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ABSTRACT
Inspired by natural flocking behaviors, researchers aim to develop a
distributed control approach for artificial agents to mimic these be-
haviors. The main challenge lies in maintaining the resilience of the
artificial flock, as some agents inevitably display non-cooperative
behavior, thereby deviating from the flocking objective. Existing
control approaches, especially those based on learning algorithm,
are susceptible to forgetting issues that non-cooperative agents
can exploit to disrupt the flock formation. To address this problem,
this study introduces a memory-based resilient control approach
that strategically analyzes historical data across three distinct time
scales (long, short, and periodic). The implementation of a long
short periodic-term memory (LSP) algorithm employs accumula-
tive discounted credibility evaluated by Q-learning to recognize
long-term non-cooperation, utilizes a filtering rule to establish a
trusted set excluding short-term non-cooperation, and integrates
fast Fourier transform to refine the trusted set against periodic
inconsistency. We assess the effectiveness of this approach through
extensive experiments. The results highlight the potential and ad-
vantages of using LSP in flocking, enhancing the resilience of multi-
agent flocking against complex non-cooperative threats.
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1 INTRODUCTION
The natural flocking behaviors refer to the collective behavior of
a large number of individuals (e.g., birds, fish, and insects), form-
ing a group where the distance between every pair of individuals
remains within an appropriate range (i.e., separation & cohesion)
and maintaining motion consensus (i.e., alignment) through local
information exchange [37]. Over the years, the natural phenome-
non has attracted widespread attention in the academic community,
leading to various theories and methods for explaining or simu-
lating this collective behavior [27, 44], which also have greatly
inspired research on the multi-agent motion control. Utilizing flock-
ing control, a collection of artificial agents (e.g., drones, mobile
robots) can accomplish tasks that cannot be performed by indi-
vidual agents alone, such as patrol, joint military operations and
search-and-rescue applications [14, 16, 42, 45].

One of the pivotal challenges in designing the flocking control ap-
proach lies in addressing the so-called threat of non-cooperative be-
haviors. In practical scenarios, the running environments of agents
are inevitably unpredictable and potentially hostile (e.g., energy
exhausting, malicious attack); consequently, certain agents may
not conform to the prescribed control law (e.g., random motion,
motion with constant speed) [35]. Behaviors that contravene the
prescribed control law, thereby violating the separation, cohesion
and alignment objective of flocking, are termed non-cooperative
behaviors, and agents exhibiting such behaviors are known as non-
cooperative agents [21, 39]. As reported by much of the literature
[21, 40], existing control approaches without resilience mechanisms
are highly vulnerable, as even a single non-cooperative agent can
provoke catastrophic effects on the entire control process (e.g., the
failure of the flocking, deviation from the intended course).

To enhance the resilience of multi-agent flocking under non-
cooperation, solutions have been proposed and categorized into
three main classes: outlier-based, which discards certain outliers
within the data received [24, 40]; trustworthiness-based, where agents
evaluate the trustworthiness of their neighbors through the analysis
of history and disregard data from untrustworthy agents [30, 33];
learning-based, which leverages learning algorithm to adapt agents’
behaviors [20, 21]. However, the first two solutions have limitations,
such as strict assumptions on non-cooperative agents’ number and
specific communication topologies among agents, and additional
computational overhead, hindering practical application [46]. The
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third solution, known for its wide adaptability, is susceptible to
catastrophic forgetting issues [5]. This vulnerability can be ex-
ploited by non-cooperative agents, particularly those we term as
inconsistent agents. An inconsistent behavior is marked by strategic
shifts between cooperation and non-cooperation. For example, such
an agent might gain trust through temporary cooperation, then
abruptly switch to non-cooperation to create instability, only to
later cooperate again to restore confidence. Hence, the flocking
behavior will be severely disrupted by the inconsistent agents.

In this paper, we investigate the resilience of learning-based
multi-agent flocking control. Recognizing the challenge posed by
catastrophic forgetting in conventional learning-based solutions,
we propose a novelmemory-based resilient control approach to toler-
ate the different non-cooperative behaviors (especially from incon-
sistent agents), ensuring the remaining cooperative agents achieve
flocking formation. We have designed the long short periodic-term
memory (LSP) control algorithm for each cooperative agent. The
LSP algorithm is capable of automatically detecting and isolating
non-cooperative agents, adjusting the motion of cooperative ones
to ensure the flocking formation is maintained. This involves: (1)
Long-Term Analysis: Learning the accumulative discounted credi-
bility with Q-learning to identify neighbors violating separation,
cohesion or alignment over long time scales. (2) Short-Term Focus:
Designing a filtering rule to create a trusted set that excludes neigh-
bors exhibiting non-cooperative behavior over short time scales.
(3) Periodic Inspection: Incorporating fast Fourier transform (FFT)
into the examination of neighbors’ history, refining the trusted set
by excluding neighbors demonstrating periodic inconsistency.

This three-tiered approach provides a sophisticated understand-
ing of non-cooperation and allows for precise interventions. More-
over, to thoroughly assess the applicability and effectiveness of our
proposed solutions across a diverse range of non-cooperation sce-
narios, we rigorously define the behaviormodel for non-cooperative
agents. Our experimental evaluations demonstrate that thismemory-
extended solution successfully safeguards multi-agent flocking con-
trol against the multi-dimensional threat of non-cooperation across
various time scales, outperforming existing approaches.

The main contributions are summarised as follows. (1)A Sophis-
ticated Non-Cooperation Model: This non-cooperative model, by
introducing two strategies of switching between cooperation and
non-cooperation, significantly enhances the camouflage and de-
structiveness of non-cooperation, which allows the non-cooperative
agents to bypass existing resilience mechanisms and disrupt flock-
ing behavior. (2) Memory-Based Resilient Control Approach: By an-
alyzing the agent’s historical data across three time scales, our
approach identifies the traits of non-cooperative agents. This over-
comes the inherent forgetting issues in learning-based flocking for-
mation, strengthening the resilience against such non-cooperative
behaviors. (3) Algorithm Implementation: We integrate Q-learning,
filtering rules, and FFT into the LSP, crafting an algorithm that
offers resilient control against non-cooperation.

2 RELATEDWORK
Given a set of agents, they are in a multi-agent flock formation if
the distance between every pair of agents is “neither too large nor
too small” (i.e., separation & cohesion) and the motion of all agents

maintain as much consistency as possible (i.e., alignment) [10, 37].
Various methods for controlling the “artificial flock” such as drones
or mobile robots have been proposed, including well-known algo-
rithms like the boids model [41], manipulation the flock through
adding influencing agents [17], leader-follower flocking control
[34], the leader-follower control enhanced by deep reinforcement
learning [49]. These methods primarily assume that all agents are
entirely controlled by a homogeneous control algorithm.

