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ABSTRACT
As increasing concern for environmental sustainability urges to

bring attention to green-aware multi-agent systems, we put for-

ward a game-theoretic model in which agents compete for the

usage of power-consuming resources and are charged a cost pro-

portional to their fair share of the power consumption. Using the

widely adopted cube-root rule for CMOS-based devices, our model

becomes a congestion game in which two distinct parts coexist,

namely, congestion games with polynomial latency functions and

fair cost-sharing games. The interplay between these two compo-

nents is governed by two resource-specific constants regulating

the static and dynamic power consumption of each resource. Our

findings show that, despite these games being highly inefficient in

the general case (a super-constant price of stability), performance

at equilibrium significantly improves (a constant price of anarchy)

when the ratio between the static and dynamic power consumption

of each resource remains bounded by a constant. This suggests

that, in uncoordinated green-aware multi-agent systems, technol-

ogy plays a fundamental role in shaping the efficiency of stable

solutions.
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1 INTRODUCTION
In our interconnected world, increasingly dependent on digital plat-

forms and, at the same time, marked by growing concerns about

environmental sustainability, a pressing issue demanding timely

and efficient solution is the reduction of power consumption of

Information Technology (IT) devices (personal computers, data

centers, networks). It is highly anticipated, in fact, that their contri-

bution to the annual electricity consumption in 2030 will exceed

10% of the total demand [34].

Numerous studies [20, 21, 37] have emphasized that the power

consumption of IT devices, such as CMOS equipment, can be at-

tributed to two main factors: a fixed demand related to the device

activation and a variable, super-linear, demand related to speed.

More precisely, the power consumption of a device 𝑟 gets equal to

𝛼𝑟 + 𝛽 ′𝑟 𝑠
𝑑′
𝑟 , (1)

where 𝛼𝑟 and 𝛽 ′𝑟 are two device-specific constants modelling, re-

spectively, the static and dynamic power consumption of the device,

𝑠𝑟 is its clock speed, and 𝑑 ′ ≥ 1 is a constant dependent of the

specific technology, usually not exceeding 3, i.e., 1 ≤ 𝑑 ′ ≤ 3 [3, 37].

As IT devices are usually designed to run at their highest perfor-

mance [36], one of the most effective approaches to reduce energy

consumption is resorting to speed scaling to achieve energy propor-
tionality [14]. This consists in dynamically maintaining speed of a

device (e.g., a processor, a network link) proportional to its load, i.e.,

𝑠𝑟 = 𝑐 · 𝑛𝑟 , so that also the energy consumption becomes propor-

tional to the load. In such a setting, if one assumes that all users of

a device 𝑟 contribute equally to the load, the energy consumption

becomes equal to

𝛼𝑟 + 𝛽𝑟𝑛
𝑑+1

𝑟 , (2)

where 𝑑 = 𝑑 ′ − 1 (0 ≤ 𝑑 ≤ 2)
1
, 𝑛𝑟 is the number of users of 𝑟 and

𝛽𝑟 = 𝛽 ′𝑟 · 𝑐𝑑+1
.

Inspired by this idea of green computing, we put forward a

multi-agent system, termed green-oriented resource selection game,
1
The reason why we switched from exponent 𝑑′

, with 𝑑′ ≥ 1, in (1) to exponent 𝑑 + 1,

with 𝑑 ≥ 0, in (2) will be clear when defining an agent’s cost in (3).
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populated by 𝑛 non-cooperative selfish agents competing for the

usage of a set of energy-consuming resources (IT devices). With the

aim of keeping the overall energy consumption low, each agent is

charged a cost equal to her contribution to the power consumption

of each selected resource, so that the cost that each agent pays for

using a resource 𝑟 becomes

𝛼𝑟 + 𝛽𝑟𝑛
𝑑+1

𝑟

𝑛𝑟
=
𝛼𝑟

𝑛𝑟
+ 𝛽𝑟𝑛

𝑑
𝑟 . (3)

According to this cost definition, green-oriented resource selec-

tion games become congestion games [39] inwhich two distinct parts
coexist, namely, congestion games with polynomial latency func-

tions [2, 8, 22, 24–26] and fair cost-sharing games [5, 16, 18, 32, 35].

As such, each green-oriented resource selection game is guaranteed

to possess a pure Nash equilibrium.

1.1 Our Contribution
We investigate the (in)efficiency of pure Nash equilibria in green-

oriented resource selection games through the notions of price
of anarchy (PoA) [30] and price of stability (PoS) [5], measuring,

respectively, the worst and the best possible ratio between the

overall power consumption of a pure Nash equilibrium and that of

an optimal solution.

We study the PoA and PoS under different assumptions on the

resource-specific coefficients 𝛼𝑟 and 𝛽𝑟 . In the most general, un-

constrained, case, it turns out that the PoA essentially matches the

number of agents, as it is upper bounded by 𝑛 + 𝑜 (𝑛) and lower

bounded by 𝑛. For the PoS, an upper bound of (𝑑 + 1)𝐻𝑛 can be

inferred from [5]
2
, which we complement with a lower bound of

ln𝑛 ·
(
1 + 2

𝑑−1

2
𝑑+1

)
holding for every integer 𝑑 ≥ 0. We further show

that this inefficiency remains even when assuming identical re-

sources, that is, 𝛼𝑟 = 𝛼𝑟 ′ and 𝛽𝑟 = 𝛽𝑟 ′ for any two resources 𝑟 and

𝑟 ′ and even under network games, where resources are edges in

a graph and each agent wants to connect two prescribed agent-

specific vertices.

These lower bounds, however, rely on resources for which the

ratio between the static and dynamic power consumption is un-

bounded. For such a reason, and in the hope of finding game classes

with better performance, we also address the case in which, for

each resource 𝑟 , it holds that 𝛼𝑟 ≤ \𝛽𝑟 , for some constant \ ≥ 1,

that is, the ratio between the static and dynamic power consump-

tion of each resource is upper bounded by a constant. As our main

technical contribution, we show that, in this case, even the PoA

becomes constant, as it only depends on constants 𝑑 and \ . For the

PoS, instead, we show a lower bound larger than one, meaning that

no PNE can guarantee optimality, even in simple network games

played on a parallel-link graph. Finally, we provide exact bounds

for the PoA when the static and dynamic power consumption of

each resource is equal and 𝑑 is an integer, that is, 𝑑 ∈ {0, 1, 2}.
Our findings shed light on how technological aspects may im-

pact on the level of energy consumption yielded by stable solutions

in non-cooperative multi-agent systems. In particular, when deal-

ing with devices characterized by a huge diversity between static

2
Although in [5] it is mainly considered the cost-sharing case (i.e., the case in which

the coefficient of the dynamic cost is set to 0), a combined model of costs and delays,

which coincides with the one we analyze in this paper, is also addressed.

and dynamic power consumption, significantly poor solutions may

emerge, highlighting the need for some form of control or coordi-

nation to achieve better final outcomes.

1.2 Related Work
The problem of energy-consumption minimization has been widely

addressed in the literature, with a special focus on multi-processor

scheduling and network routing. Energy efficient workload balance

on data centers, realizing good trade-offs between energy and per-

formance, has been studied in [6, 10–13, 27, 28, 33, 40], while the

problem of determining communication paths and link speeds to

meet Quality of Service (QoS) requirements with minimal energy

usage has been considered in [3, 4, 7, 9, 23, 29, 31, 38]. These prob-

lems, however, have been mainly tackled assuming the presence of

a centralized authority capable of computing and implementing an

optimal solution (see [37] for a survey).

The game investigated in this paper can be modeled as a resource

selection game in which the cost that each agent pays on each used

resource is given by a combination of two terms: one that decreases

with the number of users and one that polynomially increases with

it. Games with the decreasing term only fall in the class of fair

cost-sharing games, while games with the increasing term fall in

the class of polynomial congestion games.

Fair cost-sharing games are often studied under the hypothesis

that resources are edges in a graph and each agent has to buy a path

connecting two prescribed agent-specific terminals (network design
games). Two interesting subclasses of these games are multicast
games, in which all agents share a common source terminal, and

broadcast games, in which the common source has to be connected

to all other vertices in the graph. For fair cost-sharing games with

𝑛 agents, while the PoA is known to be exactly 𝑛, an upper bound

of 𝐻𝑛 :=
∑𝑛
𝑖=1

1/𝑖 = 𝑂 (log𝑛) on the PoS has been proven in [5].

The upper bound on the PoS has been shown to be tight even for

broadcast games played on directed graphs. For the undirected

case, upper bounds of𝑂 (1),𝑂 (log𝑛/log log𝑛) and 𝐻𝑛/2
have been

given in [18] for broadcast games, in [32] for multicast games, and

in [35] for network design games, respectively. The best-known

lower bounds, determined in [16], are 1.818 for broadcast games,

1.862 for multicast games and 2.245 for network design games.

