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ABSTRACT
Goal recognition is a fundamental cognitive process that enables
individuals to infer intentions based on available cues. Current goal
recognition algorithms often take only observed actions as input,
but here we use a Bayesian framework to explore the role of actions,
timing, and goal solvability in goal recognition. We analyze human
responses to goal-recognition problems in the Sokoban domain, and
find that actions are assigned most importance, but that timing and
solvability also influence goal recognition in some cases, especially
when actions are uninformative. We leverage these findings to
develop a goal recognition model that matches human inferences
more closely than do existing algorithms. Our work provides new
insight into human goal recognition and takes a step towards more
human-like AI models.
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1 INTRODUCTION
Imagine that you are a security guardmonitoring a camera feed, and
you witness a person approaching a locked door. The situation is
compatible with two potential goals: entering the conference room
behind the locked door or proceeding to the lounge outside the door.
If you observe the person pausing for an extended period outside
the door, you might infer that they intended to access the locked
conference room, a goal that is currently unachievable. However, if
the person passes by the door without stopping, you might infer
that they have the achievable goal of visiting the lounge.

As this example illustrates, people’s ability to infer the intentions
of others may be influenced by factors such as timing information
in addition to observed actions [7, 18, 22]. Furthermore, individuals
can sometimes infer goals that the actor cannot currently achieve.
However, most existing goal recognition focus on actions alone, ne-
glecting the broader context, and they struggle to handle situations
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involving unsolvable goals [10, 13, 15, 17, 24]. In this paper, we
draw on behavioral experiments to explore how goal recognition in
humans is influenced by three kinds of information: actions, timing,
and goal solvability.

Goal recognition is the problem of inferring an actor’s real goal
given a sequence of observations and a set of possible goals. Two no-
table approaches that draw on Bayesian inference [6] have emerged
in the literature. In 2009, Baker et al. [3] introduced the inverse plan-
ning Bayesian model, aimed at simulating human plan recognition
by modeling human Theory of Mind formally as planning. Around
the same time, Ramírez and Geffner [16] independently proposed a
generative approach that uses planning algorithms over planning
models and is known as plan recognition as planning (PRP).

Beyond actions alone, a small group of researchers in AI and
cognitive science have explored how additional sources of informa-
tion help to convey what others are thinking. Singh et al. [18] used
gaze data to infer people’s intentions and discovered that gaze can
help uncover the hidden goals of players in a board game. Gates
et al. [7] developed a Bayesian model that explains how people
use response times as a cue to preferences in one-shot decision
making situations. Zhang et al. [22] generalized the underlying
idea and explored how timing information can be used in situations
where actors generate rich sequences of actions, not just one-shot
decisions. While both Zhang et al. [22] and Berke et al. [4] report
that people are sensitive to timing information, there have been no
comprehensive attempts to understand the extent to which timing
affects human goal inferences.

Beyond actions and timing, the solvability of candidate goals
provides a third relevant cue that may influence people’s goal in-
ferences. It seems plausible that people tend to assume actors are
working towards achievable goals, because actors often have accu-
rate beliefs and are unlikely to waste effort working towards goals
that they believe to be unachievable. To the best of our knowledge,
however, there has been little work on the impact of solvability in
goal-recognition scenarios. Psychological studies of solvability judg-
ments generally focus on tasks like unscrambling anagrams [14, 20],
and planning scenarios have received little attention. We therefore
consider solvability in addition to actions and timing information,
and develop an experiment that aims to understand how these three
factors influence goal inference in humans.

Figure 1 suggests how the three factors can be studied using goal-
recognition tasks within the domain of Sokoban. In all cases the
actor is required to push a box towards a goal, and the observer must
infer which of two candidate goals the actor is working towards.
Figure 1a is used to study the effect of observed actions. If the
actor moves left at the key step shown as a pink arrow, people
typically infer that the goal must be the green club, but had the
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actor moved right instead the red heart would be more probable.
Figures 1c and 1b feature two identical maps with distinct green
goal positions, with Figure 1c representing a solvable green goal
and Figure 1b an unsolvable one. The probability assigned to the
red goal may increase when the green goal is unsolvable rather
than solvable. In Figure 1d, there is a single potential path towards
the red heart but two possible paths towards the green club. If the
agent thinks for a long time before taking the key step shown as a
pink arrow, one possible inference is that the goal is green and the
agent is deciding which of the two paths to pursue. In contrast, the
red goal provides no plausible explanation of an extended pause
before the key step.

In conventional goal recognition tasks, the evidence typically
comprises one or more observed actions. Here, we also consider
scenarios where no actions are observed.We refer to these instances
as prior instances, because they probe expectations in advance of
observing any actions. These prior instances allow us to investigate
how solvability influences goal-recognition when other sources of
information are absent. For instance, in Figure 1a, in the absence
of any observations, individuals may exhibit a slight preference
for the solvable goal (the red heart). Previous Bayesian models
of goal recognition typically assume a uniform prior [3, 17, 19,
21], but a small body of recent work has explored how actions
observed in previous instances shape the priors that observers
apply to new goal-recognition instances [8, 12]. Here we take a
different approach, and explore how the prior reflects structural
properties such as solvability and solution complexity rather than
previously-observed sequences of actions.

