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ABSTRACT
DeGroot-style opinion formation presumes a continuous interac-

tion among agents of a social network. Hence, it cannot handle

agents external to the social network that interact only temporarily

with the permanent ones. Many real-world organisations and indi-

viduals fall into such a category. For instance, a company tries to

persuade as many as possible to buy its products and, due to various

constraints, can only exert its influence for a limited amount of time.

We propose a variant of the DeGroot model that allows an external

agent to interact with the permanent ones for a preset period of

time. We obtain several insights on maximising an external agent’s

influence in opinion formation by analysing and simulating the

variant.
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1 INTRODUCTION
Consider a social network in which people have an opinion about

the state of something in the world, such as the willingness to buy

a product, the effectiveness of a public policy, or the reliability of

an economic forecast. Rather than forming opinions on their own,

people tend to learn about the state of the world via observation

and communication with others. Mathematical models of opinion
formation try to formalize these interactions by describing how

people process the other’s opinions and how their opinions evolve

as a result of the interactions [18].

TheDeGroot model [11] is a benchmark opinion formation model

that has found usage in many disciplines. The model describes a
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discrete-time opinion formation process in which agents within a

social network have an initial opinion that they update by repeat-

edly taking a weighted average of their friends’ opinions. Over the

years, some highly influential variants of the DeGroot model have

been proposed to take into account real-world situations that were

neglected in the original model such as the Friedkin and Johnson
model [15] and the bounded confidence model [10, 17]. A recurrent

topic in DeGroot-style opinion formation is the identification of

conditions for reaching a consensus and the quantification of indi-

vidual influence in forming the consensus [24].

Implicit in the DeGroot model and its variants is the assumption

that the agents of a social network interact continuously where

no agent skips any interaction at any time. This is a reasonable

assumption, given the dynamic nature of opinion formation and

the research focuses on its limiting behaviour. However, it excludes

external agents that do not have a permanent presence in the social

network but may have a considerable influence to the permanent

agents. A prominent example is an organisation trying to persuade

people to for instance buy its products or vote for a particular

candidate through advertising. Due to constraints like budget and

timing, the organisation can advertise or exert their influence only

for a limited amount of time, nevertheless, for some people, the

organisation’s influence is at least comparable to that of their friends

in the social network.

Traditionally, agents who refused to be influenced by others are

termed as stubborn agents (also called zealots [22] or radicals [25])
[24]. Assuming a permanent presence, eventually, they make every

non-stubborn agent submissive to their opinions. The aforemen-

tioned external agents are also stubborn and have uncompromising

opinions, however, a sharp difference with orthodox modelling is

their temporary nature. To the best of our knowledge, we are the

first to consider stubborn agents without a permanent presence.

This setting not only is more realistic but also opens up new per-

spectives to investigate the behaviours of such agents. For instance,

with a limited time frame to exert influence, these external agents

are confronted with the strategic problem of how to allocate their

resource to achieve maximum influence.

Our goal in this paper is twofold. Firstly, we propose a variant

of the DeGroot model that allows an external (stubborn) agent to

participate only temporarily. The variant enables the investigation

of how combinations of the following four factors affect the external

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2104

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


agent’s influence. We illustrate them in the context of a company

promoting its products through TV commercials.

Coverage: the number of agents to which the external agent can

exert its influence. This is the expected number of viewers

of the TV commercial each time it is broadcast.

Duration: the number of times the external agent can exert its

influence. This is the expected number of times the TV com-

mercial is broadcast.

Intensity: the amount of influence the external agent can exert

on other agents each time it does so. This reflects the TV

commercial’s impact on its viewers each time they see it.

Timing: the time points at which the external agent exerts its

influence. This reflects the time points at which the TV com-

mercial is broadcast.

Secondly, we articulate insights on how to allocate the external

agents’ resources to the four factors to maximise their influence

throughmathematical analysis and computer simulation. According

to our analysis and simulations, the timing factor is irrelevant

if the coverage factor is at its maximum; the coverage and the

duration factor are equally important; and it is more effective to

allocate resource to scale up the intensity factor than to scale up the

duration factor. We also derive several other insights that deepen

our understanding of opinion formation in general.

After giving some preliminaries, we present our model that

incorporates the above factors into the opinion formation process.

This is followed by insights obtained by analytical methods and

subsequently simulations.