For polynomial congestion games of maximum degree 𝑑 , the

PoA is a constant depending on 𝑑 and growing asymptotically as

(𝑑/log𝑑)𝑑+𝑜 (𝑑) [2, 8, 26], while the PoS has been characterized in

[22, 24, 25].

2 MODEL
For any fixed value 𝑑 ≥ 0,

3
a green-oriented resource selection game

𝐺𝑑 = (𝑁, 𝑅, (𝑆𝑖 )𝑖∈𝑁 , (𝛼𝑟 , 𝛽𝑟 )𝑟 ∈𝑅) is defined by a set of 𝑛 agents

𝑁 := {1, . . . , 𝑛}, a set of resources 𝑅, a set of strategies 𝑆𝑖 ⊆ 2
𝑅 \ ∅

for each agent 𝑖 ∈ 𝑁 (notice that a strategy is given by a subset

of resources) and two positive real coefficients 𝛼𝑟 and 𝛽𝑟 for each

resource 𝑟 ∈ 𝑅, governing the static and dynamic power consump-

tion, respectively: for this reason, we will refer to these coefficients

as the static coefficient and the dynamic coefficient, respectively.

3
Although our model is motivated by applications that assume 0 ≤ 𝑑 ≤ 2, for

theoretical purposes and to accommodate possible future technologies, we do not

impose any upper bound on the value of 𝑑 in our investigations.
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A strategy profile 𝒔 = (𝑠1, . . . , 𝑠𝑛) is a vector of strategies, one
for each agent. Let us denote with 𝑛𝑟 (𝒔) = |{𝑖 ∈ 𝑁 : 𝑟 ∈ 𝑠𝑖 }| the
number of users of resource 𝑟 in 𝒔, also known as the congestion of

𝑟 in 𝒔. Applying (2), we have that the overall power consumption

induced by the agents’ choices in 𝒔 equals

PC(𝒔) =
∑

𝑟 ∈𝑅:𝑛𝑟 (𝒔)>0

(
𝛼𝑟 + 𝛽𝑟𝑛𝑟 (𝒔)𝑑+1

)
.

Then, applying (3), we get that the cost that agent 𝑖 pays in strategy

profile 𝒔 is defined as

𝑐𝑜𝑠𝑡𝑖 (𝒔) =
∑
𝑟 ∈𝑠𝑖

1

𝑛𝑟 (𝒔)

(
𝛼𝑟 + 𝛽𝑟𝑛𝑟 (𝒔)𝑑+1

)
=

∑
𝑟 ∈𝑠𝑖

(
𝛼𝑟

𝑛𝑟 (𝒔)
+ 𝛽𝑟𝑛𝑟 (𝒔)𝑑

)
,

that is, agents equally share their contribution to the overall power

consumption. Observe that PC(𝒔) = ∑
𝑖∈𝑁 𝑐𝑜𝑠𝑡𝑖 (𝒔).

A strategy profile 𝒔 is a pure Nash equilibrium (PNE) if, for every

agent 𝑖 ∈ 𝑁 and every strategy 𝑠 ∈ 𝑆𝑖 , 𝑐𝑜𝑠𝑡𝑖 (𝒔) ≤ 𝑐𝑜𝑠𝑡𝑖 (𝒔−𝑖 , 𝑠),
where 𝒔−𝑖 , 𝑠 denotes the strategy profile obtained from 𝒔 when 𝑖

deviates to strategy 𝑠 . Thus, in a PNE, no agent can lower her cost

by unilaterally deviating to a different strategy. We shall denote

with PNE(𝐺𝑑 ) the set of PNE of game 𝐺𝑑 .

Given a game 𝐺𝑑 for which PNE(𝐺𝑑 ) ≠ ∅, the price of anarchy
of 𝐺𝑑 is defined as PoA(𝐺𝑑 ) = max𝒔∈PNE(𝐺𝑑 )

PC(𝒔)
PC(𝒔∗) , where 𝒔

∗
is

the strategy profile minimizing the overall power consumption,

also called social optimum. Conversely, the price of stability of𝐺𝑑

is defined as PoS(𝐺𝑑 ) = min𝒔∈PNE(𝐺𝑑 )
PC(𝒔)
PC(𝒔∗) . So, the PoA and

the PoS provide a pessimistic and optimistic measure, respectively,

of the (in)efficiency of PNE. The PoA of a class of games C is

defined as PoA(C) = sup𝐺𝑑 ∈C PoA(𝐺𝑑 ) and the PoS as PoS(C) =
sup𝐺𝑑 ∈C PoS(𝐺𝑑 ).

We shall denote with G𝑑 the set of all green-oriented resource

selection games defined by fixing the value of 𝑑 ≥ 0. Then, with

respect to the relations between the resource coefficients, we iden-

tify the following subclasses: games with identical static coefficients,
in which 𝛼𝑟 = 𝛼𝑟 ′ for each 𝑟, 𝑟 ′ ∈ 𝑅; games with identical dynamic
coefficients, in which 𝛽𝑟 = 𝛽𝑟 ′ for each 𝑟, 𝑟

′ ∈ 𝑅; games with identical
resources, in which 𝛼𝑟 = 𝛼𝑟 ′ and 𝛽𝑟 = 𝛽𝑟 ′ for each 𝑟, 𝑟 ′ ∈ 𝑅; games
with \ -almost identical technologies in which, for a given constant

\ > 0, 𝛼𝑟 ≤ \𝛽𝑟 for each 𝑟 ∈ 𝑅; games with identical technologies,
in which 𝛼𝑟 = 𝛽𝑟 for each 𝑟 ∈ 𝑅; games with identical resources
and identical technologies, in which 𝛼𝑟 = 𝛼𝑟 ′ = 𝛽𝑟 = 𝛽𝑟 ′ for each

𝑟, 𝑟 ′ ∈ 𝑅. We also say that a resource selection game is a network
game if 𝑅 is the set of edges of a graph and, for every agent 𝑖 , 𝑆𝑖 is

the set of all paths connecting two prescribed agent-specific ver-

tices: a source and a destination. A network game is a parallel-link
game if all agents share the same source-destination pair and all

paths are made of a single edge; however, not all paths may be

available to an agent.

We conclude this section, by highlighting some fundamental

connections that green-oriented resource selection games share

with other well-studied classes of games. A congestion game

𝐶𝐺 = (𝑁, 𝑅, (𝑆𝑖 )𝑖∈𝑁 , (ℓ𝑟 )𝑟 ∈𝑅) is defined by a set of 𝑛 agents 𝑁 :=

{1, . . . , 𝑛}, a set of resources 𝑅, a set of strategies 𝑆𝑖 ⊆ 2
𝑅 \∅ for each

agent 𝑖 ∈ 𝑁 and a latency function ℓ𝑟 : N ↦→ R for each resource

𝑟 ∈ 𝑅. The cost of agent 𝑖 in a strategy profile 𝒔 = (𝑠1, . . . , 𝑠𝑛) is de-
fined as 𝑐𝑜𝑠𝑡𝑖 (𝒔) =

∑
𝑟 ∈𝑠𝑖 ℓ𝑟 (𝑛𝑟 (𝒔)). Rosenthal’s Theorem [39] states

that any congestion game has the FIP property, that is, starting from

any initial strategy profile, any sequence of better-response dynam-

ics converges to a PNE after finitely many steps. This is proved

by showing that function Φ(𝒔) =
∑
𝑟 ∈𝑅

∑𝑛𝑟 (𝒔)
𝑗=1

ℓ𝑟 ( 𝑗) is an exact

potential function, that is, Φ(𝒔−𝑖 , 𝑠) −Φ(𝒔) = 𝑐𝑜𝑠𝑡𝑖 (𝒔−𝑖 , 𝑠) − 𝑐𝑜𝑠𝑡𝑖 (𝒔)
for each strategy profile 𝒔, agent 𝑖 ∈ 𝑁 and strategy 𝑠 ∈ 𝑆𝑖 .

The particular class of congestion games in which ℓ𝑟 (𝑥) = 𝛽𝑟𝑥
𝑑

for each resource 𝑟 ∈ 𝑅 is called polynomial congestion games with
degree 𝑑 , while the class in which ℓ𝑟 (𝑥) =

𝛼𝑟
𝑥 for each resource

𝑟 ∈ 𝑅 is called fair cost-sharing games. It is known that computing

a PNE in both classes in PLS-complete [1, 17, 41].