To preview our results, we find that solvability influences peo-
ple’s goal-recognition judgments when no actions have been ob-
served, but that this factor may be subsumed by a more general
notion of solution complexity. When actions are observed, how-
ever, solvability appears to play a minimal role, and people’s goal-
recognition inferences are shaped instead by actions (as a primary
factor) and timing information (as a secondary factor). We evaluate
a suite of formal models and find that human goal inference is
well-captured using Bayesian inference, and in particular that a
Bayesian model which incorporates an online planner provides a
good account of human judgments.

Our work makes several kinds of contributions. First, we carry
out a comprehensive behavioral experiment aimed at thoroughly
investigating the factors that influence human goal recognition.
This study provides a strong foundation for the development of
computational models of human goal inference. Second, we ex-
pand upon the planning model introduced by Zhang et al. [22]
by integrating a component that allows the planner to recognize
unsolvable goals. Third, we introduce a human-like goal recogni-
tion algorithm that relies on Bayesian inference, and show that it
provides a good account of human behavior.

2 GOAL RECOGNITION AND BAYESIAN
FRAMEWORK

We now formalize the problem of goal recognition and introduce
a Bayesian framework for this problem. We follow the notation
commonly used in the planning community [16, 19, 21], but the
same general approach has been applied in the cognitive science

literature [3]. Because we consider timing information, our problem
formulation includes this information.

Definition 2.1. A goal recognition problem with timing infor-
mation is a tuple ⟨𝐷,𝐺, 𝑃𝑟𝑖𝑜𝑟,𝑂⟩, where 𝐷 is a planning domain,
𝐺 = {𝑔1, 𝑔2, ..., 𝑔𝑛} is a set of possible goals for the planning domain,
𝑃𝑟𝑖𝑜𝑟 is the prior probability 𝑃 (𝐺) over 𝐺 , and 𝑂 is a sequence of
observations ⟨𝑎0, 𝑡0⟩, ..., ⟨𝑎𝑚, 𝑡𝑚⟩, where 𝑎𝑖 ∈ 𝐴 is an action, and 𝑡𝑖
is a non-negative real number denoting the planning time used to
select 𝑎𝑖 for execution.

Goal recognition can then be carried out using

𝑃 (𝐺 |𝑂) ∝ 𝑃𝑟𝑖𝑜𝑟 (𝐺)𝐿𝐿(𝑂,𝐺), (1)

where 𝑃 (𝐺 |𝑂) is the posterior distribution over goals, 𝑃𝑟𝑖𝑜𝑟 (𝐺)
is the prior 𝑃 (𝐺) and 𝐿𝐿(𝑂,𝐺) the likelihood 𝑃 (𝑂 |𝐺). Following
[22], we decompose the likelihood 𝐿𝐿(𝑂,𝐺) into two components:
the timing component 𝐿𝐿𝑇 (𝑂,𝐺) B 𝑃 (⟨𝑡0, 𝑡1, ..., 𝑡𝑚⟩|𝐺) and the
action component 𝐿𝐿𝐴 (𝑂,𝐺) B 𝑃 (⟨𝑎0, 𝑎1, ..., 𝑎𝑚⟩|𝐺), allowing for
independent calculations.

While solvability, actions, and timing might all influence human
goal inference, a Bayesian perspective suggests a fundamental dis-
tinction between solvability and the other two factors. Solvability is
an inherent property of the goal and should therefore be captured
by 𝑃𝑟𝑖𝑜𝑟 (𝐺) within the Bayesian model. In contrast, actions and
timing are aspects of 𝑂 , the observation sequence, and should be
incorporated in the likelihood 𝐿𝐿(𝑂,𝐺).

Because previous Bayesian accounts of goal recognition usually
assume a uniform prior [3, 17, 19, 21], they focus on estimating the
likelihood term 𝐿𝐿(𝑂,𝐺). Specifically, this involves determining
the probability of generating the provided observation sequence 𝑂
given the goal 𝐺 . Most goal recognition models rely on standard
planning algorithms that do not handle scenarios in which the goal
𝐺 is unsolvable. For example, with classical planning, unsolvable
goals are filtered out from consideration at the outset.

Some approaches avoid the assumption that the actor is rational
[3, 21, 22, 24], and can therefore estimate the likelihood of an un-
achievable goal. We go beyond these approaches by using a novel
solvability-aware planner (i.e. solvability-aware Adaptive Looka-
head Planner, full details in the supplementary information) that
can decide whether a goal is unsolvable. While searching through
the state space, the planner maintains a closed list of previously
visited states in memory, and terminates and declares the goal
unachievable if no new states are encountered during a fixed num-
ber of iterations. Although we provide a limited evaluation of this
planner as an account of human planning, our primary focus is on
evaluating the Bayesian model of goal recognition that incorporates
this planner as a likelihood estimation component.

