉 : ℎ𝑞 (𝑣) ≠ ∞}.
Now, we present Lemmas 3 and 4, whose proofs follow from some
straightforward probabilistic argument. (Complete proofs are given
in the full version [57].)

Lemma 3. In a 𝑞-random state, every node 𝑣 ∈ H (𝑞) has at least
one colored node in its ℎ𝑞 (𝑣)-out-neighborhood w.h.p.

Lemma 4. In a 𝑞-random state on a graph𝐺 = (𝑉 , 𝐸), w.p. at least
1 − 1/𝑛2

for every node 𝑣 in {𝑣 ∈ 𝑉 : 𝑑 (𝑣) ≥ 4(ln𝑛)2/𝑞2}, there are
at least 𝑑+ (𝑣)𝑞/2 colored nodes in Γ+ (𝑣).

Theorem 3.3. Consider the Random Pick process on a graph

𝐺 = (𝑉 , 𝐸) with an initial 𝑞-random state. Then, the convergence

time is in O((ln𝑛)3/𝑞2) w.h.p.

Proof Sketch. Let 𝑣 be an arbitrary node which has a path to a
colored node. We prove that 𝑣 will be colored in 8(ln𝑛)3/𝑞2 rounds
w.p. at least 1 − O(1/𝑛2). Then, a union bound finishes the proof.

Let 𝑤 be a colored node whose distance from 𝑣 is minimized.
Consider the node chain w = 𝑤0,𝑤1, · · · ,𝑤ℎ , where 𝑤0 = 𝑤 and

𝑤ℎ = 𝑣 . If w is traversed, then 𝑣 is colored. Let 𝑇𝑤 be the number
of rounds required for w to be traversed. According to Lemma 2,
we have E[𝑇𝑤] ≤

∑ℎ
𝑖=1 𝑑+ (𝑤𝑖 ). If we prove that

∑ℎ
𝑖=1 𝑑+ (𝑤𝑖 ) ≤

8(ln𝑛)2/𝑞2, then we can use the same proof as in Theorem 3.1 for
the directed case to show that w.p. at least 1 − 1/𝑛2, the node chain
w is traversed in 32(ln𝑛)2 (log2 𝑛)/𝑞2 = O((ln𝑛)3/𝑞2) rounds. We
distinguish between three cases.
• Case 1: 𝑣 ∉ H(𝑞). The number of nodes reachable from 𝑣 is
less than (2 ln𝑛)/𝑞, by the definition ofH(𝑞). This implies that
ℎ and 𝑑+ (𝑤𝑖 ) (for any 1 ≤ 𝑖 ≤ ℎ) are at most (2 ln𝑛)/𝑞. Thus,∑ℎ

𝑖=1 𝑑+ (𝑤𝑖 ) ≤ 4(ln𝑛)2/𝑞2.
• Case 2: 𝑣 ∈ H (𝑞) and ℎ < ℎ𝑞 (𝑣). Since ℎ < ℎ𝑞 (𝑣), all 𝑤𝑖 ’s,
for 1 ≤ 𝑖 ≤ ℎ, and all their out-neighbors are in distance at
most ℎ𝑞 (𝑣) − 1 from 𝑣 . By the definition of ℎ𝑞 (𝑣), the number
of all these nodes is less than (2 ln𝑛)/𝑞. This again implies that
ℎ and 𝑑+ (𝑤𝑖 ) (for any 1 ≤ 𝑖 ≤ ℎ) are at most (2 ln𝑛)/𝑞. Thus,∑ℎ

𝑖=1 𝑑+ (𝑤𝑖 ) ≤ 4(ln𝑛)2/𝑞2.
• Case 3: 𝑣 ∈ H (𝑞) and ℎ = ℎ𝑞 (𝑣). As in Case 2, we can show
that

∑ℎ
𝑖=2 𝑑+ (𝑤𝑖 ) ≤ 4(ln𝑛)2/𝑞2. If 𝑑+ (𝑤1) ≤ 4(ln𝑛)2/𝑞2, then

we get
∑ℎ
𝑖=1 𝑑+ (𝑤𝑖 ) ≤ 8(ln𝑛)2/𝑞2. If 𝑑+ (𝑤1) > 4(ln𝑛)2/𝑞2,

it suffices to prove that w.p. at least 1 − 1/𝑛2, 𝑤1 is colored
in O((ln𝑛)3/𝑞2) rounds. According to Lemma 4, there are at
least 𝑑+ (𝑤1)𝑞/2 colored nodes in Γ+ (𝑤1). Thus, it is colored
in each round w.p. at least 𝑞/2 independently. The probabil-
ity that it is not colored after 4(ln𝑛)3/𝑞2 rounds is at most
(1 − 𝑞/2)4(ln𝑛)3/𝑞2 ≤ exp(−2(ln𝑛)3/𝑞) ≤ 1/𝑛2.