By setting ℓ𝑟 (𝑥) =
𝛼𝑟
𝑥 + 𝛽𝑟𝑥

𝑑
for any 𝑟 ∈ 𝑅, it turns out that

any green-oriented resource selection game is a congestion game

by definition. Thus, from Rosenthal’s Theorem, we derive that

any green-oriented resource selection game has the FIP property,

and so, it admits at least one PNE. However, PLS-completeness

of computing a PNE easily comes from PLS-completeness of both

polynomial congestion games and fair cost-sharing games.

3 GENERAL GAMES
In this section, we analyse games without any type of restrictions

on the adopted technologies, that is, class G𝑑 . One may observe that,

as by letting the static coefficient 𝛼𝑟 go to zero for each 𝑟 ∈ 𝑅, the

fair cost-sharing component of of green-oriented resource selection

game becomes predominant, the lower bounds known for this class

should carry over with some minor adaptations. Recall that, for

fair cost-sharing games, the PoA is 𝑛 and the PoS is 𝐻𝑛 . Here, we

show that, while the PoA remains essentially the same, the price of

stability slightly worsens as 𝑑 increases.

Before showing our theorems, we introduce some helpful addi-

tional notation. For a strategy profile 𝒔 and a resource 𝑟 ∈ 𝑅, we

denote by I𝑟 (𝒔) the indicator function that equals 1 if 𝑛𝑟 (𝒔) > 0

and equals 0 otherwise.

We start with the upper bound on the PoA.

Theorem 3.1. For any 𝑑 ≥ 0, PoA(G𝑑 ) ≤ 𝑛 if 𝑑 ≤ 1 and
PoA(G𝑑 ) = 𝑛 + 𝑜 (𝑛) otherwise.

Proof. To show the bounds, we make use of the primal-dual

method [15, 19]. For a fixed game𝐺𝑑 ∈ G𝑑 , let 𝒔 be a PNE and 𝒔∗ be
the social optimum. For the sake of conciseness, we set 𝑘𝑟 := 𝑛𝑟 (𝒔)
and 𝑜𝑟 := 𝑛𝑟 (𝒔∗). According to the primal-dual method, we need

to formulate the problem of maximizing the power consumption

of 𝒔, subject to the constraint that the power consumption of 𝒔∗ is
normalized to one and to any constraint we can derive from the

fact that 𝒔 is a PNE. Then, any feasible solution to the dual of this

problem will provide an upper bound on the PoA.

Consider the inequality 𝑐𝑜𝑠𝑡𝑖 (𝒔) − 𝑐𝑜𝑠𝑡𝑖 (𝒔−𝑖 , 𝑠∗𝑖 ) ≤ 0 for each

𝑖 ∈ 𝑁 . In our setting, this becomes∑
𝑟 ∈𝑠𝑖

(
𝛽𝑟𝑘

𝑑
𝑟 + 𝛼𝑟

𝑘𝑟

)
−

∑
𝑟 ∈𝑠∗

𝑖

(
𝛽𝑟𝑛𝑟 (𝒔−𝑖 , 𝑠∗𝑖 )

𝑑 + 𝛼𝑟

𝑛𝑟 (𝒔−𝑖 , 𝑠∗𝑖 )

)
≤ 0.

Define 𝑘 ′𝑟 := min{𝑘𝑟 + 1, 𝑛}, 𝑘 ′′𝑟 := max{𝑘𝑟 , 1} and observe that

𝑛𝑟 (𝒔−𝑖 , 𝑠∗𝑖 ) ≤ 𝑘 ′𝑟 and 𝑛𝑟 (𝒔−𝑖 , 𝑠∗𝑖 ) ≥ 𝑘 ′′𝑟 . As the dynamic power con-

sumption is increasing in the the congestion and the static power
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consumption is decreasing in the congestion, the above inequality

keeps holding if we replace the first occurrence of 𝑛𝑟 (𝒔−𝑖 , 𝑠∗𝑖 ) with
𝑘 ′𝑟 and its second occurrence with 𝑘 ′′𝑟 , so as to obtain inequality∑

𝑟 ∈𝑠𝑖

(
𝛽𝑟𝑘

𝑑
𝑟 + 𝛼𝑟

𝑘𝑟

)
−

∑
𝑟 ∈𝑠∗

𝑖

(
𝛽𝑟 (𝑘 ′𝑟 )𝑑 + 𝛼𝑟

𝑘 ′′𝑟

)
≤ 0.

By summing previous inequality for each 𝑖 ∈ 𝑁 and using |{𝑖 ∈ 𝑁 :

𝑟 ∈ 𝑠𝑖 }| = 𝑘𝑟 and |{𝑖 ∈ 𝑁 : 𝑟 ∈ 𝑠∗
𝑖
}| = 𝑜𝑟 , we obtain the inequality∑

𝑟 ∈𝑅
𝛽𝑟

(
𝑘𝑑+1

𝑟 − 𝑜𝑟 (𝑘 ′𝑟 )𝑑
)
+

∑
𝑟 ∈𝑅

𝛼𝑟

(
I𝑟 (𝒔) −

𝑜𝑟

𝑘 ′′𝑟

)
≤ 0.

Thus, the primal program is the following.

max

∑
𝑟 ∈𝑅

(
𝛽𝑟𝑘

𝑑+1

𝑟 + 𝛼𝑟 I𝑟 (𝒔)
)

𝑠 .𝑡 .
∑
𝑟 ∈𝑅

𝛽𝑟

(
𝑘𝑑+1

𝑟 − 𝑜𝑟 (𝑘 ′𝑟 )𝑑
)

+
∑
𝑟 ∈𝑅

𝛼𝑟

(
I𝑟 (𝒔) −

𝑜𝑟

𝑘 ′′𝑟

)
≤ 0∑

𝑟 ∈𝑅

(
𝛽𝑟𝑜

𝑑+1

𝑟 + 𝛼𝑟 I𝑟 (𝒔∗)
)
= 1

𝛼𝑟 , 𝛽𝑟 ≥ 0 𝑟 ∈ 𝑅.

The dual program, obtained by associating variables 𝑥 and 𝛾 with

the first and second constrain, respectively, is the following.

min 𝛾

𝑠.𝑡 . 𝑥

(
𝑘𝑑+1

𝑟 − 𝑜𝑟 (𝑘 ′𝑟 )𝑑
)
+ 𝛾𝑜𝑑+1

𝑟 ≥ 𝑘𝑑+1

𝑟 𝑟 ∈ 𝑅

𝑥

(
I𝑟 (𝒔) − 𝑜𝑟

𝑘′′𝑟

)
+ 𝛾I𝑟 (𝒔∗) ≥ I𝑟 (𝒔) 𝑟 ∈ 𝑅

𝑥 ≥ 0.

As any feasible solution for the dual is an upper bound to the

optimal solution for the primal, we are left to show that there are

suitable feasible dual solutions yielding the claimed bounds.

For 𝑑 ∈ [0, 1], set 𝑥 = 1 and 𝛾 = 𝑛. The first constraint becomes

𝑛𝑜𝑑+1

𝑟 ≥ 𝑜𝑟 (𝑘 ′𝑟 )𝑑 , which is always satisfied. The second constraint

becomes 𝑛I𝑟 (𝒔∗) ≥ 𝑜𝑟
𝑘′′𝑟

and is always satisfied.

For 𝑑 > 1, set 𝑥 = 1+ 𝑓 (𝑑, 𝑛) and 𝛾 = 𝑛+𝑛𝑓 (𝑑, 𝑛) +𝑔(𝑑, 𝑛), where
𝑓 := 𝑓 (𝑑, 𝑛) = 1

2𝑑
√
𝑛
and 𝑔 := 𝑔(𝑑, 𝑛) = 2

𝑑 (𝑑+2)√𝑛. Observe that,

being 𝑑 an arbitrary, but fixed, constant, 𝑛𝑓 + 𝑔 = 𝑜 (𝑛). So, if we
prove that the pair (𝑥,𝛾) yields a feasible dual solution, the proof
is complete.

The second constraint is satisfied as𝑥 > 1,𝛾 > 𝑛𝑥 and
𝑜𝑟
𝑘′′𝑟

≤ 𝑛. So,

let us focus on the first constraint. By substituting and rearranging,

we obtain the inequality

(𝑛 + 𝑛𝑓 + 𝑔)𝑜𝑑+1

𝑟 − (1 + 𝑓 )𝑜𝑟 (𝑘 ′𝑟 )𝑑 + 𝑓 𝑘𝑑+1

𝑟 ≥ 0. (4)

If 𝑘𝑟 = 0, which yields 𝑘 ′𝑟 = 1, the inequality clearly holds. So, in

the sequel, we assume 𝑘𝑟 ≥ 1, which implies that 𝑘 ′𝑟 ≤ 2𝑘𝑟 . The

derivative of the left-hand side with respect to 𝑜𝑟 has a unique

minimum corresponding to 𝑜∗𝑟 = 𝑘 ′𝑟\ , with \ := 𝑑

√
1+𝑓

(𝑑+1) (𝑛+𝑓 𝑛+𝑔) .