3 EXPERIMENT CONFIGURATION
To explore how actions, timing and solvability influence goal recog-
nition and to test competing computational models we conducted
a human experiment using the Sokoban domain. Although goal
recognition is our primary focus, the experiment began with a plan-
ning phase in which participants were asked to solve 23 Sokoban
problems. 9 of these problems were unsolvable, and participants
could press a specified button at any stage if they believed that the
current instance was unsolvable.
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(a)

(b)

(c)
(d)

Figure 1: Examples showing three types of Sokoban maps in which action, timing and solvability might affect human goal
inference. After performing two forced moves indicated by the purple arrows, the actor executes a key step indicated by the
pink arrow. Complete sets of maps used in our experiment can be found in the supplementary materials. (a) An action map.
The red goal is achievable and the green goal is not, and the actor moves left at the key step. (b) An easy-goal map. The red
goal is easy to achieve but the green goal is not achievable. The key move (not shown) involves a push to the left. (c) A second
easy-goal map. The red goal is easy to achieve but the path to the green goal is more complex. At the key move (again not
shown) the actor pushes the box to the left. (d) A competing-path map. There is one good path (red arrows) to the red goal and
two good paths (green arrows) to the green goal. The actor moves up at the key step.

Participants then moved on to a goal-recognition phase using
the same maps presented in the planning phase. Each instance pre-
sented a Sokoban map with two possible goal positions marked as
A and B. Participants were asked to infer the actor’s goal, and pro-
vided responses on a six point Likert scale labeled “very confident
B”, “fairly confident B“, “slightly confident B,“ “slightly confident
A,” and so on. For subsequent analyses we mapped these six re-
sponses to probabilities {0, 0.2, 0.4, 0.6, 0.8, 1}, where each probability
represents the probability of choosing goal A [9]. For example, if
three participants chose “very confident A” and two chose “slightly
confident B” the average response would be 3×1+2×0.4

2+3 = 3.8
5 = 0.76.

The stimuli for the goal recognition phase belong to one of three
types, and included 20 prior instances, 40 observation instances and
9 filler instances. The presentation order of these instances was
fully randomized. Identical map configurations and goal positions
were used for the prior and observation instances, but the prior
instances required participants to infer the actor’s goal without
having observed any actions. In all filler instances participants
observed the player pressing the button to declare the instance
unsolvable. Responses to these instances will not be analyzed, and
they were included only to reinforce the possibility that the goal
might be unsolvable.

The observation instances included pairs that share identical
maps and potential goal positions but differ in a single key step (see
Figures 1a and 1d). This key step refers to the first step at which a
player who does not backtrack has multiple options. Within each
pair, either the action for this step or the response time for the action
at this step can vary. There are 20 pairs in total, corresponding to
the 20 instances in the prior type.

The observation instances can be organized into three subtypes.
Action pairs differ based on the action taken for the key step (see

Figure 1a). We hypothesize that changing the action at this step
will influence human inferences regardless of the solvability of the
potential goals.

The remaining two subtypes allow us to study the influence of
timing information. Easy-goal pairs use maps where one goal is
easy to solve and the other goal is either solvable or unsolvable
(Figure 1c and 1b). In this subtype, the thinking time for the key
step varies. We hypothesize that increasing the thinking time at
this step will decrease the participant’s confidence that the actor is
aiming for the easy goal, because achieving the easy goal should
not require a prolonged pause at any stage.

Competing-path pairs (the third and final subtype) include cases
in which one goal (e.g. the green goal in Figure 1d) requires a choice
between two possible actions at the key step, but the other goal
suggests only one natural action at this step. As for easy-goal pairs,
we vary the thinking time observed at the key step. We hypothesize
that increasing the thinking time at this step will suggest that the
actor is choosing between two paths, and therefore aiming for the
competing-path goal rather than the alternative.

For each map configuration, we started with a goal-recognition
instance featuring two solvable goals. We then created additional
instances by moving each solvable goal in turn to either an adjacent
unsolvable position or an unsolvable position with similar prop-
erties (e.g. Manhattan Distance from the start position). Figure 1c
shows an original instance with two solvable goals, and Figure 1b is
a variant in which the green goal is unsolvable. Manipulating solv-
ability in this way allows us to explore the influence of solvability
on human goal inference.

The experiment was pre-registered on AsPredicted. We recruited
100 standard sample participants (63 females and 37 males with a
median age of 28) on Prolific, and 5 were excluded because they
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had more than 3 abnormal responses in the problem solving phase.
For each instance, responses more than 3 standard deviations away
from the mean total time and total steps for that instance were
considered abnormal.