With the growing application of multi-agent flocking control in
an open world characterized by uncertainties and potential mali-
ciousness, the resilience of the control is attracting increasing atten-
tion. An agent’s non-cooperative behavior is among the factors that
most significantly affect the resilience of control. Such behavior
may lead to the the failure of the flocking [13, 38, 44]. [44] proposes
a method based on graph topological properties for resilient con-
trol. [23] designs a data spoofing strategy to interfere with their
intended flight paths, but does not provide a defense mechanism.
[7] leverages Graph Neural Networks to counteract fundamental
attacks on the communicated information in flocking. More gen-
erally, the theoretical foundation for the resilient flocking control
is multi-agent consensus control(MACC). MACC conceptualizes
agents’ physical metrics (e.g., position, velocity, and acceleration)
as “characteristics”, aiming to study a distributed control method to
achieve consensus among the agents in these characteristics [32].
Based on the current research on MACC, the primary solutions
for resilience (some of which are explicitly designed for flocking,
while others require modifications to be applied to flocking) can
be roughly classified into three categories. It is crucial to empha-
size that the resilient flocking or MACC primarily examines how
the normal agents should react to the failure or malicious attack
on other agents, ensuring these normal ones maintain the control
objectives. They do not consider how to prevent the agents from
failure or being attacked.

Outlier-based methodologies, discarding the outliers within the
data received from their neighbors, represent the first category of
resilience solutions. They are implemented either temporarily or
permanently, i.e., discarding outliers for the current time or per-
manently discarding the data generated by the agents that have
previously generated outliers. Some typical algorithms include:
MSR [24] assumes a priori knowledge of the maximum number
(𝐹𝑛𝑐 ) of non-cooperative agents, and temporarily eliminates the 𝐹𝑛𝑐
largest values and 𝐹𝑛𝑐 smallest values. [25] introduced the weights
of each agent into MSR for eliminating outliers more accurately.
[40] identifies non-cooperative agents and also ensures that the
convergence value remains within the initial values of cooperative
agents. Essentially, these algorithms exhibit proficiency in conver-
gence and robustness; nonetheless, they are limited by network
connectivity or the requirement to know 𝐹𝑛𝑐 , which hinders their
application in general cases [46, 50].

The second category involves a series of trustworthiness-based
methodologies, wherein the trustworthiness of each agent is eval-
uated based on history, subsequently leading to the permanent
exclusion of the most untrustworthy agents. Some typical algo-
rithms include: RoboTrust [33] computes the trustworthiness by
employing observations and conducting statistical inferences from
diverse historical perspectives, retaining solely the most credible
agents for synchronization purposes. [30] extended RoboTrust into
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the second-hand evidence. [6] further enhanced the robustness of
RoboTrust by designing various local decision rules based on local
evidence. [4] concentrated on non-cooperation within colonies and
designed a pheromone-based coordination (where the pheromone
is a form of trustworthiness). Nonetheless, these methods raise
storage and computational requirements and do not consider coop-
eration among non-cooperative agents [21].

The third category encompasses a suite of learning-basedmethod-
ologies, which adapt agents’ behaviors through using learning al-
gorithms. Some typical algorithms include: [21] considered the
flocking as a multi-agent consensus control problem, and intro-
duced MADDPG [31] to learn a control policy for cooperative
agents. Additionally, they designed a Q-learning based algorithm
for updating agents’ actions. [20] designed a multi-armed bandit
sampling to isolate non-cooperative agents. [38] introduced mean
field game for controlling the large-scale agents, and used reinforce-
ment learning to solve the game. [48] studied the nonlinear strict-
feedback-dynamic multi-agent consensus control, and proposed
a leader-following control based on deep reinforcement learning.
Nonetheless, the core of these algorithms is reinforcement learn-
ing, which inevitably suffers from catastrophic forgetting issues
[5]. Non-cooperative agents are likely to exploit this characteristic,
continuously adjusting their behaviors to deceive the algorithm and
ultimately disrupt the flocking objective. In the field of federated
learning, there have been prior efforts to design attacks based on
the core idea of inconsistent agents, such as adaptive attack [12]
and 3DFed [26]. However, in the research on flocking, no one has
yet considered this type of non-cooperative behaviors.

In addition, some studies focus on the aspects of communication,
multi-agent system architecture, and multi-agent motion planning.
The typical works include: [1] employed formal methods to ensure
the safety, reachability, and other attributes of control methods dur-
ing the flocking process. [2] proposed a verification approach for
the communication of multiple agents in partially-known environ-
ments. [3] modeled the flocking as a graphical game to analyze the
equilibrium states that agents can achieve in self-interest scenarios.
[29] focused on the application in the microgrids systems, trans-
formed the consensus control into a zero-sum differential game,
but it cannot be directly applied to flocking yet.

3 PROBLEM FORMULATION
We begin by defining the dynamic model of agents. This sets the
stage for the analysis and formulation of the system. Next, we detail
the objective of multi-agent flocking control, outlining the goals
that the system is expected to achieve. Finally, we introduce a linear
aggregation policy, which forms the cornerstone of our approach.

3.1 Agent Dynamic Model
In this paper, the motion of the agents is a second-order dynamic
model, wherein each agent adjusts its velocity by altering its accel-
eration, thereby changing its state.

Definition 1. The dynamic model for all agents is formulated as
a 8-tupleM = ⟨𝑁, 𝐸, 𝑡, 𝑆,𝑉 ,𝐴,𝜔,T⟩, where: (1) 𝑁 is a finite set of 𝑛
agents labeled by 1, 2, ..., 𝑛; (2) 𝐸 ⊆ 𝑁 × 𝑁 is a finite set of directed
edges where an edge (𝑖, 𝑗) signifies agent 𝑖 can send information
to agent 𝑗 ; 𝐸 is called the communication topology for agents; (3)