Substituting and rearranging, we obtain that (4) is satisfied if and

only if 𝑓 𝑘𝑑+1

𝑟 ≥ 𝑑 (1+𝑓 )\ (𝑘′𝑟 )𝑑+1

𝑑+1
is satisfied. As 𝑓 ≤ 1 and 𝑑 > 1,

which yield \ ≤ 𝑑

√
1

𝑔 , we derive

𝑑 (1 + 𝑓 )\ (𝑘 ′𝑟 )𝑑+1

𝑑 + 1

≤ 2(𝑘 ′𝑟 )𝑑+1

𝑑
√
𝑔

=
2(𝑘 ′𝑟 )𝑑+1

2
𝑑+2 2𝑑

√
𝑛

≤ 2(2𝑘𝑟 )𝑑+1

2
𝑑+2 2𝑑

√
𝑛

= 𝑓 𝑘𝑑+1

𝑟 ,

as desired. □

The lower bound of 𝑛 which holds for fair cost-sharing games

can be easily extended to apply to green-oriented network games

with identical static coefficients and, with an additive loss of 1, to

even network games with identical resources.

Theorem 3.2. For any 𝑑 ≥ 0, PoA(G𝑑 ) ≥ 𝑛, even for network
games with identical static coefficients and PoA(G𝑑 ) ≥ 𝑛 − 1, even
for network games with identical resources.

For the PoS, an upper bound of (𝑑 + 1)𝐻𝑛 comes from [5]. Al-

though we are not able to show a matching lower bound for this

metric, which is an open problem since 2004, we give two different

results that allow us to claim interesting conclusions on the PoS.

First, we give an 𝐻𝑛 lower bound which holds even for network

games with identical resources; secondly, we give an improved

lower bound for the general case, showing that the PoS grows

slightly larger than 𝐻𝑛 and tends to
3

2
𝐻𝑛 as 𝑑 increases. This draws

a separation between the behaviours of the PoA and the PoS of

green-oriented resource selection games, when compared with the

same metrics for fair cost-sharing games. In fact, while for every

value of 𝑑 , the PoA of green-oriented resource selection games is

the same as that of fair cost-sharing games plus an asymptotically

smaller term, the PoS increases by a non-negligible quantity when

moving from fair cost-sharing games to green-oriented resource

selection games.

In the same spirit of Theorem 3.2, also the lower bound of 𝐻𝑛

holding for fair cost-sharing games can be extended to apply to

green-oriented network games with identical resources, this time

without any degradation.

Theorem 3.3. For any 𝑑 ≥ 0, PoS(G𝑑 ) ≥ 𝐻𝑛 , even for network
games with identical resources.

Theorem 3.4. For any integer 𝑑 ≥ 0 and any 𝛿 > 0, there exists a

game G𝑑 such that PoS(G𝑑 ) ≥ ln𝑛 ·
(
1 + 2

𝑑−1

2
𝑑+1

)
− 𝛿 .

Proof. For any fixed value of 𝑑 and any integer 𝑔, let ℓ = 2
𝑑
,

𝑛 = ℓ2𝑔
and consider game𝐺𝑑 with the last 𝑛−1 agents divided into

𝑔 = logℓ2 𝑛 groups, i.e., 𝑁 = {1}∪𝑁0 ∪ . . .∪𝑁𝑔−1, and 𝑅 = {𝑟1}∪𝑅,

where 𝑅 = {𝑟2, . . . , 𝑟𝑛}. Let 𝛼𝑟1
= 1 and 𝛽𝑟1

= 𝜖; moreover, for

every 𝑗 = 2, . . . , 𝑛, let 𝛼𝑟 𝑗 = 𝜖
2
and 𝛽𝑟 𝑗 = 1

𝑗 . The value of 𝜖 will

be defined later. For any 𝑘 = 0, . . . , 𝑔 − 1, |𝑁𝑘 | = ℓ2−1

ℓ2𝑘+2
· 𝑛 and

𝑁𝑘 = {𝑛−𝑛 · ℓ2𝑘−1

ℓ2𝑘 , 𝑛−𝑛 · ℓ2𝑘−1

ℓ2𝑘 −1, . . . , 𝑛−𝑛 · ℓ2𝑘+2−1

ℓ2𝑘+2
}. Every agent

𝑖 = 2, . . . , 𝑛 has two possible strategies, namely the first strategy and
the second strategy of agent 𝑖 , both composed by a unique resource:
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the first strategy of agent 𝑖 is {𝑟1}, and the second strategy of agent 𝑖
is {𝑟 𝑓 (𝑖) }with 𝑟 𝑓 (𝑖) ∈ 𝑅, where 𝑓 is a function mapping every agent

𝑖 = 2, . . . , 𝑛 to a resource in 𝑅. Agent 1 has only its first strategy

{𝑟1}.
In order to define the second strategy of the agents, for any

𝑘 = 0, . . . , 𝑔 − 1, we divide group 𝑁𝑘 in two subgroups: a subgroup

composed by the first
ℓ

ℓ+1
|𝑁𝑘 | agents and another subgroup com-

posed by the remaining
1

ℓ+1
|𝑁𝑘 | agents. For 𝑖 = 𝑛−𝑛 · ℓ2𝑘−1

ℓ2𝑘 , . . . , 𝑛−
𝑛 · ℓ2𝑘−1

ℓ2𝑘 − ℓ
ℓ+1

|𝑁𝑘 | + 1, 𝑓 (𝑖) = 𝑖 , i.e., for any agent 𝑖 in the first

subgroup of 𝑁𝑘 , {𝑟𝑖 } is assigned as her second strategy. For any

𝑘 = 0, . . . , 𝑔 − 1, for 𝑖 = 𝑛 − 𝑛 · ℓ2𝑘−1

ℓ2𝑘 − ℓ
ℓ+1

|𝑁𝑘 |, . . . , 𝑛 − 𝑛 · ℓ2𝑘+2−1

ℓ2𝑘+2
,

𝑓 (𝑖) = ℓ · 𝑖 , i.e., for any agent 𝑖 in the second subgroup of 𝑁𝑘 , the

same second strategy of agent ℓ · 𝑖 (belonging to the first subgroup

of 𝑁𝑘 ) is assigned as her second strategy. We say that two agents

having the same second strategy are sibling, with the elder sibling

being the one identified by a greater index (and thus belonging to

the first subgroup of her group) and the youngest sibling belonging

to the second subgroup of the same group.

Consider strategy profiles 𝒔1
and 𝒔2

in which all agents select

their first strategies and their second strategies, respectively.

On the one hand, since in 𝒔1
only resource 𝑟0 is used by all agents,

it holds that PC(𝒔1) = 𝛼𝑟0
+ 𝑛 · 𝛽𝑟0

𝑛𝑑 =≤ 1 + 𝜖𝑛𝑑+1
. On the other

hand, in order to compute PC(𝒔2), we notice that PC(𝒔2) is equal
to the sum of all static costs 𝑐0 of the used resources in 𝑅 plus the

sum of the dynamic costs that all agents 𝑛, 𝑛 − 1, . . . , 2 experience,

at the moment of their deviation, in the dynamics starting from

PC(𝒔1) and leading to PC(𝒔2) by letting agents move in decreasing

order (from agent 𝑛 to agent 2), plus an extra cost 𝑐 due to the

fact that the the youngest siblings, when deviating, increase the

dynamic cost of the respective oldest siblings, plus the cost of agent

1 remaining alone on resource 𝑟1. We have that, for any agent 𝑖

either not having siblings or being the oldest sibling, at the moment

of the deviation, the dynamic cost on the second strategy 𝑟𝑖 is
1

𝑖 ;

for any agent 𝑖 being the youngest sibling, at the moment of the

deviation, the dynamic cost on the second strategy 𝑟𝑖 ·ℓ is 2
𝑑

𝑖 ·ℓ = 1

𝑖 ,

because her oldest sibling is already using resource 𝑟𝑖 ·ℓ . Therefore,
we have PC(𝒔2) = 𝑐0 +

∑𝑛
𝑖=2

1

𝑖 +𝑐 + 1+𝜖 = 𝑐0 +𝑐 +𝜖 +𝐻𝑛 ≥ 𝑐 + ln𝑛.