4 HUMAN PROBLEM SOLVING BEHAVIOUR
The problem-solving phase in the experiment serves three primary
purposes. Firstly, it aims to validate the effectiveness of our ma-
nipulation of observations (i.e. actions or thinking times) in the
goal recognition phase. Secondly, it seeks to analyze participants’
strategies when faced with an unsolvable goal. Lastly, it involves a
comparative assessment of the performance between solvability-
aware Adaptive Lookahead Planner (A-LH) and human participants
across Sokoban instances. The number of iterations generated by
A-LH was converted into seconds by normalizing, ensuring that
the total planning time for all instances remains the same across
humans and A-LH.

Across the action maps, the majority of participants (88%) make
choices that match our manipulation in the goal recognition phase,
which is consistent with the model’s prediction (82%) as shown
in Figure 2a. Across easy-goal maps (e.g. Figure 2b), participants
spend less time on the easy goal, with an average of 2.84 seconds
compared to 7.75 seconds for the harder goal. The model’s pre-
diction shows a similar trend: 1.41 seconds for the easy goal and
8.24 seconds for the hard goal. Across competing-path maps, both
human participants and the model show a small but statistically
significant difference in planning times for the two goals. Human
planning times increase from 5.94 seconds to 6.83 seconds, and the
model predicts an increase from 5.68 to 7.04 seconds (see Figure 2c).
These results indicate that the manipulations in our experiments
are well-grounded and also suggest that the A-LH planner provides
a good account of human behavior in the Sokoban domain.

We further examined the number of steps taken before partici-
pants became aware that unsolvable instances were in fact unsolv-
able. The results in Figure 2d demonstrate a positive correlation
between the model’s predictions and human responses. The ma-
jority of participants demonstrated behavior resembling that of
online planners, taking an average of 15.23 steps, indicating that
participants take approximately 15 steps before recognizing the
unsolvability of the goal. The model predicted a much higher av-
erage of 35.78 steps. This divergence might be attributed to par-
ticipants’ general lack of patience during online experiments. A
minority of participants do recognize goals as unsolvable before
carrying out any actions, and failing to capture the responses of
these participants may also contribute to the difference between
model predictions and average human responses. Nevertheless,
our data strongly suggest that the majority of people should be
characterized as online planners in our experimental context.

5 HUMAN GOAL RECOGNITION
We use mixed effects models to fit the human responses in the goal
recognition phase. In these models, the variable CL represents the
confidence level towards goal A, ranging from 0 to 1. The variables
soA and soB correspond to the solvability of goals A and B, respec-
tively, with 1 denoting solvability and -1 denoting unsolvability. In
the action maps, goal A represents the rightmost goal, while goal

B represents the leftmost goal. In easy-goal maps, goal A is desig-
nated as the easy goal, while goal B is identified as the hard goal. In
competing-pathmaps, goal A signifies the no-competion goal, while
goal B denotes the competing-paths goal. The variable obs indicates
whether the observation (i.e. action or planning time) is consistent
with goal A (1 denotes consistent, -1 denotes inconsistent) if avail-
able. The model also includes random effects for participant and
map configuration. All p-values subsequently reported are based on
log-likelihood ratio tests, where𝑀0 serves as the null model. The
models and summary of regression results can be found in Table 1.

5.1 Prior Instances
In prior instances, we present a map without any observed actions
to determine how solvability or other static properties would in-
fluence the human prior 𝑃𝑟𝑖𝑜𝑟H (𝐺) over the potential goals. Our
hypothesis is that humans will prefer solvable goals in cases where
one goal is solvable and the other is unsolvable. As shown in Fig-
ure 3, the overall choice percentage of solvable goals stands at
61.16% (the sum of blue bars), and the average response is 0.59. This
result confirms a clear preference for goals that can be solved.

The log-likelihood ratio test of prior instances yields 𝜒2 (3) =
44.185, 𝑝 < 0.001. ModelM1 demonstrates a strong fit, implying that
the impact of solvability is evident. Specifically, the 95% Confidence
Interval (CI) for the regression coefficient of soA is [-0.05, -0.02],
while the 95% CI for soB is [0.02, 0.05]. These findings confirm our
hypothesis — when one target is solvable, participants are more
likely to infer that the solvable target represents the actual goal.

When we look deeper into the differences between various types
of scenarios, we notice that distinct map layouts affect how much
participants rely on solvability (see Figure 3c). Specifically, in the ac-
tionmaps, where the primary contrast between the goals is solvabil-
ity, a consistent pattern emerges: participants tend to lean toward
solvable goals. Most participants, however, express only a slightly
confident viewpoint. This suggests that even though participants
recognize the importance of solvability, the evidence supporting it
might not be strong enough to firmly guide their conclusions.