𝑡 ∈ {0, 1, ...,𝑇 } represents discrete time-steps with𝑇 as the maximum
time step; (4) 𝑆 = 𝑆1 ×𝑆2 × ...×𝑆𝑛 is a joint state space, with 𝑆𝑖 ⊆ R𝑚
being the state space of agent 𝑖 , and𝑚 is the dimension of the state;
®𝑠 (∈ 𝑆) = [𝑠1, ..., 𝑠𝑛] is the joint state of all agents, where 𝑠𝑖 ∈ 𝑆𝑖 is
agent 𝑖’s state; (5)𝑉 = 𝑉1 ×𝑉2 × ... ×𝑉𝑛 is a joint velocity space, with
𝑉𝑖 ⊆ R𝑚 as the velocity space of agent 𝑖 and ®𝑣 (∈ 𝑉 ) = [𝑣1, ..., 𝑣𝑛] as
the joint velocity of all agents, where 𝑣𝑖 ∈ 𝑉𝑖 is agent 𝑖’s velocity; (6)
𝐴 = 𝐴1 × 𝐴2 × ... × 𝐴𝑛 is a joint acceleration space, with 𝐴𝑖 ⊆ R𝑚
as the acceleration space of agent 𝑖 and ®𝑎(∈ 𝐴) = [𝑎1, ..., 𝑎𝑛] as the
joint acceleration of all agents, where 𝑎𝑖 ∈ 𝐴𝑖 is agent 𝑖’s acceleration;
(7) 𝜔 ∈ Ω represents bounded noise induced by environment, where
Ω ⊆ R𝑚 is the noise value range; (8) T : 𝑆𝑖 ×𝑉𝑖 × Ω → 𝑆𝑖 is a state
dynamic function, and T (𝑠, 𝑣, 𝜔) = 𝑠′ represents that if agent 𝑖 takes
velocity 𝑣 in state 𝑠 under environmental noise 𝜔 , the next state will
transition into 𝑠′. □

As in previous works [13, 15], we utilize the following discrete-
time dynamics function for each agent 𝑖 in the system:

𝑠𝑖,𝑡+1 = T (𝑠𝑖,𝑡 , 𝑣𝑖,𝑡 , 𝜔𝑖,𝑡 ) = 𝑠𝑖,𝑡 + 𝑣𝑖,𝑡 + 𝜔𝑖,𝑡 ,∀𝑖 ∈ 𝑁 (1)
where 𝑠𝑖,𝑡 , 𝑣𝑖,𝑡 , 𝜔𝑖,𝑡 denote the state, action, and environmental
noise for agent 𝑖 at time step 𝑡 , respectively. The system’s initial
state ®𝑠0 = [𝑠1,0, 𝑠2,0, ..., 𝑠𝑛,0] is arbitrarily determined.

The velocity dynamics is:
𝑣𝑖,𝑡+1 = 𝑣𝑖,𝑡 + 𝑎𝑖,𝑡 ,∀𝑖 ∈ 𝑁 (2)

where 𝑎𝑖,𝑡 denotes the acceleration for agent 𝑖 at time step 𝑡 .
In terms of communication, N𝑖 comprises agents that can send

information to agent 𝑖 defined as N𝑖 = { 𝑗 | ( 𝑗, 𝑖) ∈ 𝐸} while N𝑜𝑢𝑡,𝑖
comprises agents that can receive information from agent 𝑖 defined
as N𝑜𝑢𝑡,𝑖 = {𝑖 | (𝑖, 𝑗) ∈ 𝐸}.

3.2 Control Objective and Control Policy
The agents are categorized into two groups: cooperative and non-
cooperative. The characteristics of these cooperative agents are
described below. The two objectives of the flocking, i.e., separation
& cohesion, and alignment, are formulated as follows.

Definition 2 (separation-cohesion). The distance between
any two cooperative agents should fall within a reasonable range, i.e.,

∀𝑖, 𝑗 ∈ 𝑁𝑐 .∀𝑡 ∈ {0, 1, ...,𝑇 }.𝛿low ≤


𝑠 𝑗,𝑡 − 𝑠𝑖,𝑡 

2 ≤ 𝛿up (3)

where 𝛿low and 𝛿up are the lower and upper bounds of the state dis-
tance, respectively, 0 ≤ 𝛿low < 𝛿up, and 𝑁𝑐 represents the set of all
cooperative agents. □

Definition 3 (alignment). After a certain time step 𝑇con, the
velocities of all agents will converge to the same value, i.e.,

∀𝑡 > 𝑇con . max
𝑖, 𝑗∈𝑁 𝑐



𝑣 𝑗,𝑡 − 𝑣𝑖,𝑡 

2 < 𝛿𝑣 (4)

where 𝛿𝑣 ≥ 0 is a threshold of the post-convergence velocity. □

In this paper, the control objective is to have all cooperative
agents adjust their acceleration to modify their states, satisfying
Eq.(3) and Eq.(4) conditions. We ground the agents’ policies on a
boids control law [41]. Specifically, for agent 𝑖 ∈ 𝑁𝑐 , the policy
is defined as 𝜋𝑖 : 𝑆𝑖 × 𝑆N𝑖

× 𝑉𝑖 × 𝑉N𝑖
→ 𝐴𝑖 , where 𝑆𝑖 /𝑉𝑖 is agent

𝑖’s state/velocity space, 𝑆N𝑖
/𝑉N𝑖

is the joint state/velocity space of
agents in N𝑖 . The policy is given by:

𝜋L1 (𝑠𝑖,𝑡 , 𝑠 𝑗,𝑡 ) = 𝛾1
(𝛿up + 𝛿low

2
−


𝑠 𝑗,𝑡 − 𝑠𝑖,𝑡 

2 ) (𝑠𝑖,𝑡 − 𝑠 𝑗,𝑡 )

𝑠 𝑗,𝑡 − 𝑠𝑖,𝑡 

2 (5)
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𝜋L2 (𝑣𝑖,𝑡 , 𝑣 𝑗,𝑡 ) = 𝛾2 (𝑣 𝑗,𝑡 − 𝑣𝑖,𝑡 ) (6)

𝜋𝑖 (𝑠𝑖,𝑡 , ®𝑠N𝑖 ,𝑡 , 𝑣𝑖,𝑡 , ®𝑣N𝑖 ,𝑡 ) =
∑︁
𝑗 ∈N𝑖

𝛼𝑖,𝑗,𝑡
(
𝜋L1 (𝑠𝑖,𝑡 , 𝑠 𝑗,𝑡 ) + 𝜋L2 (𝑣𝑖,𝑡 , 𝑣𝑗,𝑡 )

)
(7)

where 𝜋L1 is designed for achieving the flocking objectives defined
in Definition 2, and when 𝛿up+𝛿low

2 >


𝑠 𝑗,𝑡 − 𝑠𝑖,𝑡 

2, the policy pro-

duces a velocity away from agent 𝑗 for 𝑖 , and vice versa produces
a velocity close to 𝑗 (cf. [43]). 𝜋L2 is designed for achieving the
flocking objectives defined in Definition 3, and it consistently re-
duces the velocity distance between any two agents (cf. [21]). 𝛾1
and 𝛾2 are scaling factors. 𝛼𝑖, 𝑗,𝑡 is set to 1

|N𝑖 | . 𝑠𝑖,𝑡 /𝑣𝑖,𝑡 and ®𝑠N𝑖 ,𝑡 /®𝑣N𝑖 ,𝑡

denote the state/velocity of agent 𝑖 at 𝑡 and the joint state/velocity
of agent 𝑖’ neighbors at 𝑡 , respectively. 𝜋𝑖 is homogeneous for the
cooperative agents, and it is represented for 𝜋 .