In order to provide a lower bound to 𝑐 , we sum over, for all 𝑖

being the youngest sibling of ℓ · 𝑖 , the extra cost ℓ−1

ℓ ·𝑖 they add to

agent ℓ · 𝑖 . We obtain

𝑐 =

𝑔−1∑
𝑘=0

𝑛

ℓ2𝑘+1
−1∑

𝑖= 𝑛

ℓ2𝑘+2

ℓ − 1

ℓ · 𝑖

=
ℓ − 1

ℓ

𝑔−1∑
𝑘=0

𝑛

ℓ2𝑘+1
−1∑

𝑖= 𝑛

ℓ2𝑘+2

1

𝑖

=
ℓ − 1

ℓ

𝑔−1∑
𝑘=0

(
𝜓

(
𝑛

ℓ2𝑘+1

)
−𝜓

(
𝑛

ℓ2𝑘+2

))
≥ ℓ − 1

ℓ

𝑔−1∑
𝑘=0

(
ln

𝑛

ℓ2𝑘+1

− ℓ2𝑘+1

𝑛
− ln

𝑛

ℓ2𝑘+2

+ ℓ2𝑘+2

2𝑛

)

≥ ℓ − 1

ℓ

𝑔−1∑
𝑘=0

ln ℓ =
ℓ − 1

ℓ
· 𝑔 · ln ℓ

=
ℓ − 1

ℓ
· logℓ2 𝑛 · ln ℓ = ln𝑛 · ℓ − 1

2ℓ
,

where the first inequality holds because the digamma function𝜓 (𝑥)
is such that ln𝑥 − 1

𝑥 ≤ 𝜓 (𝑥) ≤ ln𝑥 − 1

2𝑥 for any 𝑥 > 0. Therefore,

given any 𝛿 > 0, it is possible to choose 𝜖 such that

PC(𝒔2)
PC(𝒔1)

≥ ln𝑛 ·
(
1 + ℓ − 1

2ℓ

)
− 𝛿 = ln𝑛 ·

(
1 + 2

𝑑 − 1

2
𝑑+1

)
− 𝛿.

In the following, we show that the only Nash equilibrium of

𝐺𝑑 is 𝒔2
. To this aim, let 𝒔 be any strategy profile different from

𝒔2
and let 𝒔 ′ the strategy profile obtained by 𝒔 by swapping the

strategies of two siblings 𝑖, 𝑖 ′ with 𝑖 > 𝑖 ′ if it happens that 𝑖 and
𝑖 ′ are selecting their first and second strategy in 𝒔, respectively.
Clearly, PC(𝒔) = PC(𝒔 ′) and, since two siblings have the same

strategy set, it holds that 𝒔 is a Nash equilibrium if and only if 𝒔 ′ is
a Nash equilibrium. Notice that 𝒔 ′ has the property that whenever

only a sibling is using 𝑟1, she is the youngest sibling. Let 𝐴 ≠ ∅ be

the set of agents selecting their first strategy in 𝒔 ′: we show that 𝒔 ′

is not a Nash equilibrium because there exists an agent in 𝐴 that

can perform an improving move. Let 𝑚 = max𝑖∈𝐴 𝑖 . Notice that

𝑛𝑟1
(𝒔 ′) ≤ 𝑚. We distinguish among the following disjoint cases:

• 𝑚 has a sibling.

- If𝑚 is the youngest sibling, we have that 𝑐𝑜𝑠𝑡𝑚 (𝒔 ′) ≥ 1

𝑚 +𝜖 ,
while the cost that agent𝑚would pay for her second strategy,

i.e., on resource 𝑟𝑚 ·ℓ (notice that for an agent 𝑖 with an older

sibling it holds that 𝑓 (𝑖) = 𝑖 · ℓ), is at most
2
𝑑

𝑚 ·ℓ +
𝜖
2
= 1

𝑚 + 𝜖
2

because every resource in 𝑅 can have congestion at most 2:

𝒔 ′ is not a Nash equilibrium.

- If𝑚 is the oldest sibling, by construction of 𝒔 ′, the youngest
sibling

𝑚
ℓ of𝑚 is in𝐴. We have that 𝑐𝑜𝑠𝑡𝑚 (𝒔 ′) ≥ 1

𝑚 +𝜖 , while
the cost that agent𝑚 would pay for her second strategy, i.e.,

on resource 𝑟𝑚 (notice that for an agent 𝑖 with a younger

sibling it holds that 𝑓 (𝑖) = 𝑖), is at most
1

𝑚 + 𝜖
2
because

𝑚
ℓ ∈ 𝐴

implies 𝑛𝑟𝑚 (𝒔 ′) = 0: 𝒔 ′ is not a Nash equilibrium.

• 𝑚 does not have any sibling. We have that 𝑐𝑜𝑠𝑡𝑚 (𝒔 ′) ≥ 1

𝑚 +𝜖 ,
while the cost that agent𝑚would pay for her second strategy,

i.e., on resource 𝑟𝑚 (notice that for an agent 𝑖 without siblings

it holds that 𝑓 (𝑖) = 𝑖), is at most
1

𝑚 + 𝜖
2
because every resource

in 𝑅 used by an agent without siblings can have congestion

at most 1: 𝒔 ′ is not a Nash equilibrium.

□

We stress that, although the lower bound shown in the above

theorem might look slightly incremental with respect to the previ-

ously known one, it represents indeed the first improvement since

2004, when the conference version of [5] appeared.

4 GAMES WITH SIMILAR TECHNOLOGIES
Given the high inefficiency of PNE in general games, in this section,

we investigate whether, with similar technologies, better perfor-

mance at equilibria are possible.

We have already seen in the previous section, and in particular

in Theorems 3.2 and 3.3, that even restricting to network games
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with identical resources does not help to improve the performance

at PNE. Considering that the PoA and PoS of a class of games are

worst-case measures among all games in the class, it may be the

case that, on some instances, better performance can be achieved

when assuming identical coefficients and even identical resources.

However, the next theorem shows that this is not the case for games

with either identical static coefficients or identical dynamic coeffi-

cients. Moreover, it also states that having identical resources does

not improve the performance of games with identical technologies.

Theorem 4.1. For each game 𝐺𝑑 ∈ G𝑑 , there exist a game with
identical static coefficients 𝐺 ′

𝑑
and a game with identical dynamic

coefficients 𝐺 ′′
𝑑

such that PoA(𝐺 ′
𝑑
) = PoA(𝐺 ′′

𝑑
) = PoA(𝐺𝑑 ) and

PoS(𝐺 ′
𝑑
) = PoS(𝐺 ′′

𝑑
) = PoS(𝐺𝑑 ). Moreover, for each game with

identical technologies𝐺𝑑 , there exists a game with identical resources
and identical technologies 𝐺 ′

𝑑
such that PoA(𝐺 ′

𝑑
) = PoA(𝐺𝑑 ) and

PoS(𝐺 ′
𝑑
) = PoS(𝐺𝑑 ).

The next theorem is our main technical contribution and shows

that, for any fixed 𝑑 ≥ 0 and constant \ > 0, the PoA becomes

constant in games with \ -almost identical technologies. We also

provide specific upper bounds for any 𝑑 ≥ 0 and \ > 0.

Theorem 4.2. For any game with \ -almost identical technolo-
gies 𝐺𝑑 , with 𝑑 ≥ 0 and \ > 0, PoA(𝐺𝑑 ) is constant. In particular,

PoA(𝐺𝑑 ) ≤ (Φ𝑑 (\ ))𝑑+1, where Φ𝑑 (\ ) = 𝑂

(
𝑑/log(𝑑) + 𝑑+1

√
\

)
is the

unique solution 𝑡 of equation −𝑡𝑑+1 + (𝑡 + 1)𝑑 + \ = 0.

Proof. For the upper bounds, we make again use of the primal-

dual method. However, with respect to the formulation derived in

the proof of Theorem 3.1, this time we can somehow relate the two

coefficients for every resource 𝑟 ∈ 𝑅, that is, we can set 𝛼𝑟 := \𝑟 𝛽𝑟
for some fixed parameter \𝑟 ∈ [0, \ ].

Thus, the primal program P becomes the following.

max

∑
𝑟 ∈𝑅

(
𝛽𝑟𝑘

𝑑+1

𝑟 + 𝛽𝑟\𝑟 I𝑟 (𝒔)
)

𝑠 .𝑡 .
∑
𝑟 ∈𝑅

𝛽𝑟

(
𝑘𝑑+1

𝑟 − 𝑜𝑟 (𝑘 ′𝑟 )𝑑
)

+
∑
𝑟 ∈𝑅

𝛽𝑟

(
\𝑟 I𝑟 (𝒔) −

\𝑟𝑜𝑟

𝑘 ′′𝑟

)
≤ 0∑

𝑟 ∈𝑅

(
𝛽𝑟𝑜

𝑑+1

𝑟 + 𝛽𝑟\𝑟 I𝑟 (𝒔∗)
)
= 1

𝛽𝑟 ≥ 0 𝑟 ∈ 𝑅.