In the easy-goal maps, the findings reveal a substantial number
of participants who exhibit strong confidence in favor of the tar-
get being solvable rather than unsolvable. This finding, however,
prompts the question of whether this confidence stems solely from
solvability or is influenced by other characteristics within the easy-
goal maps. As mentioned already, within these maps the solvable
goal coincides with the easier goal. In order to further explore the
possible role of easiness, we compared responses to maps that were
similar except that the hard goal was solvable rather than unsolv-
able. We found that solvability itself does not significantly impact
human inference; rather, individuals consistently lean towards the
easier goal, irrespective of the solvability status of the other goal.

For competing-path maps, solvability continues to shape human
judgments, but in a different way. Among the responses, 54.74%
show a preference for the solvable goal, resulting in a mean con-
fidence level of 0.57. This is even higher than the 0.56 confidence
level in the action maps. Interestingly, when participants choose
a solvable goal, their behavior stands out from when they pick an
unsolvable one. While they don’t seem very sure about choosing
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Figure 2: Results for the planning phase. (a) Proportion of participant choices for the action in action maps. Cons means
consistent with ourmanipulation in the goal recognition phase. Themodel employs softmax action selectionwith a temperature
parameter set to 5. (b) Average Planning time for easy and hard goals in easy-goalmaps. The effect of thinking time is significant
for both humans and the model (𝑝 < 0.001). For both (b) and (c), error bars show the standard deviation of the mean planning
time (measured in seconds). (c) Average Planning time for competing and no-competing goals in competing-pathmaps. The
effect of thinking time is significant for both human and model (𝑝 < 0.05). (d) Number of steps taken in unsolvable instances for
humans (x-axis) and the model (y-axis). Human responses and model predictions are strongly correlated (𝑟 (7) = 0.65, 𝑝 = 0.05).

Model Model String (𝐶𝐿 ∼) Prior Action Easy-goal Competing-path
M0 (1|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) + (1|𝑚𝑎𝑝) 6762.8 6252.6 2591.2 5463.8
M1 𝑠𝑜𝐴 + 𝑠𝑜𝐵 + 𝑠𝑜𝐴 ∗ 𝑠𝑜𝐵 + (1|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) + (1|𝑚𝑎𝑝) 6741.3 6272.5 2597.1 5439.5
M2 𝑜𝑏𝑠 + (1|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) + (1|𝑚𝑎𝑝) N/A 4621.3 2552.4 5466.2
M3 𝑠𝑜𝐴 + 𝑠𝑜𝐵 + 𝑠𝑜𝐴 ∗ 𝑠𝑜𝐵 + 𝑜𝑏𝑠 + (1|𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) + (1|𝑚𝑎𝑝) N/A 4636.9 2558.3 5441.7

Table 1: Bayesian Information Criterion (BIC) scores of models in regression analysis. The best model for each set of instances
(i.e. each column) is shown using bold. The dependent variable 𝐶𝐿 is the probability assigned to goal A.

an unsolvable goal, their confidence is more balanced when they
opt for a solvable goal.

Our findings indicate that human goal inference is shaped by
both the solvability and inherent difficulty of goals. An unsolvable
goal might represent an extreme version of a difficult goal. To test
this idea, we developed a simple model called the Easiness Prior
Model to fit the human prior. In this model, we operationalize the
difficulty of each solvable goal 𝑔 as the sum of the optimal path
length 𝑜𝑝𝑡 (𝑔) and a smoothing parameter 𝑜 (set to 5 in our analyses).
This parameter captures the baseline cognitive effort demanded by
the task (e.g. effort to process the map, recognize the actor and goal
locations, etc). We further assume that unsolvable goals have the
same difficulty score (𝑐 = 26) as the most difficult solvable goal in
our experiments. Overall, the difficulty score for goal 𝑔 is defined
as 𝑠𝑔 = 𝑜 +𝑚𝑖𝑛(𝑐, 𝑜𝑝𝑡 (𝑔)). Let 𝑠𝐴 and 𝑠𝐵 represent the cognitive
difficulty values for goals A and B respectively in the prior instances.
To reflect the notion that easier goals (with shorter optimal paths)
have a higher prior, we use

⟨𝑃𝑟𝑖𝑜𝑟 (𝐴), 𝑃𝑟𝑖𝑜𝑟 (𝐵)⟩ = ⟨ 𝑠𝐵

(𝑠𝐴 + 𝑠𝐵)
,

𝑠𝐴

(𝑠𝐴 + 𝑠𝐵)
⟩. (2)

As shown in Figure 3b, our model closely aligns with the actual prior
probabilities observed in the prior instances (Pearson correlation
test: 𝑟 (18) = 0.91, 𝑝 < 0.001). This finding suggests that our simple
easiness model can effectively mimic human decision-making when
no observations are available.

5.2 Observation Instances
The observation instances consists of pairs that share identical
maps and potential goal configurations but differ in a single key
step. This key step refers to the first action where a player who does
not backtrack has multiple options. Within each pair, either the
action for this step or the response time for the action can vary. Each
pair also corresponds to a prior instance which shares the same
map and goal configurations without including any observations.