Note we did not consider the case of 𝑣 ∈ H (𝑞) and ℎ > ℎ𝑞 (𝑣)
because of Lemma 3. A full proof is given in the full version [57]. □

Tightness. Consider a path 𝑣1, 𝑣2, · · · , 𝑣𝑛 , where there is an edge
from 𝑣𝑖 to 𝑣𝑖+1 for every 1 ≤ 𝑖 ≤ 𝑛 − 1. Furthermore, from each
node 𝑣𝑖 , for 2 ≤ 𝑖 ≤ 𝑛, there is an edge to every node which
appears before 𝑣𝑖 on the path. Consider a 𝑞-random initial state
S0 for 𝑞 = 1/

√
𝑛. We prove that w.h.p. the convergence time is in

Ω(1/(𝑞 ln𝑛)2), which demonstrates that the bound in Theorem 3.3
is tight up to some poly-logarithmic term.

Claim 1. There is no colored node among {𝑣1, · · · , 𝑣𝜏 } in S0 for
𝜏 = ⌊1/(𝑞 ln𝑛)⌋ w.h.p.

Claim 2. There is at least one colored node in S0 w.h.p.

Claims 1 and 2 can be proven using Markov’s inequality and the
Chernoff bound, respectively.

Putting Claims 1 and 2 in parallel with the structure of the
graph, we can conclude that w.h.p. there is a node 𝑣ℎ such that
𝑣1 is colored if and only if the node chain 𝑣ℎ, 𝑣ℎ−1, · · · , 𝑣1 is tra-
versed and ℎ ≥ 𝜏 ≥ ⌊1/(𝑞 ln𝑛)⌋. Let 𝑇𝑖 , for 1 ≤ 𝑖 ≤ ℎ − 1, be the
number of rounds node 𝑣𝑖 needs to pick node 𝑣𝑖+1 (while nodes
𝑣𝑖+1, · · · , 𝑣ℎ have been traversed). Then, the number of rounds
for the node chain to be traversed is 𝑇 =

∑ℎ−1
𝑖=1 𝑇𝑖 . The random

variable 𝑇𝑖 is geometrically distributed with parameter 1/𝑑+ (𝑣𝑖 ) =
1/𝑖 , which yields 𝑉𝑎𝑟 [𝑇𝑖 ] = (1 − (1/𝑖))/(1/𝑖)2 ≤ 𝑖2. Since 𝑇𝑖 ’s
are independent 𝑉𝑎𝑟 [𝑇 ] = ∑ℎ−1

𝑖=1 𝑉𝑎𝑟 [𝑇𝑖 ] ≤
∑ℎ−1
𝑖=1 𝑖2 ≤ ℎ3. Ap-

plying Chebyshev’s inequality and using E[𝑇 ] = ∑ℎ−1
𝑖=1 E[𝑇𝑖 ] =∑ℎ−1

𝑖=1 𝑖 ≥ ℎ2/4, we get Pr[𝑇 ≤ ℎ2/8] ≤ ℎ3

(ℎ2/8)2 = 64/ℎ. Since
ℎ ≥ ⌊1/(𝑞 ln𝑛)⌋, we have ℎ2/8 ≥ ⌊1/(𝑞 ln𝑛)⌋2/8 and 64/ℎ ≤

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2053



Table 1: The maximum, minimum, and average convergence

time on different networks. (The suffix of BA stands for the

number of nodes.)