At last, in alignment with other studies [21, 22], we make the
following assumption to ensure information exchange among co-
operative agents throughout this paper.

Assumption 1. Given a dynamic modelM, represented by its
topology 𝐺 = ⟨𝑁, 𝐸⟩, we assume that 𝐺 [𝑁𝑐 ] is fixed and rooted.
Meanwhile, the complementary part 𝐺 − 𝐺 [𝑁𝑐 ] can be arbitrary.
Here, 𝐺 [𝑁 ′] is defined as the graph ⟨𝑁 ′, 𝐸′⟩ where 𝐸′ = {(𝑖, 𝑗) |𝑖 ∈
𝑁 ′, 𝑗 ∈ 𝑁 ′, (𝑖, 𝑗) ∈ 𝐸}, and 𝐺 −𝐺 [𝑁 ′] is the graph ⟨𝑁 ′′, 𝐸′′⟩ with
𝑁 ′′ = {𝑖 |𝑖 ∈ 𝑁, 𝑖 ∉ 𝑁 ′} and 𝐸′′ = {(𝑖, 𝑗) | (𝑖, 𝑗) ∈ 𝐸, (𝑖, 𝑗) ∉ 𝐸′}. □

4 NON-COOPERATIVE BEHAVIORS
This section defines a non-cooperative behavior model and details
the implementation of specific instances of non-cooperation.

4.1 Behavior Model for Non-cooperative Agents
The non-cooperative agents in a flock deviate from the prescribed
control policy, potentially hindering the achievement of separation-
cohesion and alignment. Their behavior model is defined as follows.

Definition 4. B = ⟨𝑁𝑛𝑐 , F , 𝜌⟩, where: (1) 𝑁𝑛𝑐 = {𝑖 ∈ 𝑁 |𝑖 ∉
𝑁𝑐 } represents the set of non-cooperative agents; (2) F = {F𝑖 |𝑖 ∈
𝑁𝑛𝑐 } is a set of tampering functions, where F𝑖 : 𝑆𝑖 ×𝑆N𝑖

×𝑉𝑖 ×𝑉N𝑖
→

𝐴𝑖 is the tampering function of agent 𝑖 ; (3) 𝜌 : {0, 1, ...,𝑇 } × 𝑁𝑛𝑐 →
{0, 1} is a role function that determines whether the non-cooperative
agents violate the prescribed control policy 𝜋 . For each non-cooperative
agent 𝑖 and time step 𝑡 ∈ {0, 1, · · · ,𝑇 }, 𝜌 (𝑡, 𝑖) = 0 indicates that 𝑖
follows 𝜋 at time step 𝑡 , while 𝜌 (𝑡, 𝑖) = 1 indicates a violation. □

Definition 5. Given a behavior model B = ⟨𝑁𝑛𝑐 , F , 𝜌⟩ and a
cooperative agent’s policy 𝜋 , the policy for non-cooperative agent
𝑖 ∈ 𝑁𝑛𝑐 is given as follows:

𝜓𝑖 (𝑠𝑖,𝑡 , ®𝑠N𝑖 ,𝑡 , 𝑣𝑖,𝑡 , ®𝑣N𝑖 ,𝑡 ) =
{
𝜋 (𝑠𝑖,𝑡 , ®𝑠N𝑖 ,𝑡 , 𝑣𝑖,𝑡 , ®𝑣N𝑖 ,𝑡 ), if 𝜌 (𝑡, 𝑖) = 0
F (𝑠𝑖,𝑡 , ®𝑠N𝑖 ,𝑡 , 𝑣𝑖,𝑡 , ®𝑣N𝑖 ,𝑡 ), if 𝜌 (𝑡, 𝑖) = 1

□

4.2 Implementation of Non-cooperation
We consider the following four types of tampering functions, which
are very destructive in multi-agent system [21, 22, 24, 33]. (1) Con-
stant acceleration (CA), i.e., F𝑖 (·, ·, ·, ·) = #const, where #const
is a constant that does not change over time. (2) Random accel-
eration (RA), i.e., F𝑖 (·, ·, ·, ·) = random(𝑡), where random(𝑡) ∈ 𝐴𝑖

returns a random variable at each time step. (3) Random velocity
(RV), i.e., F𝑖 (·, ·, ·, ·) = random(𝑡) − 𝑣𝑖,𝑡 . According to Eq.(2), the

velocity dynamics function becomes the following form: 𝑣𝑖,𝑡+1 =

𝑣𝑖,𝑡 + F𝑖 (𝑠𝑖,𝑡 , ®𝑠N𝑖 ,𝑡 ) = 𝑣𝑖,𝑡 + random(𝑡) − 𝑣𝑖,𝑡 = random(𝑡). (4) Sign
reversal (SR), i.e. F𝑖 (·, ·, ·, ·) = −𝜋 (·, ·, ·, ·).

As for role function, we consider the following two types.
(1) Byzantine role function, i.e.,

𝜌 (𝑡, 𝑖) =
{
0, if 𝑢𝑛𝑖 (𝑡) ≥ 𝛽𝑖

1, otherwise
(8)

where 𝑢𝑛𝑖 (𝑡) returns a variable satisfying a uniform distribution
between 0 and 1, 𝛽𝑖 is a probability, and 𝛽𝑖 is called Byzantine ratio.

(2) Inconsistent role function: the design of it is more com-
plex and may have various implementation ways, such as model-
ing agents using non-cooperative game theory [3] or designing
learning-based non-cooperative behavior [21]. This paper draws
inspiration from the attack method of 3DFed [26], one of the most
potent attack methods in federated learning, and presents the fol-
lowing inconsistent role function.

𝜌 (𝑡, 𝑖) =
0, if

∑𝑡
𝑘=1

∑
𝑗 ∈N𝑖 I(𝑖𝑛𝑑 (𝑘,𝑖 ) )
𝑡 |N𝑖 | ≥ 𝜙

1, otherwise
(9)

where 𝑖𝑛𝑑 (𝑘, 𝑖) = (


𝑣𝑖,𝑘−1 − 𝑣 𝑗,𝑘−1

2 <



𝑣𝑖,𝑘 − 𝑣 𝑗,𝑘

2) ∨ (𝛿low >

𝑠 𝑗,𝑡 − 𝑠𝑖,𝑡 

2) ∨ (

𝑠 𝑗,𝑡 − 𝑠𝑖,𝑡 

2 > 𝛿up) is a condition, I(𝑖𝑛𝑑 (𝑘, 𝑖)) is
the indicator function that is 1 when 𝑖𝑛𝑑 (𝑘, 𝑖) is true or 0 otherwise.
The core idea of this function is that non-cooperative agents con-
tinuously monitor the state/velocity dynamics of their neighbors
to assess whether they are trusted by their neighbors. Once the
untrustworthiness value is higher than 𝜙 , the agent will exhibit 𝜋
behavior; otherwise, it will exhibit F behavior.