There are three specific subtypes within the observation pairs,
which also corresponds to three different types of maps in the
prior instances. In what follows we consider the three subtypes
separately.

5.2.1 Action Pairs. The result confirm our hypothesis: solvability
rarely contributes to the final decision in goal choice when actions
are informative. Regardless of whether the goal is solvable or un-
solvable, the shift in goal preference, compared to the prior (that
slightly favors the solvable goal), aligns with the guidance provided
by action observations. When the action moves to the unsolvable
goal, the confidence level to the solvable goal shifts from 0.56 to
0.24, and when the action moves to the solvable goal, the confidence
level to that goal increases to 0.81. We also ran a log-likelihood
ratio test to verify the hypothesis (see Table 1).

Among the models considered, Model M2 demonstrates the best
fit ((𝜒2 (1) = 1638.7, 𝑝 < 0.001)), as evidenced by its lowest Bayesian

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2070



0
Definitely B 

0.2 0.4 0.6 0.8 1
 Definitely A

Choice between A&B

0%

5%

10%

15%

20%

25%

Ch
oi

ce
 P

ro
pn

(a)

0.5 0.6 0.7 0.8
Model Prediction

0.5

0.6

0.7

0.8

Hu
m

an
 P

rio
r

Both sol
One sol
One unsol
Both unsol

(b)

0 0.2 0.4 0.6 0.8 1
Action Maps

0%

10%

20%

30%

Ch
oi

ce
 P

ro
pn

0 0.2 0.4 0.6 0.8 1
Easy-goal Maps

0 0.2 0.4 0.6 0.8 1
Cmp-path Maps

(c)

Figure 3: Results for prior instances in the goal-recognition
phase. (a) Response distribution for prior instances where
goal A is solvable and goal B is not. Blue bars indicate a prefer-
ence for solvable goal A while red bars represent a preference
for unsolvable goal B. (b) Comparison between human re-
sponses and the easiness model. The x-axis represents the
model’s predicted probability of choosing the easy goal, and
the y-axis represents the human prior observed in the exper-
iment. The instances are represented as circles, crosses or
stars based on whether neither, one or both goals are unsolv-
able. (c) Response distribution from panel (a) broken down
by the three subtypes.

Information Criterion (BIC) value. The 95% CI for the regression
coefficient of obs falls within the range of [-0.32, -0.3]. Conversely,
neither soA nor soB contributes meaningful information to the
confidence level in this context. Notably, Model M1 even exhibits
a higher BIC value than the baseline model (M0), indicating that
solvability fails to enhance the model fit.

5.2.2 Easy-goal Pairs. Compared to the prior condition, regard-
less of the time actors take to think about the key steps, human
responses shift towards the easy goal in the presence of obser-
vations. This shift is evident as the confidence level to the easy
goal changes from 0.69 to 0.86 given short thinking time. How-
ever, when a long thinking time (consistent with hard goals in our
hypothesis) is observed, this shift is somewhat less pronounced
(0.69 to 0.75). Additionally, we observed that this pattern remains
consistent, irrespective of whether the hard goal is solvable or not.

We performed an identical log-likelihood ratio test using easi-
ness to define obs, where short thinking time is consistent with easy
goal A (assigned 1) and long thinking time is aligned with hard goal
B (assigned -1). The results aligned with our initial intuition: Model
M2 exhibits the most favorable fit (𝜒2 (1) = 45.425, 𝑝 < 0.001). This

underscores the notion that thinking time is relevant for predicting
the confidence level, while solvability’s contribution remains negli-
gible. The 95% confidence interval for the regression coefficient of
the intercept spans from 0.26 to 0.34, indicating a strong tendency
among participants to favor the easier target choice. Furthermore,
the 95% confidence interval for the regression coefficient of obs (i.e.
long/short thinking time) falls within the range of [0.04, 0.07]. This
outcome emphasizes that the manipulation of thinking time can
exert a notable influence on the confidence level, contributing to
statistically significant variations in participants’ goal inference
processes.

5.2.3 Competing-path Pairs. Broadly speaking, the patterns ob-
served within the competing-path pairs align closely with those of
the easy-goal pairs. In particular, when participants observe the
actions, their preferences shift towards the no-competing goals
whether the actor spend more or less time. Unlike the easy-goal
instances, the initial distribution of competing-path maps is nearly
uniform (with confidence level to the no-competition goal of 0.5) as
shown in Figure 3c. With consistent observations (i.e. short think-
ing time) favoring the no-competition goal, the confidence level
to that goal increases to 0.58. Surprisingly, even with inconsistent
observations (i.e. long thinking time), the confidence level still in-
creases to 0.56. This result implies that our definition of consistency
(long/short thinking time) may not be the primary factor observers
take into account during goal inference.