The dual program PP is the following.

min 𝛾

𝑠.𝑡 . 𝛾

(
𝑜𝑑+1

𝑟 + \𝑟 I𝑟 (𝒔∗)
)
≥ 𝑘𝑑+1

𝑟 + \𝑟 I𝑟 (𝒔)

+𝑥
(
−𝑘𝑑+1

𝑟 − \𝑟 I𝑟 (𝒔) + 𝑜𝑟 (𝑘 ′𝑟 )𝑑 + \𝑟𝑜𝑟
𝑘′′𝑟

)
𝑟 ∈ 𝑅

𝑥 ≥ 0.

We have the following lemma.

Lemma 4.3. Let (𝛾, 𝑥) be a pair of real values such that 𝑥 > 1 and

𝛾 ≥ 𝑡𝑑+1 + 𝑥

(
−𝑡𝑑+1 + (𝑡 + 1)𝑑 + \

)
∀𝑡 ≥ 0. (5)

Then, (𝛾, 𝑥) is a feasible solution of the dual program DP.

Proof of Lemma 4.3. First of all, one can easily see that (𝛾, 𝑥)
trivially satisfies the constraints of DP with 𝑜𝑟 = 0. Thus, let us

show the claim for 𝑜𝑟 > 0. Assume by contradiction that (𝛾, 𝑥)
does not satisfy a dual constraint associated with a resource 𝑟 with

𝑜𝑟 > 0, and let 𝑡 := 𝑘𝑟 /𝑜𝑟 . Recalling that 𝑘 ′𝑟 := min{𝑘𝑟 + 1, 𝑛} and
𝑘 ′′𝑟 := max{𝑘𝑟 , 1}, we have

𝛾 <

𝑘𝑑+1

𝑟 + \𝑟 I𝑟 (𝒔) + 𝑥

(
−𝑘𝑑+1

𝑟 − \𝑟 I𝑟 (𝒔) + 𝑜𝑟 (𝑘 ′𝑟 )𝑑 + \𝑟𝑜𝑟
𝑘′′𝑟

)(
𝑜𝑑+1

𝑟 + \𝑟
) (6)

≤
𝑘𝑑+1

𝑟 + 𝑥

(
−𝑘𝑑+1

𝑟 + 𝑜𝑟 (𝑘 ′𝑟 )𝑑 + \𝑟𝑜𝑟
𝑘′′𝑟

)(
𝑜𝑑+1

𝑟 + \𝑟
)

≤
𝑘𝑑+1

𝑟 + 𝑥

(
−𝑘𝑑+1

𝑟 + 𝑜𝑟 (𝑘 ′𝑟 )𝑑 + \𝑟𝑜𝑟
𝑘′′𝑟

)
𝑜𝑑+1

𝑟

≤
𝑘𝑑+1

𝑟 + 𝑥

(
−𝑘𝑑+1

𝑟 + 𝑜𝑟 (𝑘𝑟 + 𝑜𝑟 )𝑑 + \𝑟𝑜𝑑+1

𝑟

)
𝑜𝑑+1

𝑟

(7)

= 𝑡𝑑+1 + 𝑥

(
−𝑡𝑑+1 + (𝑡 + 1)𝑑 + \𝑟

)
≤ 𝑡𝑑+1 + 𝑥

(
−𝑡𝑑+1 + (𝑡 + 1)𝑑 + \

)
≤ 𝛾, (8)

where (6) holds since (1 − 𝑥)\ I𝑟 (𝒔) is non-positive (as 𝑥 > 1 by the

hypothesis), (7) follows as 𝑘 ′𝑟 ≤ 𝑘𝑟 + 1, 𝑜𝑟 ≥ 1, and 𝑘 ′′𝑟 ≥ 1, and (8)

holds by (5). Thus, we obtain 𝛾 < 𝛾 , that is, a contradiction. □

By the above lemma, we have that, if we find a pair (𝛾, 𝑥) with
𝑥 > 1 that satisfies (5), we obtain the claim. To find such a pair,

we will show some qualitative properties on the real numbers 𝑡 (𝑥)
that, for any 𝑥 > 1, maximize the right-hand part of (5), denoted as

𝑓𝑥 (𝑡). We first provide a preliminary technical lemma.

Lemma 4.4. For any 𝑎 > 0, 𝑏 > 0, 𝑐 ≥ 0 and 𝑑 in interval [𝑖 − 1, 𝑖),
the function 𝑔(𝑡) := 𝑔𝑎,𝑏,𝑐,𝑑 (𝑡), defined on the set of non-negative
reals as −𝑎 · 𝑡𝑑+1 + 𝑏 · (𝑡 + 1)𝑑 + 𝑐 , admits a unique maximum point
𝑡 ′ := 𝑡 ′(𝑎, 𝑏, 𝑐, 𝑑) > 0 and a unique zero 𝑡∗ := 𝑡∗ (𝑎, 𝑏, 𝑐, 𝑑) > 𝑡 ′ such
that 𝑔(𝑡) > 0 for any 𝑡 ∈ [0, 𝑡∗) and 𝑔(𝑡) < 0 for any 𝑡 > 𝑡∗.

Proof. We will show the claim by induction on 𝑖 ∈ N. If 𝑖 = 1,

it means that 𝑑 ∈ [0, 1), and in such a case 𝑔(𝑡) is concave (as it can
be seen as the weighted sum of the three functions −𝑡𝑑+1

, (𝑡 + 1)𝑑 ,
𝑐 , which are concave for 𝑑 ∈ [0, 1)). Since 𝑔′(0) > 0, concavity

implies that 𝑔 admits a unique maximum point 𝑡 ′ > 0. Now, since

𝑔(0) > 0 and lim𝑡→∞ 𝑔(𝑡) = −∞, continuity of 𝑔 (by the Zero

Existence Theorem) implies the existence of a unique zero 𝑡∗ > 𝑡 ′

of 𝑔. Furthermore, as there exists a unique maximum 𝑡 ′ of function
𝑔(𝑡), we have that 𝑡∗ is necessarily the unique zero of 𝑔(𝑡), so that

𝑔(𝑡) > 0 for any 𝑡 ∈ [0, 𝑡∗) and 𝑔(𝑡) < 0 for 𝑡 > 𝑡∗.
Now, assume that the claim holds for some 𝑖 ∈ N, and let us

show it for 𝑖 + 1. Let 𝑑 ∈ [𝑖, 𝑖 + 1). We first study the properties

of maximum points of 𝑔(𝑡) by means of their characterization via

derivatives. We have that 𝑔′(𝑡) = −𝑎𝑡 ˜𝑑+1 + ˜𝑏 · (𝑡 + 1) ˜𝑑 + 𝑐 , with

𝑎 = (𝑑 + 1)𝑎, ˜𝑏 = 𝑑𝑏, 𝑐 = 0 and
˜𝑑 = 𝑑 − 1 ∈ [𝑖 − 1, 𝑖). Thus, since

˜𝑑 ∈ [𝑖 − 1, 𝑖), we can apply the inductive hypothesis to 𝑔′(𝑡) with
the considered values

˜𝑑, 𝑎, ˜𝑏, 𝑐 , that is, there exists ˜𝑡∗ > 0 such that
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𝑔′(𝑡) > 0 for any 𝑡 ∈ [0, ˜𝑡∗) and 𝑔′(𝑡) < 0 for any 𝑡 > 𝑡 . This means

that 𝑔(𝑡) is increasing for 𝑡 ∈ [0, ˜𝑡∗) and decreasing for 𝑡 > ˜𝑡∗,
that is, 𝑡 ′ := ˜𝑡∗ is the unique maximum point of 𝑔. As 𝑔(0) = 0,

lim𝑡→∞ 𝑔(𝑡) = −∞, 𝑔 is continuous, and 𝑔 has a unique maximum

point 𝑡 ′, as in the base case these properties necessarily imply the

existence of a unique zero 𝑡∗ > 𝑡 ′ of 𝑔(𝑡) such that 𝑔(𝑡) > 0 for any

𝑡 ∈ [0, 𝑡∗) and 𝑔(𝑡) < 0 for 𝑡 > 𝑡∗. This shows the inductive step,
and then the claim of the lemma. □

For any fixed 𝑥 > 0, we have that the constraints (5) can be

seen as 𝛾 ≥ 𝑓𝑥 (𝑡) for any 𝑡 ≥ 0, where 𝑓𝑥 (𝑡) is defined as −𝑎𝑡𝑑+1 +
𝑏 (𝑡 + 1)𝑑 + 𝑐 , with 𝑎 := 𝑥 − 1 > 0, 𝑏 := 𝑥 > 0 and 𝑐 = 𝑥\ ≥ 0.

Then, by Lemma 4.4, we have that 𝑓𝑥 (𝑡) admits a unique maximum

point, that is, the function 𝑡 (𝑥) returning such a maximum point is

well-defined for any 𝑥 > 1.