Byzantine role function have been mentioned in the relevant
literature [9, 19, 51] and is a common threat in the multi-agent
system. To the best of our knowledge, inconsistent role function is
addressed for the first time in this paper, which characterises the
oscillation behavior between cooperation and non-cooperation.

5 MEMORY-BASED RESILIENT CONTROL
This section outlines a memory-based resilient control approach,
and details the control algorithm to counter the non-cooperation.

5.1 Approach Overview
Fig. 1 illustrates the approach overview, emphasizing a distributed
method where agents rely solely on neighbor information, elimi-
nating the need for a centralized controller. The control loop for an
agent 𝑖 ∈ 𝑁𝑐 consists of five activities: (1) Memory Storing: Records
and analyzes neighbor state history. (2) LSP Controller: Utilizes
neighbor history to determine Q values of agent 𝑖’s neighbors and a
trusted set, addressing non-cooperation across varying time scales.
(3)Weight Update: Modifies the weights of 𝑖 concerning its neigh-
bors using Q values and the trusted set. (4)Acceleration and velocity
Update: Adjusts 𝑖’s 𝑎𝑖,𝑡 and 𝑣𝑖,𝑡 using Eq.(2) and Eq.(7). (5)State Up-
date: Update 𝑖’s state using Eq.(1). Each cooperative agent applies
these activities at every time step to control its state, subsequently
transmitting the state and velocity to agents in N𝑜𝑢𝑡,𝑖 .

5.2 Q-learning Based Long-Term Memory
For each cooperative agent 𝑖 , the long-term memory mechanism
can learn credibility (i.e., 𝑄𝑖, 𝑗,𝑡 ) for each neighbor 𝑗 . For 𝑗 ∈ N𝑖
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Figure 1: Overview of the proposed approach

with a higher credibility, the adjacent weights (i.e., 𝛼𝑖, 𝑗,𝑡 ) are larger,
and for any neighbor with a lower credibility, 𝛼𝑖, 𝑗,𝑡 → 0 as 𝑡 →∞.

First, we define a reward function for the flocking as follows.

𝑟𝑖, 𝑗,𝑡 = 𝑓

(���𝛿up + 𝛿low2
−


𝑠 𝑗,𝑡 − 𝑠𝑖,𝑡 

2 ��� + 

𝑣 𝑗,𝑡 − 𝑣𝑖,𝑡 

2 )

= 𝑒
−𝜆𝑡 (

�� 𝛿up+𝛿low
2 −∥𝑠 𝑗,𝑡−𝑠𝑖,𝑡 ∥2

��+∥𝑣𝑗,𝑡−𝑣𝑖,𝑡 ∥2 ) (10)

where 𝜆𝑡 > 0 is a scaling factor that increases with time 𝑡 . The
first term (

��𝛿up+𝛿low
2 −



𝑠 𝑗,𝑡 − 𝑠𝑖,𝑡 

2 ��) addresses separation&cohesion,
penalizing deviations from the optimal distance between agent pairs
(Definition 2). The second term (



𝑣 𝑗,𝑡 − 𝑣𝑖,𝑡 

2) focuses on alignment,
rewarding minimal velocity differences between agents (Definition
3). Eq. (10) ensures the reward ranges between 0 and 1. A reward
close to 1 indicates optimal agent alignment and spacing, while it
nears 0 for significant discrepancies.

Second, the long-term memory mechanism employs an iterative
approach akin to Q-learning, where the credibility is designed as
the cumulative discounted sum of rewards.

𝑄𝑖, 𝑗,𝑡 = 𝑄𝑖, 𝑗,𝑡−1 + 𝜂𝑡 (𝑟𝑖, 𝑗,𝑡 −𝑄𝑖, 𝑗,𝑡−1) (11)
where 𝜂𝑡 is a learning rate decreasing with time step. It indicates
that as the time step increases, the impact of past rewards on the
current credibility progressively diminishes.

5.3 Trusted Set Generation
When a cooperative agent updates its acceleration through Eq.(7),
instead of using information from N𝑖 , it only uses the information
from the agents in the trusted set (denoted as N𝑡𝑟 (𝑖) ⊂ N𝑖 ). N𝑡𝑟 (𝑖)
is generated as follows.

5.3.1 Short-term memory for generating the trusted set. Let 𝑖 ∈ 𝑁𝑐 ,
and 𝑗 ∈ N𝑖 . If 𝑗 is cooperative, the velocity distance between 𝑖 and
𝑗 is expected to satisfy the following conditions (cf. [18, 20]):

𝑑𝑖, 𝑗 (𝑡) − 𝑑𝑖, 𝑗 (𝑡 − 1) ≤ 0 (12)
where 𝑑𝑖, 𝑗 (𝑡) =



𝑣 𝑗,𝑡 − 𝑣𝑖,𝑡 

2, and ∥·∥2 denotes the 2-norm.
We use Eq.(12) as a basic indicator for revealing whether a neigh-

bor behaves cooperatively or not. Hence, we design a candidate set
N𝑠ℎ (𝑖) = { 𝑗 | 𝑗 ∈ N𝑖 , 𝑑𝑖, 𝑗 (𝑡) − 𝑑𝑖, 𝑗 (𝑡 − 1) ≤ 0}.

The short-term memory is a tit-for-tat (TFT) [36] in nature. An
agent with short-term memory will first cooperate, then subse-
quently replicate the neighbors’ previous decision (cooperation/non-
cooperation). A non-cooperative agent with inconsistent role func-
tion can make this defense ineffective. It can exhibit cooperative
behavior to gain the trust of its neighbors, and then abruptly switch
to non-cooperation to destabilize its neighbors.

5.3.2 Periodic-term memory for refining the trusted set. In response
to the threat of inconsistent agents, we propose a periodic-term
memory for the refinement of N𝑠ℎ (𝑖).

Let 𝑖 ∈ 𝑁𝑐 , and 𝑗 ∈ N𝑖 . H𝑇
𝑖,𝑗

= [𝑑𝑖, 𝑗 (0), ..., 𝑑𝑖, 𝑗 (𝑇 )] is a velocity
distance sequence up to time step𝑇 . We use an exponential function,
denoted as 𝑑𝑖, 𝑗 (𝑡), to fit H𝑇

𝑖,𝑗
. The residual distance sequence is

ΔH𝑇
𝑖,𝑗

= [𝜀𝑖, 𝑗 (0), ..., 𝜀𝑖, 𝑗 (𝑇 )], where 𝜀𝑖, 𝑗 (𝑡) = 𝑑𝑖, 𝑗 (𝑡) − 𝑑𝑖, 𝑗 (𝑡). Since
the inconsistent role function is periodic, 𝜀𝑖, 𝑗 (𝑡) should also be
periodic. It is well known that Fourier transform can analyze the
frequency and amplitude of periodic signals. Hence, we use Fast
Fourier Transform[11] to generate the frequency spectrum of ΔH𝑇

𝑖,𝑗
.