2 PRELIMINARIES
In this paper, we write matrices as uppercase letters in boldface such

as T, vectors as lowercase letters in boldface such as p, and scalars

as lowercase letters such as𝑚. We denote the set of real numbers

and integers as R and Z respectively. The entry in the 𝑖-th row and

𝑗-th column of a matrix T is denoted as 𝑡𝑖 𝑗 . The transpose of a matrix

T is written as T⊤. A matrix is non-negative if all its entries are
non-negative. A non-negative matrix T is stochastic if all its rows
sum to 1, that is

∑
𝑗 𝑡𝑖 𝑗 = 1 for all 𝑖 . Vectors are considered single-

column matrices unless otherwise specified. The 𝑖th component of

a vector p is denoted as 𝑝𝑖 . The “zero” vector (0, . . . , 0)⊤ and the

“one” vector (1, . . . , 1)⊤ are denoted as 0 and 1 respectively and are

with dimensions suitable to the context they appear.

A directed graph is a pair (𝑉 , 𝐸) where 𝑉 is the set of nodes and
𝐸 ⊆ 𝑉 ×𝑉 the set of edges. In opinion formation models, a directed

graph (𝑉 , 𝐸) is often identified by its adjacency matrix T which is a

non-negative matrix such that (𝑖, 𝑗) ∈ 𝐸 iff 𝑡𝑖 𝑗 > 0. Paths, cycles and
and their lengths in a directed graph are defined in the standard way.
A directed graph or equivalently an adjacency matrix is strongly
connected if there is a path from any node to any other node and

it is aperiodic if the greatest common divisor of the lengths of its

cycles is one.

3 MODELS OF OPINION FORMATION
In this section, we present our opinion formation model. It involves

𝑛 permanent agents interacting continuously and an external agent

interacting temporarily with the permanent ones. Outside the exter-

nal agent’s period of interaction, our model reduces to the DeGroot

Model in which the pattern of interaction is represented as a 𝑛 × 𝑛

stochastic matrix T. An entry 𝑡𝑖 𝑗 of T represents the weight agent 𝑖

places on agent 𝑗 . The weights 𝑡𝑖 𝑗 for 𝑗 = 1, 2, . . . , 𝑛 are considered

as finite resources, distributed by 𝑖 to itself and others. A positive

𝑡𝑖 𝑗 indicates 𝑗 is able to influence 𝑖 at each round of interaction; and

the greater 𝑡𝑖 𝑗 is, the stronger the influence. We refer to T as the

interaction matrix which can be seen as the adjacency matrix that

captures the social network structure. Conventionally, opinions

are represented as real numbers and time is measured in rounds of

interactions. We denote agent 𝑖’s opinion and the vector of the 𝑛

agents’ opinions after the 𝑡 th round of interaction as 𝑝
(𝑡 )
𝑖

and p(𝑡 )

respectively. Moreover, we refer to 𝑝
(0)
𝑖

as the initial opinion of 𝑖

and p(0) the initial opinion vector. The agents repeatedly interact by
synchronously taking weighted averages of the opinions of agents

who can influence them, that is p(𝑡 ) obeys the following equation
for 𝑡 ≥ 1

p(𝑡 ) = T𝑡p(0) . (1)

The weight 𝑡𝑖 𝑗 is therefore the contribution of 𝑗 ’s opinion at each

round of interaction to 𝑖’s opinion at the next round. The weight

𝑡𝑖𝑖 agent 𝑖 places on itself represents its openness to other agent’s

influence: 𝑡𝑖𝑖 = 0 indicates an open-minded agent who totally relies

on the others’ opinions whereas 𝑡𝑖𝑖 = 1 indicates a stubborn agent

whose opinion remains unchanged.

An opinion formation (as described by Equation (1)) is convergent
if

p∞ = lim

𝑡→∞
T𝑡p(0)

exists for any p(0) . A convergent opinion formation reaches a con-
sensus if all components of p∞ are identical, which happens when

all rows of lim𝑡→∞ T𝑡 are identical. We refer to p∞ as the limit-
ing opinion vector and 𝑝∞

𝑖
as the limiting opinion of 𝑖 . It is shown

that if the interaction matrix is strongly connected, then a conver-

gent opinion formation always reaches a consensus. Moreover, an

opinion formation with a strongly connected interaction matrix T
is convergent iff T is aperiodic or equivalently there is a unique

left eigenvector s of T, corresponding to eigenvalue 1 such that∑𝑛
𝑖=1 𝑠𝑖 = 1 and