We applied the same log-likelihood test using number of com-
peting path as the standard to define obs, where short thinking time
is consistent with no-competing goal A (assigned 1) and long think-
ing time is aligned with competing-path goal B (assigned -1). All
three models yield significantly better fits than the baseline model.
Model M1, which considers only solvability, achieves the optimal
fit (𝜒2 (2) = 41.442, 𝑝 < 0.001) based on BIC scores. In the compre-
hensive Model M3, the 95% confidence interval for the regression
coefficient of soB lies between [-0.07, -0.04], while the intervals
for soA and obs are [0.00, 0.04] and [0.00, 0.03] respectively. These
results indicate that in this context, the solvability of competing
goal B presents a substantial impact on human inferences, while
the solvability of the no-competing goal A and the influence of
thinking time are comparatively more modest. Increased awareness
of solvability of competing goals suggests individuals may allocate
more time to plan for these goals, aligning with the assumption in
A-LH [22, 23].

5.3 Model Comparison
We now evaluate a range of models by comparing them against
human goal inference behavior. Thesemodels are formulatedwithin
the same Bayesian framework (Equation 1) but use 3 different priors
𝑃𝑟𝑖𝑜𝑟 (·) (uniform prior, easiness prior model shown in Equation 2,
and empirical prior from our problem solving data) and 5 different
likelihoods 𝐿𝐿(·, ·) (offline-planning likelihood, online-planning
likelihood, online-planning likelihood with actions only, empirical
likelihood, and empirical likelihood with actions only).

For offline-planning likelihood estimation, we adopt the PRP
approach outlined by Ramírez andGeffner [17]. This approach is not
designed to handle unsolvable goals, but as originally formulated it
consistently prioritizes solvable goals ahead of unsolvable goals. All
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easy-goal and competing-path maps were intentionally designed
so that actions would be uninformative about the goal, and in these
cases the offline likelihood assigns equal weight to both targets.

The online likelihood is derived from 100 simulations conducted
using the A-LH [22]. To minimize variance in our model predic-
tions, we focus solely on the likelihood associated with the key
step, as the other two steps are predetermined. Specifically, we need
to calculate the action component 𝐿𝐿𝐴 and the timing component
𝐿𝐿𝑇 separately for each goal and then combine them. For the action
component, the likelihood is estimated by dividing the number
of action choices made in the simulations by the total number of
simulations (i.e. 100). As illustrated by Figure 2a, we previously
confirmed that A-LH aligns with human action choices in action
instances. In the remaining two types of instances, we found that
actions still provide valuable information for goal inference. In ac-
tion instances, since the simulated times for both targets are the
same, the timing likelihood 𝐿𝐿𝑇 effectively makes no contribution.
In easy-goal and competing-path instances, the timing likelihood is
computed under the assumption that 𝐿𝐿(·, 𝑔) follows a Gaussian
distribution with a mean determined by the average number of
sampled iterations needed to achieve goal 𝑔. We further assume
that long and short thinking times in the goal-recognition experi-
ment correspond respectively to the average number of iterations
generated by A-LH for hard and easy goals.

The empirical likelihood draws inspiration from the inverse
planning approach introduced by Baker et al. [3]. We estimate the
empirical action and timing likelihoods in the sameway as the A-LH
likelihoods except that the samples are based on human responses
collected during the problem-solving phase instead of simulations
from A-LH. For example, the mean and standard deviation for
the Gaussian timing likelihood are based on the human responses
provided during the problem-solving phase.

For both the online and empirical likelihoods, we consider vari-
ants that incorporate only the action component 𝐿𝐿𝐴 . These vari-
ants are useful for establishing whether timing information is
needed to account for our human goal-recognition data. For all
log-likelihood calculations, we add a small value of 0.025 to both
options to prevent the occurrence of zero probabilities.

5.3.1 Results and Discussion. As shown in Fig 4, the Easiness prior
with online likelihood (actions only) achieves the best overall per-
formance as measured by the log-likelihood assigned to the entire
data set. Comparing the rows of Fig 4 suggests that the contribu-
tion of the prior is important but small. In contrast, comparing the
columns reveals that changing the likelihood can have a dramatic
effect on model performance.

It is striking that the online likelihoods seems comparable or
superior to the empirical likelihoods even though the empirical
likelihoods were directly fit to human behavioral data. The online
likelihoods are based on the A-LH planner, and the strong perfor-
mance of these likelihoods suggests that the A-LH planner provides
a robust and reliable account of human behavior. In contrast, the
offline likelihood performs substantially worse than the online and
empirical likelihoods, suggesting that our participants implicitly
assumed that the actor in the goal-recognition task relied on an
online planning strategy.