The spectrum of ΔH𝑇
𝑖,𝑗

is denoted as FFT(𝜀𝑖, 𝑗 ) : 𝐹𝑟 → 𝐴𝑚, where
𝐹𝑟 /𝐴𝑚 is the frequency/amplitude space.

Then, the indicator for revealing whether a neighbor is inconsis-
tent is designed as follows.

max
𝑥∈𝐹𝑟

FFT(𝜀𝑖, 𝑗 ) (𝑥) ≤ ||𝜔 | |2 (13)
where | |𝜔 | |2 represents the maximum value of the noise. If Eq.(13)
dose not hold, then 𝑖 will remove 𝑗 fromN𝑠ℎ (𝑖). The refined trusted
set of agent 𝑖 is defined as follows:

N𝑡𝑟 (𝑖) = { 𝑗 | 𝑗 ∈ N𝑠ℎ (𝑖), max
𝑥∈𝐹𝑟

FFT(𝜀𝑖, 𝑗 ) (𝑥) ≤ ||𝜔 | |2} (14)

Subsequently, we delve into the rationale behind the selection
of exponential functions for fittingH𝑇

𝑖,𝑗
. If agent 𝑗 is cooperative,

𝑑𝑖, 𝑗 (𝑡) can be expanded as follows:

𝑑𝑖,𝑗 (𝑡 ) = ∥ (𝑣𝑗,𝑡−1 − 𝑣𝑖,𝑡−1 ) +
∑︁
𝑘∈N𝑗

𝛼 𝑗,𝑘,𝑡−1 (𝑣𝑘,𝑡−1 − 𝑣𝑗,𝑡−1 )

−
∑︁
𝑘∈N𝑖

𝛼𝑖,𝑘,𝑡−1 (𝑣𝑘,𝑡−1 − 𝑣𝑖,𝑡−1 ) ∥2
(15)

For simplicity of analysis, we assume thatN𝑖 ∪ {𝑖} = N𝑗 ∪ { 𝑗}, and
theweights for all agents are the averageweights, i.e.,∀𝑗, 𝑘, 𝑡, 𝛼 𝑗,𝑘,𝑡 =
𝛼 = 1

|N𝑖 | . Thus, the second and third terms of Eq.(15) can be rewrit-
ten in the following form:∑︁

𝑘∈N𝑗

𝛼 𝑗,𝑘,𝑡−1 (𝑣𝑘,𝑡−1 − 𝑣𝑗,𝑡−1 ) −
∑︁
𝑘∈N𝑖

𝛼𝑖,𝑘,𝑡−1 (𝑣𝑘,𝑡−1 − 𝑣𝑖,𝑡−1 )

= 𝛼
∑︁

𝑘∈N𝑗 /{𝑖}
(𝑣𝑘,𝑡−1 − 𝑣𝑗,𝑡−1 ) + 𝛼 (𝑣𝑖,𝑡−1 − 𝑣𝑗,𝑡−1 )

− 𝛼
∑︁

𝑘∈N𝑖 /{ 𝑗 }
(𝑣𝑘,𝑡−1 − 𝑣𝑖,𝑡−1 ) − 𝛼 (𝑣𝑗,𝑡−1 − 𝑣𝑖,𝑡−1 )

= 𝛼 ( |N𝑖 | + 1) (𝑣𝑖,𝑡−1 − 𝑣𝑗,𝑡−1 ) = (1 + 𝛼 ) (𝑣𝑖,𝑡−1 − 𝑣𝑗,𝑡−1 )

(16)

where N𝑖/{ 𝑗} = {𝑘 ∈ N𝑖 |𝑘 ≠ 𝑗}. Drawing upon the outcomes
derived from Eq.(16), we can rewrite Eq.(15) as an exponential
function in terms of 𝑡 , as presented below.

𝑑𝑖,𝑗 (𝑡 ) =


(𝑣𝑗,𝑡−1 − 𝑣𝑖,𝑡−1 ) + (1 + 𝛼 ) (𝑣𝑖,𝑡−1 − 𝑣𝑗,𝑡−1 )




2

=


𝛼 (𝑣𝑖,𝑡−1 − 𝑣𝑗,𝑡−1 )




2 = 𝛼𝑑𝑖,𝑗 (𝑡 − 1) = 𝛼𝑡𝑑𝑖,𝑗 (0)

If 𝑗 is inconsistent, based on Eq.(9), 𝑑𝑖, 𝑗 (𝑡) is:

𝑑𝑖,𝑗 (𝑡 ) =
𝛼𝑑𝑖,𝑗 (𝑡 − 1), if

∑𝑡
𝑘=1

∑
𝑗 ∈N𝑖 I(𝑖𝑛𝑑 (𝑘,𝑖 ) )
𝑡 |N𝑖 | ≥ 𝜙

F𝑖 ( ·, ·, ·, · ), otherwise
(17)

Despite the potential complexity of the time-variant signal 𝑑𝑖, 𝑗 (𝑡),
Eq.(17) provides ample justification for the inference that exponen-
tial components and periodic fluctuations are inherent within this
signal. Consequently, if we eliminate the exponential portion of
the signal (i.e., 𝛼𝑑𝑖, 𝑗 (𝑡 − 1)), the residual signal should manifest
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significant periodicity. This underpins our decision to employ ex-
ponential functions for data fitting, and the use of FFT for signal
spectrum analysis.

Algorithm 1: LSP for cooperative agent 𝑖
1 Initialize 𝛼𝑖,𝑗,0 = 1

|N𝑖 | ,𝑄𝑖,𝑗,0 = 1, ∀ 𝑗 ∈ N𝑖 ;
2 H𝑖,𝑗 ← ∅, ∀ 𝑗 ∈ N𝑖 ;
3 for t← 1 to T do
4 Receive states and velocities of 𝑖’s neighbors 𝑠 𝑗,𝑡 , 𝑣𝑗,𝑡 , ∀ 𝑗 ∈ N𝑖 ;
5 N𝑠ℎ (𝑖 ) ← ∅, N𝑡𝑟 (𝑖 ) ← ∅;
6 for 𝑗 ∈ N𝑖 do
7 𝑑𝑖,𝑗,𝑡 ←



𝑣𝑗,𝑡 − 𝑣𝑖,𝑡



2, and put 𝑑𝑖,𝑗,𝑡 into H𝑖,𝑗 ;