𝑝∞𝑖 =

(
lim

𝑡→∞
T𝑡p

)
𝑖
= sp(0) (2)

for 𝑖 = 1, 2, . . . , 𝑛. The result establishes whether an opinion for-

mation converges and what it converges to when it does. Also

the result implies lim𝑡→∞ T𝑡 is a matrix with identical rows each

of which is the unique left eigenvector s. As 𝑝∞
𝑖

are identical for

𝑖 = 1, 2, . . . , 𝑛, we refer to all of them as the limiting opinion. See the
survey [24] for the other convergence and consensus conditions

and [23] for the technical details on the matrix.

According to Equation (2), the limiting opinion is a weighted

average of the initial opinions where agent 𝑖’s weight is 𝑠𝑖 . These

weights are commonly taken as the measure of an agent’s influence

in a DeGroot-style opinion formation and are sometimes referred

to as the agents’ social influence [11, 18]. We refer to s as the social
influence vector. Note that, s being a left eigenvector of T with an

eigenvalue of 1 means sT = s which implies 𝑠𝑖 =
∑𝑛

𝑗=1 𝑡 𝑗𝑖𝑠 𝑗 . Thus

the social influence of 𝑖 is a weighted sum of the social influences of

the various agents who can be influenced by 𝑖 . This is a very natural

property of a measure of influence and entails that an influential
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person is one who is trusted by other influential persons. We adopt

this measure of influence to quantify the external agent’s influence

in opinion formation.

The novelty of our model lies in the treatment of the external

agent that interacts with the permanent ones for a finite number

of rounds. We reserve the letter 𝑘 for this finite number which

indicates the duration of the external agent’s influence. To represent
the pattern of interaction involving the external agent, we extend

the interaction matrix T to form a (𝑛+1) × (𝑛+1) interaction matrix

A in which the external agent is identified as the (𝑛 + 1)th agent

whose corresponding weights occupy the (𝑛+1)th row and column.

We refer to A as the extended interaction matrix. Since the external
agent acts as an organisation or individual with the solitary goal

of persuading others of its opinion, the external agent is, in our

terminology, a stubborn agent, hence 𝑎 (𝑛+1) (𝑛+1) = 1. For the rest

of the entries in the (𝑛+1)th column, 𝑎𝑖 (𝑛+1) > 0means the external

agent is able to influence agent 𝑖 . We reserve the letter𝑚 for the

number of such positive entries which indicates the coverage of the
external agent’s influence. A simplifying assumption we make is

that the𝑚 > 0 agents place an identical weight of 𝜆 to the external

agent, that is 𝑎𝑖 (𝑛+1) = 𝜆 whenever 𝑎𝑖 (𝑛+1) > 0 and 𝑖 ≤ 𝑛. The

weight 𝜆 indicates the intensity of the external agent’s influence. We

also assume, without loss of generality, that the𝑚 agents occupy

the first𝑚 rows and columns of A. We reserve the letter Λ for the

vector that occupies the first𝑛 entries of the (𝑛+1)th column. Lastly,

for each entry 𝑎𝑖 𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝑛, if 𝑎𝑖 (𝑛+1) = 0, then it inherit

the corresponding entry 𝑡𝑖 𝑗 in T, otherwise it is shrank from 𝑡𝑖 𝑗 by

a factor of (1 − 𝜆) to make A stochastic. Putting these together, we

have

A =



(1 − 𝜆)𝑡11 · · · (1 − 𝜆)𝑡1𝑛 𝜆

.

.

.
. . .

.

.

.
.
.
.

(1 − 𝜆)𝑡𝑚1 · · · (1 − 𝜆)𝑡𝑚𝑛 𝜆

𝑡 (𝑚+1)1 · · · 𝑡 (𝑚+1)𝑛 0

.

.

.
. . .

.

.

.
.
.
.

𝑡𝑛1 · · · 𝑡𝑛𝑛 0

0 · · · 0 1


where𝑚 is the number of agents the external agent can influence,

𝑡𝑖 𝑗 are entries of T, and 𝜆 is the weight placed on the external agent.