Type Networks Maximum Minimum Average 4𝐷Δ+ log2 𝑛

U
nd

ire
ct
ed

Food 188.60 28.80 44.03 39182
WikiVote 139.64 14.36 26.10 35971
EmailUniv 83.21 11.15 18.57 23051
Hamster 281.27 18.28 29.76 122788
TVshow 166.82 41.62 56.15 54097
Government 705.95 16.28 27.26 285153

D
ire

ct
ed

Residence 29.68 9.03 11.68 6333
FilmTrust 86.25 15.74 34.80 29978
BitcoinAlpha 538.22 17.46 61.71 422166
BitcoinOTC 769.33 19.58 77.80 585120
Gnutella08 68.12 9.41 19.77 21809
Advogato 807.46 12.42 34.04 430300
WikiElec 849.17 10.45 17.91 418163

Sy
nt
he
tic BA300 17.60 7.89 12.79 5332

BA500 19.74 7.86 13.98 5379
BA1000 25.54 9.37 15.42 14510
BA2000 33.96 9.45 16.74 24563

64/⌊1/(𝑞 ln𝑛)⌋ = O(ln𝑛/
√
𝑛) = 𝑜 (1) since 𝑞 = 1/

√
𝑛. Thus, w.h.p.

𝑇 ≥ ⌊1/(𝑞 ln𝑛)⌋2/8 = Ω(1/(𝑞 ln𝑛)2).
Remark.The bound in Theorem 3.3 can be improved toO((ln𝑛)2/𝑞)

if we restrict ourselves to undirected graphs. The idea is to prove the
bound

∑ℎ
𝑖=1 𝑑+ (𝑤𝑖 ) ≤ 𝐶 ln𝑛/𝑞, for some constant 𝐶 > 0, instead of

8(ln𝑛)2/𝑞2 using the property used for the undirected case in the
proof of Theorem 3.1.

3.3 Complexity Result

Definition 3 (Convergence Time problem). For a given graph

𝐺 = (𝑉 , 𝐸) and two integers 𝑘, 𝑡 , determine whether there exists

an initial state with exactly 𝑘 colored nodes such that the expected

convergence time is 𝑡 .

Theorem 3.4. The Convergence Time problem is NP-hard, even

when 𝐺 is undirected and 𝑡 = 1.

Theorem 3.4 builds on a reduction from the Vertex Cover
problem, which is known to be NP-hard, cf. [28]. A complete proof
is given in the full version [57].

3.4 Convergence Time on Real-world Networks

So far, we proved some upper bounds which hold for any graph (and
any initial state) and are shown to be the best possible, up to some
small multiplicative factor. However, stronger bounds for special
classes of graphs such as the ones which emerge in the real world
might exist. Our experimental findings support stronger bounds
for the studied real-world networks and synthetic graphs. While
the bounds for these special graphs are tighter than our general
bounds from above, they are still “aligned” with them.

For each node 𝑣 in the graph, we ran the process for 300 times
starting from the state where only node 𝑣 is colored and calculated
the average convergence time. Then, we reported the minimum,
maximum and average value among all nodes in Table 1. (Please
refer to Section 2.3 for details on our experimental setup.)

We observe that the reported convergence times are always
smaller than the upper bound of 4Δ+𝐷 log2 𝑛 proven in Theorem 3.1.
While the maximum convergence times do not match 4Δ+𝐷 log2 𝑛,
they are still closely related to the maximum out-degree of the
graph (similar to the general bound) as demonstrated in Figure 3.

Figure 3: The relation between maximum convergence time

and Δ+ on (a) directed, (b) undirected, and (c) BA networks.

Figure 4: The relation between the convergence time and 𝑞

for (a) Government, (b) WikiElec, and (c) BA2000 networks.

To quantify this observationmore accurately, we have computed the
Pearson correlation coefficient between Δ+ and the maximum con-
vergence time. This is equal to 0.9907 on the undirected networks,
0.9446 on the directed networks, and 0.9716 on BA networks. Thus,
the convergence time is strongly correlated with the maximum
out-degree of the graph.

We also have conducted experiments for the 𝑞-random state
setup for different values of 𝑞. For each 𝑞, we generated 300 𝑞-
random states and computed the convergence time of the Random
Pick process for each state. Then, we reported the average value in
Figure 4. According to the outcome of our experiments, the average
convergence time exhibits an inverse linear relationship with 𝑞 on
different networks. More precisely, the Pearson correlation coeffi-
cients between the convergence time and 𝑞 for three networks in
Figure 4 are (a) -0.9925, (b) -0.9787, and (c) -0.9783. The results show
a strong inverse linear relationship between the value of 𝑞 and
the convergence time. This is aligned with our theoretical bounds
proven in Section 3.2, especially the bound Õ(1/𝑞) for undirected
graphs.