Let Φ𝑑 (\ ) be the unique solution 𝑡 of equation −𝑡𝑑+1 + (𝑡 + 1)𝑑 +
\ = 0. We observe that existence and uniqueness of such a solution

are well-defined, as −𝑡𝑑+1 + (𝑡 + 1)𝑑 +\ can be written as a function

𝑔(𝑡) satisfying the hypothesis of Lemma 4.4, and then it admits a

unique zero 𝑡∗ > 0.

Now, in the following lemma we will show the existence of a

value 𝑥 > 1 such that the unique maximum point 𝑡 (𝑥) of 𝑓𝑥 is

exactly Φ𝑑 (\ ).

Lemma 4.5. There exists 𝑥 > 1 such that 𝑡 (𝑥) = Φ𝑑 (\ ).

By using the value 𝑥 > 1 such that 𝑡 (𝑥) = Φ𝑑 (\ ) (determined in

the above lemma) as a parameter of the function 𝑓𝑥 and by setting

𝛾 := (Φ𝑑 (\ ))𝑑+1
, we have that the following inequalities hold for

any 𝑡 ≥ 0:

𝑓𝑥 (𝑡) ≤ 𝑓𝑥 (𝑡 (𝑥)) (9)

= 𝑡 (𝑥)𝑑+1 + 𝑥 (−𝑡 (𝑥)𝑑+1 + (𝑡 (𝑥) + 1)𝑑 + \ )

= 𝑡 (𝑥)𝑑+1
(10)

= (Φ𝑑 (\ ))𝑑+1

= 𝛾,

where (9) holds as 𝑡 (𝑥) is the maximum point of 𝑓𝑥 (𝑡), and (10)

holds since 𝑡 (𝑥) = Φ𝑑 (\ ) is the solution of equation −𝑡 (𝑥)𝑑+1 +
(𝑡 (𝑥) + 1)𝑑 + \ = 0. Thus, we showed that there exists 𝑥 > 1 such

that pair (𝛾 = (Φ𝑑 (\ ))𝑑+1, 𝑥) is feasible for (5), and by Lemma 4.3,

this shows the claim.

It remains to show that Φ𝑑 (\ ) grows as 𝑂
(
𝑑/log(𝑑) + 𝑑+1

√
\

)
.

In the full version we prove that there exists a constant 𝑐 > 0

such that the value 𝑡 := 𝑐 · max

{
𝑑/log(𝑑), 𝑑+1

√
\

}
satisfies −𝑡𝑑+1 +

(𝑡 + 1)𝑑 + \ ≤ 0. Thus, as Φ𝑑 (\ ) is the unique zero of equation

−𝑡𝑑+1 + (𝑡 + 1)𝑑 + \ = 0, by Lemma 4.4 we necessarily have that

Φ𝑑 (\ ) ≤ 𝑐 · max

{
𝑑/log(𝑑), 𝑑+1

√
\

}
= 𝑂

(
𝑑/log(𝑑) + 𝑑+1

√
\

)
. □

The upper bounds showed in the previous theorem are, in gen-

eral, not tight. In the following, we consider games with identical

technologies when 𝑑 assumes integral values in our reference in-

terval [0, 2].

Theorem 4.6. For any game with identical technologies 𝐺𝑑 , we
have PoA(𝐺𝑑 ) ≤ 2 if 𝑑 = 0, PoA(𝐺𝑑 ) ≤ 20/13 if 𝑑 = 1 and

PoA(𝐺𝑑 ) ≤ 1381/290 ≈ 4.762 if 𝑑 = 2. Moreover, all bounds are
tight.

Proof. For the upper bounds, we make again use of the primal-

dual method. However, with respect to the formulation derived

in the proof of Theorem 3.1, this time we have the freedom to

choose a unique coefficient for every resource, that we denote as

𝛼𝑟 . Moreover, in order to achieve a tight bound, we shall need a

more refined formulation.

Consider the inequality∑
𝑟 ∈𝑠𝑖

(
𝛽𝑟𝑘

𝑑
𝑟 + 𝛽𝑟

𝑘𝑟

)
−

∑
𝑟 ∈𝑠∗

𝑖

(
𝛽𝑟𝑛𝑟 (𝒔−𝑖 , 𝑠∗𝑖 )

𝑑 + 𝛽𝑟

𝑛𝑟 (𝒔−𝑖 , 𝑠∗𝑖 )

)
≤ 0,

modeling the fact that no agent can lower her cost by deviating to

the strategy she plays in the social optimum. Considering that, for

any resource 𝑟 ∈ 𝑠𝑖 ∩ 𝑠∗
𝑖
, the contributions in the two summations

are the same and that, for any resource 𝑟 ∈ 𝑠∗
𝑖
\ 𝑠𝑖 , it holds that

𝑛𝑟 (𝒔−𝑖 , 𝑠∗𝑖 ) = 𝑛𝑟 (𝒔) + 1 = 𝑘𝑟 + 1, we obtain∑
𝑟 ∈𝑠𝑖\𝑠∗𝑖

(
𝛽𝑟𝑘

𝑑
𝑟 + 𝛽𝑟

𝑘𝑟

)
−

∑
𝑟 ∈𝑠∗

𝑖
\𝑠𝑖

(
𝛽𝑟 (𝑘𝑟 + 1)𝑑 + 𝛽𝑟

𝑘𝑟 + 1

)
≤ 0.

Define 𝛿𝑟 = |{𝑖 ∈ 𝑁 : 𝑟 ∈ 𝑠𝑖 ∩ 𝑠∗
𝑖
}| as the number of agents

selecting resource 𝑟 in both 𝒔 and 𝒔∗. Observe that, by definition,

𝛿𝑟 ≤ min{𝑘𝑟 , 𝑜𝑟 }. By summing previous inequality for each 𝑖 ∈ 𝑁 ,

we obtain the inequality∑
𝑟 ∈𝑅

𝛽𝑟

(
(𝑘𝑟 − 𝛿𝑟 )𝑘𝑑𝑟 − (𝑜𝑟 − 𝛿𝑟 ) (𝑘𝑟 + 1)𝑑

)
+

∑
𝑟 ∈𝑅

𝛽𝑟

(
𝑘𝑟 − 𝛿𝑟

𝑘𝑟
− 𝑜𝑟 − 𝛿𝑟

𝑘𝑟 + 1

)
≤ 0,

with the interpretation that, for 𝑘𝑟 = 0, which implies 𝛿𝑟 = 0, ratio

𝑘𝑟−𝛿𝑟
𝑘𝑟

= 0

0
is set equal to 0.

Under these premises, the primal program becomes the follow-

ing.

max

∑
𝑟 ∈𝑅

(
𝛽𝑟𝑘

𝑑+1

𝑟 + 𝛽𝑟 I𝑟 (𝒔)
)

𝑠 .𝑡 .
∑
𝑟 ∈𝑅

𝛽𝑟

(
(𝑘𝑟 − 𝛿𝑟 )𝑘𝑑𝑟 − (𝑜𝑟 − 𝛿𝑟 ) (𝑘𝑟 + 1)𝑑

)
+

∑
𝑟 ∈𝑅

𝛽𝑟

(
𝑘𝑟 − 𝛿𝑟

𝑘𝑟
− 𝑜𝑟 − 𝛿𝑟

𝑘𝑟 + 1

)
≤ 0∑

𝑟 ∈𝑅

(
𝛽𝑟𝑜

𝑑+1

𝑟 + 𝛽𝑟 I𝑟 (𝒔∗)
)
= 1

𝛽𝑟 ≥ 0 𝑟 ∈ 𝑅.

The dual program is the following.

min 𝛾

𝑠.𝑡 . 𝑥

(
(𝑘𝑟 − 𝛿𝑟 )𝑘𝑑𝑟 − (𝑜𝑟 − 𝛿𝑟 ) (𝑘𝑟 + 1)𝑑 + 𝑘𝑟−𝛿𝑟

𝑘𝑟
− 𝑜𝑟−𝛿𝑟

𝑘𝑟+1

)
+𝛾

(
𝑜𝑑+1

𝑟 + I𝑟 (𝒔∗)
)
≥ 𝑘𝑑+1

𝑟 + I𝑟 (𝒔) 𝑟 ∈ 𝑅

𝑥 ≥ 0.

For 𝑑 = 0, set 𝑥 = 1 and 𝛾 = 2. By substituting in the unique

constraint, we get inequality 2𝑜𝑟 + 2I𝑟 (𝒔∗) + 𝑘𝑟−𝛿𝑟
𝑘𝑟

≥ I𝑟 (𝒔) + 𝑜𝑟 +
𝑜𝑟−𝛿𝑟
𝑘𝑟+1

, which is always satisfied. In fact, if 𝑜𝑟 ≥ 1, the left-hand

side is at least 2𝑜𝑟 + 2, while the right-hand side at most 2𝑜𝑟 + 1;
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if 𝑜𝑟 = 0, which implies 𝛿𝑟 = 0, the left-hand side is I𝑟 (𝒔) which
equals the right-hand side.