The 𝑛+1 agents interact exactly as in the DeGroot model only

that it is now governed by both T and A. The opinion vector p(𝑡 )

obeys Equation (1) when the external agent does not participate

and the following one when it does.

p(𝑡 ) =
(
A
(
p(𝑡−1)

𝑎

))
1,...,𝑛

(3)

where 𝑎 is the external agent’s unchanged opinion. For a matrixW,

we denote the matrix formed by the first 𝑛 rows of W as (W)1,...,𝑛 .
For example,

( 𝑎 𝑏
𝑐 𝑑
𝑒 𝑓

)
1,2 =

(
𝑎 𝑏
𝑐 𝑑

)
. To illustrate this interaction, sup-

pose the external agent participates in the third and fourth rounds

of interaction, then

p(4) =
(
A2

(
T2p(0)

𝑎

))
1,...,𝑛

and p∞ = lim𝑡→∞ T𝑡p(4) .

Following Equation (2), after expressing the limiting opinion as

the weighted average of the 𝑛+1 agents’ initial opinions, that is

𝑝∞𝑖 = 𝑤1𝑝
(0)
1

+𝑤2𝑝
(0)
2

+ · · · +𝑤𝑛𝑝
(0)
𝑛 +𝑤 (𝑛+1)𝑎 (4)

we take weight𝑤 (𝑛+1) as the external agent’s social influence. Due
to the external agent’s intervention, the social influence vector s
no longer gives accurate social influence for the permanent agents.

It does so if the external agent did not participate at all in which

case our model reduces to the DeGroot model.

For the rest of this paper, we assume all interaction matrices

are strongly connected and aperiodic to ensure an opinion forma-

tion always reaches a consensus. Also, we assume, without loss

of generality, that the external agent’s fixed opinion is 1 and the

permanent agents have an initial opinion of 0. Note that agents’

opinions are irrelevant to their influence and we are only concerned

with the external agent’s influence. By this assumption, it follows

from Equation (4) that the limiting opinion is precisely the external

agent’s social influence.

4 ANALYTICAL RESULTS
We have argued that an organisation’s influencing effort depends

on the coverage, duration, intensity, and timing of its influence.

Our model captures these factors respectively as the number𝑚 of

agents the external agent can influence; the number 𝑘 of rounds

of interactions the external agent participates; the weight 𝜆 that

is placed on the external agent; and the time points in which the

𝑘 rounds of interaction take place. Of those factors, the first three

reflect the amount of resource available for the influencing effort,

the more resources there are, the larger these factors’ values. As

organisations usually, if not always, have a finite resource, a vi-

tal question is how and when to allocate it to achieve maximum

influence.

In this section, we express the external agent’s influence as a

function of the dependent factors and obtain influence-maximising

insights by analysing the function. For the ease of presentation, we

decompose the multiplication with the matrix A in Equation (3)

and rewrite it as

p(𝑡 ) = (T − 𝜆(T)𝑚)p(𝑡−1) + Λ. (5)

Recall that we assume 𝑎 = 1 and Λ is the n-dimensional vector of

which the first𝑚 components are 𝜆 and the rest are 0. For a matrix

T, (T)𝑚 is the matrix formed by replacing all entries of T with zero

except those of its first𝑚 rows. For example

(
𝑎 𝑏
𝑐 𝑑

)
1
=
(
𝑎 𝑏
0 0

)
.

One might notice that the timing factor is intrinsically different

from the other three. Apart from being unaffected by the scarcity of

resources, the timing factor is not a single factor, but a collection of𝑘

factors, one for each of the𝑘 rounds of participation. It is impractical

and pointless to consider all variations of the 𝑘 factors, instead, we

focus on three timing options that echo real-world situations: (1)

the external agent participates in 𝑘 rounds of interaction and it only

participates after the other agents have reached a consensus; (2)

the external agent participates in the first 𝑘 rounds of interaction;

and (3) the external agent randomly participates in 𝑘 rounds of

interaction according to a uniform distribution over a range of time

points.We refer to them as consensus, start, and uniform respectively.

For now, we focus on the consensus timing option. Later on, we will

explain how the other two cause the explosion in the number of
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variables thatmakes function analysis infeasible. In fact, “consensus”

is the most important of the three as simulations show that it gives

rise to the largest social influence.

The consensus timing option resembles the real-world situation

in which an organisation always allow sufficient time for its target

to thoroughly digest its influence from the previous intervention

before intervening and exerting its influence again. From a function

analysis perspective, it keeps the number of variables small which

results in a succinct expression for the limiting opinion.