4 FUTUREWORK

As discussed in Section 2.2, for fixed 𝑘 and 𝜖 , our proposed al-
gorithm runs in Õ(𝑛3) on real-world networks (since𝑚 = Θ(𝑛)
and 𝐷 and Δ+ are usually small). Despite being almost as fast as
baseline algorithms, it is impractical for deployment on very large
networks. Therefore, it would be intriguing to conceive of heuristic
algorithms derived from our approach which can cover massive
social networks.

We have explored the intricacies of the product adoption problem
from the standpoint of the red company. A potential avenue for
future research is to expand upon the present work by examining
the problem through the lens of game theory, where both companies
(players) can adapt their respective strategies or choices in response
to each other’s actions (see [26] for some related work).

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2054



REFERENCES

[1] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex
networks. Reviews of modern physics 74, 1 (2002), 47.

[2] Mário S Alvim, Bernardo Amorim, Sophia Knight, Santiago Quintero, and Frank
Valencia. 2023. A Formal Model for Polarization under Confirmation Bias in
Social Networks. Logical Methods in Computer Science 19 (2023).

[3] Vincenzo Auletta, Angelo Fanelli, and Diodato Ferraioli. 2019. Consensus in
opinion formation processes in fully evolving environments. In Proceedings of

the AAAI Conference on Artificial Intelligence, Vol. 33. 6022–6029.
[4] Vincenzo Auletta, Diodato Ferraioli, and Gianluigi Greco. 2018. Reasoning about

Consensus when Opinions Diffuse through Majority Dynamics.. In IJCAI. 49–55.
[5] Vincenzo Auletta, Diodato Ferraioli, and Gianluigi Greco. 2020. On the effec-

tiveness of social proof recommendations in markets with multiple products. In
ECAI 2020. IOS Press, 19–26.

[6] Murray A Beauchamp. 1965. An improved index of centrality. Systems Research

and Behavioral Science 10, 2 (1965), 161–163.
[7] Petra Berenbrink, Martin Hoefer, Dominik Kaaser, Pascal Lenzner, Malin Rau,

and Daniel Schmand. 2022. Asynchronous Opinion Dynamics in Social Networks.
In Proceedings of the 21st International Conference on Autonomous Agents and

Multiagent Systems (AAMAS). 109–117.
[8] Shishir Bharathi, David Kempe, and Mahyar Salek. 2007. Competitive influ-

ence maximization in social networks. In Internet and Network Economics: Third

International Workshop. Springer, 306–311.
[9] Allan Borodin, Yuval Filmus, and Joel Oren. 2010. Threshold models for com-

petitive influence in social networks. In Internet and Network Economics: 6th

International Workshop. Springer, 539–550.
[10] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of

Mathematical Sociology 25, 2 (2001), 163–177.
[11] Ulrik Brandes and Christian Pich. 2007. Centrality estimation in large networks.

International Journal of Bifurcation and Chaos 17, 07 (2007), 2303–2318.
[12] Robert Bredereck and Edith Elkind. 2017. Manipulating opinion diffusion in

social networks. In IJCAI International Joint Conference on Artificial Intelligence.
International Joint Conferences on Artificial Intelligence (IJCAI).

[13] Tim Carnes, Chandrashekhar Nagarajan, Stefan M Wild, and Anke van Zuylen.
2007. Maximizing influence in a competitive social network: a follower’s perspec-
tive. In Proceedings of the ninth international conference on Electronic commerce.
351–360.

[14] Carmen C Centeno, Mitre C Dourado, Lucia Draque Penso, Dieter Rautenbach,
and Jayme L Szwarcfiter. 2011. Irreversible conversion of graphs. Theoretical
Computer Science 412, 29 (2011), 3693–3700.

[15] Ning Chen. 2009. On the approximability of influence in social networks. SIAM
Journal on Discrete Mathematics 23, 3 (2009), 1400–1415.

[16] Wei Chen, Laks VS Lakshmanan, and Carlos Castillo. 2013. Information and
influence propagation in social networks. Synthesis Lectures on Data Management

5, 4 (2013), 1–177.
[17] Wei Chen, Chi Wang, and Yajun Wang. 2010. Scalable influence maximization

for prevalent viral marketing in large-scale social networks. In Proceedings of

the 16th ACM SIGKDD international conference on Knowledge discovery and data

mining. 1029–1038.
[18] Dmitry Chistikov, Grzegorz Lisowski, Mike Paterson, and Paolo Turrini. 2020.