For 𝑑 = 1, set and 𝑥 = 𝛾 = 20/13. Assume first that 𝑘𝑟 = 0,

which yields I𝑟 (𝒔) = 0 and 𝛿𝑟 = 0. By substituting in the unique

constraint, we get inequality
20

13

(
𝑜2

𝑟 − 2𝑜𝑟 + I𝑟 (𝒔∗)
)
≥ 0, which is

always satisfied. Now assume that 𝑜𝑟 = 0, which yields I𝑟 (𝒔∗) = 0

and 𝛿𝑟 = 0. By substituting, we get inequality
7

13
(𝑘2

𝑟 + I𝑟 (𝒔)) ≥ 0,

which is always satisfied. So, let us focus on the case in which

𝑘𝑟 , 𝑜𝑟 ≥ 1, which yields I𝑟 (𝒔) = I𝑟 (𝒔∗) = 1. By substituting, we

get that the dual constraint is satisfied if and only if inequality

7𝑘4

𝑟 +𝑘3

𝑟 (7− 20𝑜𝑟 ) +𝑘𝑟 (𝑘𝑟 + 1) (20𝑜2

𝑟 − 40𝑜𝑟 + 20𝛿𝑟 + 27) − 20𝛿𝑟 ≥ 0

holds true. The left-hand side of this inequality is increasing in 𝛿𝑟 ,

so we show that the inequality remains true even for 𝛿𝑟 = 0, which

yields 7𝑘4

𝑟 + 𝑘3

𝑟 (7 − 20𝑜𝑟 ) + 𝑘𝑟 (𝑘𝑟 + 1) (20𝑜2

𝑟 − 40𝑜𝑟 + 27) ≥ 0. The

left-hand side of this inequality is minimized when 𝑜𝑟 =
𝑘2

𝑟+2𝑘𝑟+2

2(𝑘𝑟+1) .

By substituting, we derive that the dual constraint is satisfied if

inequality 2𝑘4

𝑟 −8𝑘3

𝑟 +2𝑘2

𝑟 +12𝑘𝑟 + 5

𝑘𝑟+1
−5 ≥ 0 holds true. This holds

true for any value of 𝑘𝑟 ≠ 2, 3. By inspecting the dual constraint

with these two specific values of 𝑘𝑟 and 𝛿𝑟 = 0, we get inequalities

3𝑜2

𝑟 − 10𝑜𝑟 + 33

4
≥ 0 and 4𝑜2

𝑟 − 17𝑜𝑟 + 18 ≥ 0 which are satisfied by

any integral value of 𝑜𝑟 .

For 𝑑 = 2, set and 𝑥 = 228/145 and 𝛾 = 1381/290. Assume first

that 𝑘𝑟 = 0, which yields I𝑟 (𝒔) = 0 and 𝛿𝑟 = 0. By substituting

in the unique constraint, we get inequality 1381

(
𝑜3

𝑟 + I𝑟 (𝒔∗)
)
≥

912𝑜𝑟 , which is always satisfied. Now assume that 𝑜𝑟 = 0, which

yields I𝑟 (𝒔∗) = 0 and 𝛿𝑟 = 0. By substituting, we get inequality

83

145
(𝑘3

𝑟 + I𝑟 (𝒔)) ≥ 0, which is always satisfied. So, let us focus

on the case in which 𝑘𝑟 , 𝑜𝑟 ≥ 1, which yields I𝑟 (𝒔) = I𝑟 (𝒔∗) = 1.

By substituting, we get that the dual constraint is satisfied if and

only if inequality 166𝑘5

𝑟 + 2𝑘4

𝑟 (83 − 228𝑜𝑟 ) + 456𝑘3

𝑟 (2𝛿𝑟 − 3𝑜𝑟 ) +
𝑘2

𝑟 (1381𝑜3

𝑟 − 1368𝑜𝑟 + 1368𝛿𝑟 + 1547) +𝑘𝑟 (1381𝑜3

𝑟 − 912𝑜𝑟 + 456𝛿𝑟 +
1547) − 456𝛿𝑟 ≥ 0 holds true. The left-hand side of this inequality

is increasing in 𝛿𝑟 , so we show that the inequality remains true

even for 𝛿𝑟 = 0, which yields 166𝑘4

𝑟 + 2𝑘3

𝑟 (83− 228𝑜𝑟 ) − 1368𝑘2

𝑟 𝑜𝑟 +
𝑘𝑟 (1381𝑜3

𝑟 −1368𝑜𝑟 +1547)+1381𝑜3

𝑟 −912𝑜𝑟 +1547 ≥ 0. The left-hand

side of this inequality is minimized when 𝑜𝑟 =
2

√
52478(𝑘3

𝑟 +3𝑘2

𝑟 +3𝑘𝑟 +2)
𝑘𝑟 +1

1381
.

By substituting, we derive that the dual constraint is satisfied if

inequality

√
1381(166𝑘4

𝑟 + 166𝑘3

𝑟 + 1547𝑘𝑟 + 1547𝑘𝑟 ) − 608

√
38(𝑘3

𝑟 +

3𝑘2

𝑟 + 3𝑘𝑟 + 2)
√

𝑘3

𝑟+3𝑘2

𝑟+3𝑘𝑟+2

𝑘𝑟+1
≥ 0 holds true. Assume 𝑘𝑟 ≥ 5. As

𝑘3

𝑟+3𝑘2

𝑟+3𝑘𝑟+2

𝑘𝑟+1
≤ 29

20
𝑘2

𝑟 for each 𝑘𝑟 ≥ 5, the claim follows for any 𝑘𝑟 ≥
5 if inequality

√
1381(166𝑘4

𝑟 +166𝑘3

𝑟 +1547𝑘𝑟 +1547𝑘𝑟 )−608

√
38(𝑘3

𝑟 +
3𝑘2

𝑟 + 3𝑘𝑟 + 2)
√

29

20
𝑘𝑟 ≥ 0 holds true, which is indeed the case. So,

only the cases of 1 ≤ 𝑘𝑟 ≤ 4 are left over. By inspecting the dual

constraint with these four specific values of 𝑘𝑟 and 𝛿𝑟 = 0, we get

inequalities 1381𝑜3

𝑟 −2052𝑜𝑟 +1713 ≥ 0, 1381𝑜3

𝑟 −4256𝑜𝑟 +2875 ≥ 0,

1381𝑜3

𝑟 −7410𝑜𝑟 +6029 ≥ 0 and 6905𝑜3

𝑟 −57456𝑜𝑟 +60855 ≥ 0 which

are all satisfied by any integral value of 𝑜𝑟 .

In the full version we show that the above upper bounds are

tight. □

Finally, we prove that similar technologies cannot guarantee

optimality at equilibrium, as the price of stability is bounded away

from one even in games with identical technologies played on

parallel-link graphs.

Theorem 4.7. For any 𝑑 ≥ 0, there exists a game with identical
technologies 𝐺𝑑 such that PoS(𝐺𝑑 ) > 1 even when restricting to
parallel-link games.

5 CONCLUSIONS
Inspired by power management techniques in green computing,

we put forward a game theoretic model in which a set of non-

cooperative selfish agents, competing for the usage of energy con-

suming resources, are charged a cost depending on the power con-

sumption they demand to the system. We have shown that good

performance can be achieved only when the maximum ratio be-

tween the coefficients regulating the static and dynamic power

consumption of a resource is bounded by a constant. It is worth

noticing that, given the non-negligibility of static coefficients in

modern real world hardware (e.g., due to the cost for maintaining

the device on, even if it is idle - see lines 8-10 of Section 3 in [36]),

the ratio between the dynamic and static coefficients is naturally

bounded by a constant in common real world scenarios.

We leave several open problems, such as closing the gap be-

tween upper and lower bounds on the PoS for general games and

obtaining a precise characterization of the PoA, as well as some

non-trivial upper bounds on the PoS, for games with \ -almost iden-

tical technologies. Finally, our work is a first attempt to include

green-awareness within multi-agent systems populated by rational

selfish agents. This approach can be generalized along several di-

rections and adapted in a variety of distributed scenarios, and we

believe that this may spur further research in the field. For instance,

it would be interesting to consider a setting with heterogeneous

users, where each user contributes to the energy consumption in a

proportional way, according to an individual weight. Furthermore,

we note that our results can be slightly modified so that they con-

tinue to hold even if the dynamic power consumption is a general

polynomial of maximum degree 𝑑 + 1
4
.
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