// long-term memory

8 Compute 𝑟𝑖,𝑗,𝑡 with Eq.(10);
9 𝑄𝑖,𝑗,𝑡 ← 𝑄𝑖,𝑗,𝑡−1 + 𝜂𝑡 (𝑟𝑖,𝑗,𝑡 − 𝑄𝑖,𝑗,𝑡−1 ) ;

// short-term memory

10 if 𝑑𝑖,𝑗,𝑡 < 𝑑𝑖,𝑗,𝑡−1 then
11 N𝑠ℎ (𝑖 ) ← { 𝑗 } ∪ N𝑠ℎ (𝑖 ) ;
12 end
13 end

// periodic-term memory

14 for 𝑗 ∈ N𝑠ℎ (𝑖 ) do
15 𝑑 (𝑡 ) ← curve_fit(H𝑖,𝑗 ) ;
16 𝑦 ← FFT(H𝑖,𝑗 − 𝑑 (𝑡 ) ) ;
17 if max𝑥 ∈𝐹𝑟 𝑦 (𝑥 ) ≤ ∥𝜔 ∥2 then
18 N𝑡𝑟 (𝑖 ) ← { 𝑗 } ∪ N𝑡𝑟 (𝑖 ) ;
19 end
20 end
21 for 𝑗 ∈ N𝑡𝑟 (𝑖 ) do
22 𝛼𝑖,𝑗,𝑡 ←

𝑄𝑖,𝑗,𝑡∑
𝑗 ∈N𝑡𝑟 (𝑖 ) 𝑄𝑖,𝑗,𝑡

(1 − 1
|N𝑡𝑟 (𝑖 ) | ) ;

23 end
24 𝑎𝑖,𝑡 ←

∑
𝑗 ∈N𝑡𝑟 (𝑖 ) 𝛼𝑖,𝑗,𝑡 (𝜋L1 (𝑠𝑖,𝑡 , 𝑠 𝑗,𝑡 ) + 𝜋L2 (𝑣𝑖,𝑡 , 𝑣𝑗,𝑡 ) ) ;

25 Update 𝑣𝑖,𝑡+1 using Eq.(2), and update 𝑠𝑖,𝑡+1 using Eq.(1);
26 end

5.4 LSP Algorithm
The LSP algorithm, detailed in Alg.1, is divided into three key
components: (1)Long-term Memory (Lines 8-9) implements memory
across extended timeframes, utilizing the reward function defined in
Eq.(10). (2)Short-term Memory (Lines 10-12) generates the candidate
set N𝑠ℎ (𝑖), focusing on recent state/velocity dynamics. (3)Periodic-
term Memory (Lines 14-19) employs an exponential fitting function
𝑑 (𝑡) = 𝑎 ∗ 𝑒−𝑏∗𝑡 + 𝑐 . Line 15 calculates the fitting parameters 𝑎,𝑏,
and 𝑐 through “curve_fit”, generating the fitted function 𝑑 (𝑡). Lines
16 and 17 apply FFT to generate the frequency spectrumH𝑖, 𝑗 −𝑑 (𝑡),
identifying the peak value with max𝑥∈𝐹𝑟 𝑦 (𝑥).

It should be noted that the function fitting operation in line 15
may be time-consuming with an increasing number of data points.
A sampling approach across time steps can be employed to select
fewer data points for fitting, thereby reducing the computational
time. Additionally, when time steps are small and data is insuffi-
cient, the periodic-term memory (Lines 14-20) will remain inactive
initially, omitting execution until adequate data is accumulated.

Table 1: Different policies for non-cooperative agents

Tampering function
Role function

- Inconsistent Byzantine
Constant acceleration (CA) CA ICA BCA
Random acceleration (RA) RA IRA BRA
Random velocity (RV) RV IRV BRV
Sign reversal (SR) SR ISR BSR

6 EVALUATION
This section delineates the evaluations designed to answer the fol-
lowing research questions: (1) What is the effectiveness of various
resilient control approaches in defending against non-cooperation?
(2) How do the number of non-cooperative agents and environmen-
tal noise affect various resilient control approaches?

6.1 Experimental Setup
Non-Cooperative Policies Implementation. Based on the previously
described behavior model, we establish 12 non-cooperative agent
policies, detailed in Table 1. For CA, #const is randomly set at the
beginning of each experiment (i.e., 𝑡 = 0) and remains fixed. For
RA/RV, random(t) returns a uniform distribution betweenminimum
and maximum acceleration/velocity. In addition, the second column
of Table 1(CA/RA/RV/SR) defines cases where functions are set as
𝜙 = 0 (for inconsistency) or 𝛽𝑖 = 1 (for Byzantine). The dimension
of state/velocity/acceleration is set to two.

Communication Networks. In the experiments, two types of graphs
are adopted as the communication topology for the multi-agent
system: random graph (generated at each experiment’s beginning)
and large-scale network (email-Eu-core temporal network1). All
graphs comply with Assumption 1.

Comparison Approaches andHardware. Four compared approaches
are considered in our experiments, including QC [21], a learning-
based approach; Linear [8, 51],i.e., 𝛼𝑖, 𝑗,𝑡 = 1

|N𝑖 | , a fundamental
multi-agent data aggregation method; CBFDI [28], employing Gos-
sip for fault detection and isolation; and MADDPG [31], a baseline
multi-agent reinforcement learning for continuous control, similar
to the design presented in [21]. The experiments are conducted
on an Ubuntu 16.04.01 desktop equipped with Intel(R) Core(TM)
i7-7700 CPU@3.6GHz and an Nvidia Quadro P600 GPU.

6.2 Results and Analysis
State dynamics. We first examined the changes in agent states over
time during the flocking process. Fig. 2 displays the results of our
approach versus four other comparison methods under four typical
non-cooperative behaviors. The communication network is set
to random graph. For inconsistent role functions, 𝜙 = 0.2; for
Byzantine, 𝛽𝑖 = 0.2. The x-axis of Fig. 2 represents time steps,
while the y-axis depicts the average state difference between two
cooperative neighboring agents. The two dashed lines at the bottom
of the figure represent 𝛿up and 𝛿low, and they are set to 0.05 and
0.25, respectively. The results indicate that, in the presence of non-
cooperative behaviors, our approach ensures the state difference
between neighboring agents consistently remainswithin [𝛿up, 𝛿low].
In contrast, other methods deviate significantly from this [𝛿up, 𝛿low]
under certain non-cooperative behaviors. For instance, under IRV,

1Data from SNAP: http://snap.stanford.edu/data/
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Figure 2: The dynamics of states on random network (|𝑁𝑐 | = 7, |𝑁𝑛𝑐 | = 3.)
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Figure 3: The dynamics of velocities on random network (|𝑁𝑐 | = 7, |𝑁𝑛𝑐 | = 3.)

the state differences for QC, Linear, MADDPG, and CBFDI exceed
𝛿up by a wide margin. Under BRA, CBFDI’s state difference falls
below 𝛿low, whereas MADDPG and Linear exceed 𝛿up significantly.