Convergence of opinion diffusion is PSPACE-complete. In Proceedings of the

AAAI Conference on Artificial Intelligence, Vol. 34. 7103–7110.
[19] Colin Cooper, Robert Elsässer, and Tomasz Radzik. 2014. The power of two

choices in distributed voting. In Automata, Languages, and Programming: 41st

International Colloquium. Springer, 435–446.
[20] Samik Datta, AnirbanMajumder, and Nisheeth Shrivastava. 2010. Viral marketing

for multiple products. In 2010 IEEE international conference on data mining. IEEE,
118–127.

[21] Devdatt P Dubhashi and Alessandro Panconesi. 2009. Concentration of measure

for the analysis of randomized algorithms. Cambridge University Press.
[22] Eyal Even-Dar and Asaf Shapira. 2007. A note on maximizing the spread of influ-

ence in social networks. In Internet and Network Economics: Third International

Workshop. Springer, 281–286.
[23] Joseph Farrell and Garth Saloner. 1986. Installed base and compatibility: Innova-

tion, product preannouncements, and predation. The American economic review

(1986), 940–955.
[24] Uriel Feige. 1998. A threshold of ln n for approximating set cover. Journal of the

ACM (JACM) 45, 4 (1998), 634–652.
[25] Silvio Frischknecht, Barbara Keller, and Roger Wattenhofer. 2013. Convergence

in (social) influence networks. In Distributed Computing: 27th International Sym-

posium, DISC 2013, Jerusalem, Israel, October 14-18, 2013. Proceedings 27. Springer,
433–446.

[26] Sanjeev Goyal and Michael Kearns. 2012. Competitive contagion in networks. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing.
759–774.

[27] Yehuda Hassin and David Peleg. 2001. Distributed probabilistic polling and
applications to proportionate agreement. Information and Computation 171, 2

(2001), 248–268.
[28] Richard M Karp. 2010. Reducibility among combinatorial problems. Springer.
[29] Barbara Keller, David Peleg, and Roger Wattenhofer. 2014. How even tiny influ-

ence can have a big impact!. In Fun with Algorithms: 7th International Conference.
Springer, 252–263.

[30] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of
influence through a social network. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining. 137–146.
[31] Andreas Krause and Carlos Guestrin. 2005. A note on the budgeted maximization

of submodular functions. Citeseer.
[32] Jérôme Kunegis. 2013. Konect: the koblenz network collection. In Proceedings of

the 22nd international conference on world wide web. 1343–1350.
[33] Hicham Lesfari, Frédéric Giroire, and Stéphane Pérennes. 2022. Biased Majority

Opinion Dynamics: Exploiting graph 𝑘-domination. In IJCAI 2022-International

Joint Conference on Artificial Intelligence.
[34] Jure Leskovec and Rok Sosič. 2016. SNAP: A general-purpose network analysis

and graph-mining library. ACM Transactions on Intelligent Systems and Technolog

8, 1 (2016), 1.
[35] Yuchen Li, Ju Fan, YanhaoWang, and Kian-Lee Tan. 2018. Influence maximization

on social graphs: A survey. IEEE Transactions on Knowledge and Data Engineering

30, 10 (2018), 1852–1872.
[36] Yishi Lin and John CS Lui. 2015. Analyzing competitive influence maximization

problems with partial information: An approximation algorithmic framework.
Performance Evaluation 91 (2015), 187–204.

[37] Weiyi Liu, Kun Yue, Hong Wu, Jin Li, Donghua Liu, and Duanping Tang. 2016.
Containment of competitive influence spread in social networks. Knowledge-
Based Systems 109 (2016), 266–275.

[38] Wei Lu, Wei Chen, and Laks VS Lakshmanan. 2015. From Competition to Com-
plementarity: Comparative Influence Diffusion and Maximization. Proceedings of
the VLDB Endowment 9, 2 (2015).

[39] S Mishra, Jaikumar Radhakrishnan, and Sivaramakrishnan Sivasubramanian.
2002. On the hardness of approximating minimum monopoly problems. In FST

TCS 2002: Foundations of Software Technology and Theoretical Computer Science:

22nd Conference Kanpur, India, December 12–14, 2002 Proceedings. Springer, 277–
288.

[40] Seth A Myers and Jure Leskovec. 2012. Clash of the contagions: Cooperation and
competition in information diffusion. In 2012 IEEE 12th international conference

on data mining. IEEE, 539–548.
[41] George LNemhauser, Laurence AWolsey, andMarshall L Fisher. 1978. An analysis

of approximations for maximizing submodular set functions—I. Mathematical

programming 14 (1978), 265–294.
[42] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
infolab.