Comparing results for likelihoods with and without timing infor-
mation suggests that timing information is not needed to account
for our behavioral data, and that incorporating this information
may slightly impair model performance. Although the online likeli-
hoods with and without timing information yield similar levels of
performance, the two show distinct patterns across the three map
types. Of the two online likelihoods, the action-only version per-
forms worse across easy-goal maps, but better across the other two
map types. This finding suggests that timing information may be
beneficial in specific scenarios even though it provided no overall
boost in performance across our entire data set.

Although varying the prior does not affect model performance as
much as varying the likelihood, it is notable that the Easiness prior
model and the empirical prior achieve similar levels of performance.
This finding provides additional support for our previous finding
(see Fig 3b) that the Easiness model is well-aligned with human
judgments.

6 RELATEDWORK
Ramírez and Geffner [17], along with subsequent researchers such
as Vered et al. [21] and Masters and Sardina [13], introduced the
Plan Recognition as Planning (PRP) approach that uses planning to
estimate the likelihood. We evaluated this approach (referred to as
the offline likelihood) as a baseline. This approach assumes agent
rationality and focuses exclusively on actions, leaving unaddressed
the explicit treatment of unsolvable goals.

Zhang et al. [22] introduced the Adaptive Lookahead Planner,
which was designed to generate human-like response times. We
have adapted their planner to incorporate awareness of solvability,
and it serves as the online likelihood component in our experiment.
While their work explores the impact of timing and how individuals
handle timing information within the Sokoban domain, it does not
consider the influence of actions and solvability, nor does it provide
an explicit and systematic evaluation of the Bayesian approach to
goal recognition. Berke et al. [4] have explored the influence of
timing information on human understanding of others. Their study,
however, is not anchored in the domain of goal recognition, and
they rely on a domain-specific algorithm for likelihood estimation.

Baker et al. [2] introduced a Bayesian framework for human goal
inference and conducted a systematic human experiment demon-
strating their model’s ability to achieve human-like inference, but
did not consider the influence of timing and solvability. They ac-
knowledged the possibility of a non-uniform prior in humans, but
did not explore this idea experimentally.

Some recent research has considered non-uniform priors in goal
recognition [8, 12]. These approaches, however, focus mainly on
incorporating past information into the prior within the context
of sequential Bayesian updating. We depart from this approach by
investigating how domain-independent factors (i.e solvability and
easiness) influence human priors.

7 CONCLUSION
In this study we used a Bayesian framework to systematically in-
vestigate the influence of actions, timing, and goal solvability on
goal recognition. Through an in-depth analysis of human responses
in the Sokoban domain, we found that while actions are typically
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Figure 4: Comparison between model predictions and human inferences. All model labels show the prior followed by the
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attributed the highest importance, timing and goal solvability also
influence goal recognition, particularly in scenarios where actions
offer limited information. Leveraging these insights, we developed
a goal recognition model that closely aligns with human inferences,
surpassing the performance of existing algorithms.

Our work departed from the conventional assumption of a uni-
form prior, and our results suggest that humans rely on a prior
that incorporates factors such as solvability and perceived goal
difficulty. We formulated a model of the prior (the Easiness model)
that proved successful in accounting for human responses, both
before and after any actions had been observed.

We extended the Adaptive Lookahead Planner to capture human
behavior in the presence of unsolvable goals, and our model compar-
ison suggests that this extended model is useful for estimating the
likelihood term in the Bayesian goal recognition framework. This
planner, however, departs from human behavior in some respects
(e.g. by taking more steps before recognizing a goal as unsolvable).
This could impact the generalization of our results to real word
interactions, and future work should aim to improve it further.

Our evaluation of the influence of actions, timing, and solvability
suggested that actions (when available) have a dominant influence
on people’s choices. This finding provides some justification for
the standard emphasis on actions within the goal-recognition liter-
ature. Nevertheless, our observations also revealed the influence
of solvability and timing, particularly in situations where actions

are uninformative. Our results seem broadly compatible with an
information-seeking approach [5] to goal-recognition in which hu-
mans focus initially on actions but turn to other factors such as
timing and solvability if actions prove uninformative. Future work
can explore this information-seeking approach in more detail and
compare it with the traditional Bayesian approach.

Finally, we conducted a thorough examination of Bayesian infer-
ence and the commonly used mirroring approach (i.e. planning for
likelihood estimation) discussed in previous work [2, 3, 17, 21]. Our
empirical model, which relies on problem-solving data, exhibits a
strong alignment with human goal inference. This finding suggests
that humans may indeed rely on Bayesian inference and mirroring
to carry out goal-recognition. We also introduced a goal recogni-
tion model (the model that combines the easiness prior with the
online likelihood) that can be implemented independently of human
problem-solving data while generating human-like goal inferences.
We expect that this model may prove to be useful in a range of
downstream applications, including explainable goal recognition
[1] and transparent planning, a process focused on selecting ac-
tions that effectively convey the actor’s intentions to observers [11].
Researchers in these domains may be able to leverage this model
to advance the development of more interpretable AI behavior.
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