Velocity dynamics. Fig. 3 represents the time step (x-axis) versus
one dimension of the velocities (y-axis), with colored curves denot-
ing cooperative agents. The gray curves are the non-cooperative
agents’ velocity dynamics. Fig. 3 reveals: (1) LSP: It enables coopera-
tive agents to converge swiftly and smoothly to a fixed velocity, and
once converged, they remain stable and are no longer influenced by
non-cooperative agents. (2) Other approaches: They display varying

degrees of influence from non-cooperation, including the drastic
variation in the velocity of cooperative agents with the dynamics of
non-cooperative agents’ velocities (e.g., QC/Linear/CBFDI/MADDPG
under IRV) or the convergence of cooperative agents to entirely
distinct velocities (e.g., Linear/CBFDI under ICA).

Success rate & convergence time steps. A successful flocking is
defined as all cooperative agents satisfying the constraints of Defi-
nition 2 and 3 after 500 time steps. The convergence time step is
the number of steps required for velocity convergence in a suc-
cessful run. The communication topology is set to a large-scale
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Figure 4: Comparison of success rates and convergence time steps of 5 approaches with 12 types of non-cooperation.

Table 2: Comparison of various approaches under different
numbers of non-cooperative (IRV) agents.

|𝑁𝑛𝑐 |
|𝑁 | QC Linear CBFDI MADDPG LSP(ours)

0.00 0.98, 45 0.98, 51 0.96, 49 0.96, 55 0.98, 50
0.01 0.84, 75 0.70, 82 0.90, 82 0.96, 69 0.98, 54
0.05 0.80, 102 0.56, 132 0.88, 99 0.90, 87 0.98, 57
0.10 0.56, 143 0.24, 168 0.68, 103 0.60, 193 0.96, 64
0.20 0.42, 193 0.10, 298 0.60, 158 0.46, 391 0.96, 66
0.30 0.22, 270 0.08, 412 0.52, 201 0.24, 496 0.94, 73
0.40 0.10, 336 0.08, 484 0.28, 289 0.22, 498 0.86, 95
0.50 0.10, 354 0.06, 499 0.26, 318 0.18, 498 0.84, 102

Table 3: Comparison of various approaches under different
degrees of environmental noise (𝛿𝑣 = 0.3 cf. Definition 3).

| |𝜔 | |2 QC Linear CBFDI MADDPG LSP(ours)
0.0 𝛿𝑣 0.38, 246 0.10, 404 0.60, 198 0.42, 412 0.96, 68
0.2 𝛿𝑣 0.22, 270 0.10, 412 0.52, 201 0.24, 496 0.94, 73
0.4 𝛿𝑣 0.20, 310 0.08, 427 0.48, 265 0.20, 499 0.82, 113
0.6 𝛿𝑣 0.20, 425 0.06, 476 0.46, 383 0.18, 499 0.70, 218
0.8 𝛿𝑣 0.18, 467 0.06, 492 0.42, 421 0.16, 499 0.68, 289
1.0 𝛿𝑣 0.16, 486 0.08, 499 0.36, 430 0.16, 498 0.56, 327
2.0 𝛿𝑣 0.08, 489 0.00, 499 0.00, - 0.00, - 0.10, 485

network with a total of 107 agents. In each run, agents are ran-
domly distributed across nodes in the graph, with 30 agents set as
non-cooperative agents randomly. The experiments are repeated
50 runs. Fig. 4 displays the results, which indicate: (1) The LSP
maintains the highest success rate (consistently above 95%) across
various non-cooperative behaviors and converges in the shortest
time (convergence time steps always fewer than 75); (2) Introducing
the Byzantine role function and inconsistent role function reduces
the success rate and increases the convergence time steps for all
approaches. Moreover, when the tampering function remains con-
sistent, the inconsistent role function leads to a more significant
decrease in success rate and a greater increase in convergence time
steps than the Byzantine role function.

Number of non-cooperative agents & environmental noise. We
investigated the impact of the number of non-cooperative agents
|𝑁𝑛𝑐 | on the performance of various approaches. The communica-
tion topology was configured as a large-scale network, with the
non-cooperative policy set to IRV, 𝛽𝑖 set to 0.2, and 𝜙 set to 0.2.
Table 2 displays the results. Each cell contains two metrics: the
success rate and the average convergence time step, based on 50
trials. The observations are as follows: (1) The LSP approach con-
sistently surpasses other approaches regardless of the number of

non-cooperative agents. (2) Without non-cooperative behaviors,
the QC, Linear, and LSP approaches all achieve the same success
rates. This suggests that LSP’s resilience mechanisms do not ad-
versely affect the flocking control. (3) As non-cooperative agent
count grows, the success rate of all approaches drops. However, the
decline is more gradual for LSP. Similarly, the convergence time
step increases for all approaches, but the rise is less pronounced
for LSP. Under the same experimental settings, we studied the im-
pact of environmental noise 𝜔 on various approaches. The results
in Table 3 show that as the noise increases (from 0.2 times 𝛿𝑣 to
1.0 times 𝛿𝑣 ), the performance of all approaches declines, except
for the Linear approach which already performed poorly without
noise. However, our approach still maintains a success rate of 56%
even when the noise reaches 1.0 times 𝛿𝑣 . It’s worth noting that,
according to Definition 3, when the environmental noise exceeds
𝛿𝑣 , the velocity convergence condition Eq.(4) is almost impossible
to ensure. This is also evident from the last row of Table 3, where all
methods struggle to successfully achieve flock formation. In addi-
tion, the destructiveness of non-cooperation follows a bell-shaped
curve as the Byzantine ratio 𝛽𝑖 increases. The value 𝛽𝑖 = 0.2 leads
to the highest level of disruption.

7 DISCUSSION AND CONCLUSION
This study have presented a memory-based control approach for
non-cooperation in multi-agent flocking, exploiting historical data
from neighbors for detection and isolation of non-cooperative
agents at long, short, and periodic oscillation scales. Experimen-
tal results highlight the effectiveness by its dynamic and robust
defense, enhancing the resilience of multi-agent flocking control.

Finally, there are some areas in this paper that require further
discussion. (1) The proposed approach considers convergence to
a single velocity; future work may consider the more complex re-
quirement of multiple-velocity convergence common in real-world
scenarios. (2) As the application of flocking control extends to
drones, autonomous underwater vehicles, and mobile robots, the
necessity to anticipate and mitigate advanced attacks amplifies. We
aim to consider defending against more complex non-cooperative
behavior, such as undetectable attacks [47], game-theoretic non-
cooperative agents [3], even though these threats have not yet been
observed in current flocking control.
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