[43] Nishith Pathak, Arindam Banerjee, and Jaideep Srivastava. 2010. A generalized
linear threshold model for multiple cascades. In 2010 IEEE International Conference
on Data Mining. IEEE, 965–970.

[44] Svatopluk Poljak and Daniel Turzík. 1986. On pre-periods of discrete influence
systems. Discrete Applied Mathematics 13, 1 (1986), 33–39.

[45] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. 2007. Near linear
time algorithm to detect community structures in large-scale networks. Physical
Review E 76, 3 (2007), 036106.

[46] Matthew Richardson and Pedro Domingos. 2002. Mining knowledge-sharing
sites for viral marketing. In Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining. 61–70.
[47] Ryan Rossi and Nesreen Ahmed. 2015. The network data repository with interac-

tive graph analytics and visualization. In Proceedings of the Twenty-Ninth AAAI

Conference on Artificial Intelligence. AAAI, 4292–4293.
[48] Grant Schoenebeck, Biaoshuai Tao, and Fang-Yi Yu. 2020. Limitations of Greed:

Influence Maximization in Undirected Networks Re-visited. In Proceedings of

the 19th International Conference on Autonomous Agents and MultiAgent Systems

(AAMAS). 1224–1232.
[49] Maxim Sviridenko. 2004. A note on maximizing a submodular set function subject

to a knapsack constraint. Operations Research Letters 32, 1 (2004), 41–43.
[50] Liangde Tao, Lin Chen, Lei Xu, Weidong Shi, Ahmed Sunny, and Md Mahabub

Uz Zaman. 2022. How Hard is Bribery in Elections with Randomly Selected
Voters. In Proceedings of the 21st International Conference on Autonomous Agents

and Multiagent Systems (AAMAS).
[51] Feng Wang, Jinhua She, Yasuhiro Ohyama, Wenjun Jiang, Geyong Min, Guojun

Wang, and Min Wu. 2021. Maximizing positive influence in competitive social
networks: A trust-based solution. Information sciences 546 (2021), 559–572.

[52] Bryan Wilder and Yevgeniy Vorobeychik. 2018. Controlling Elections through
Social Influence. In International Conference on Autonomous Agents andMultiagent

Systems (AAMAS).
[53] Hong Wu, Weiyi Liu, Kun Yue, Weipeng Huang, and Ke Yang. 2015. Maximizing

the spread of competitive influence in a social network oriented to viral marketing.
In Web-Age Information Management: 16th International Conference, WAIM 2015,

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2055



Qingdao, China, June 8-10, 2015. Proceedings 16. Springer, 516–519.
[54] Abdolahad N Zehmakan. 2019. On the spread of information through graphs. Ph.D.

Dissertation. ETH Zurich.
[55] Ahad N Zehmakan. 2020. Opinion forming in Erdős–Rényi random graph and

expanders. Discrete Applied Mathematics 277 (2020), 280–290.
[56] Ahad N Zehmakan. 2021. Majority opinion diffusion in social networks: An ad-

versarial approach. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 35. 5611–5619.

[57] Ahad N Zehmakan, Xiaotian Zhou, and Zhongzhi Zhang. 2023. Viral Marketing
in Social Networks with Competing Products. arXiv preprint arXiv:2312.15819
(2023).

[58] Yuqing Zhu, Deying Li, and Zhao Zhang. 2016. Minimum cost seed set for compet-
itive social influence. In IEEE INFOCOM 2016-The 35th Annual IEEE International

Conference on Computer Communications. IEEE, 1–9.
[59] Zhiqiang Zhuang, Kewen Wang, Junhu Wang, Heng Zhang, Zhe Wang, and

Zhiguo Gong. 2020. Lifting majority to unanimity in opinion diffusion. In ECAI

2020. IOS Press, 259–266.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2056


	Abstract
	1 Introduction
	1.1 Basic Definitions
	1.2 Our Contribution
	1.3 Related Work

	2 Product Adoption Maximization
	2.1 Inapproximability Result
	2.2 Greedy Algorithm
	2.3 Experiments: Comparison of Algorithms

	3 Convergence Time
	3.1 Tight Upper Bounds
	3.2 Random Initial State
	3.3 Complexity Result
	3.4 Convergence Time on Real-world Networks

	4 Future Work
	References