Theorem 1. In an opinion formation, if the external agent can
influence𝑚 ≤ 𝑛 agents and it participates in 𝑘 ≥ 1 rounds of interac-
tion, each of which is at a time point the other agents have reached a
consensus, then

𝑝∞𝑖 =
∑𝑘−1

𝑗=0 (1 − 𝑠𝜆) 𝑗𝑠𝜆
for all 𝑖 , where 𝑠 =

∑𝑚
𝑖=1 𝑠𝑖 for s the social influence vector.

Proof. Let S = lim𝑡→∞ T𝑡 , so each row of S is the social influ-
ence vector s. We prove by induction on 𝑘 that p∞ =

∑𝑘−1
𝑗=0 (1 −

𝑠𝜆) 𝑗 (𝑠𝜆, . . . , 𝑠𝜆)⊤ where 𝑠 =
∑𝑚
𝑖=1 𝑠𝑖 . For the base case of 𝑘 = 1. It

follows from Equation (1) and (5) that

p∞ = S((T − 𝜆(T)𝑚)0 + Λ)
= S(𝜆, . . . , 𝜆, 0, . . . , 0)⊤

= (∑𝑚
𝑖=1 𝑠𝑖𝜆, . . . ,

∑𝑚
𝑖=1 𝑠𝑖𝜆)⊤

= (𝑠𝜆, . . . , 𝑠𝜆)⊤

For the induction step, suppose p∞ =
∑𝑘−1

𝑗=0 (1 − 𝑠𝜆) 𝑗 (𝑠𝜆, . . . , 𝑠𝜆)⊤
for 𝑘 = 𝑙 . We need to show the equality also holds for 𝑘 = 𝑙 + 1. Let

a be the limiting opinion vector for when the external agent partic-

ipates for 𝑙 rounds of interaction. Due to the induction hypothesis

a =
∑𝑙−1

𝑗=0 (1 − 𝑠𝜆) 𝑗 (𝑠𝜆, . . . , 𝑠𝜆)⊤. Then for 𝑘 = 𝑙 + 1 we have

p∞ = S((T − 𝜆(T)𝑚)a + Λ)
= STa − 𝜆S(T)𝑚a + SΛ

= a − 𝜆S(Ta)𝑚 + SΛ

= a − 𝜆S(a)𝑚 + (𝑠𝜆, . . . , 𝑠𝜆)⊤

= a − 𝜆(∑𝑚
𝑖=1 𝑠𝑖 )a + (𝑠𝜆, . . . , 𝑠𝜆)⊤

= (1 − 𝑠𝜆)a + (𝑠𝜆, . . . , 𝑠𝜆)⊤

=
∑𝑙

𝑗=0 (1 − 𝑠𝜆) 𝑗 (𝑠𝜆, . . . , 𝑠𝜆)⊤

This complete the induction step. Thus we have 𝑝∞
𝑖

=
∑𝑘−1

𝑗=0 (1 −
𝑠𝜆) 𝑗𝑠𝜆 for all 𝑖 .

□

Essentially, the limiting opinion is the sum of the first 𝑘 terms of

a geometric series with start term 𝑠𝜆 and constant ratio 1 − 𝑠𝜆

where the scalar 𝑠 is the sum of the first𝑚 components of the social

influence vector s. Since our model does not specify the identities of

the𝑚 agents that can be influenced by the external agent, the same

value of𝑚 can lead to different values of 𝑠 . So ultimately it is the

value of 𝑠 rather than𝑚 that matters in determining the limiting

opinion.

We can represent the limiting opinion, which is the external

agent’s social influence, as a function 𝐼 : 𝑋 × 𝑌 × 𝑌 → R such that

𝐼 (𝑘, 𝜆, 𝑠) = ∑𝑘−1
𝑗=0 (1 − 𝑠𝜆) 𝑗𝑠𝜆

where 𝑋 = {𝑥 ∈ Z | 𝑥 ≥ 1} and 𝑌 = {𝑦 ∈ R | 0 < 𝑦 < 1}. As
explained, the variable𝑚 should not appear in the function and

𝑠 is the combined social influence of the 𝑚 agents for when the

external agent did not participate. Substituting 𝐼 (𝑘, 𝜆, 𝑠) with the

formula for the sum of a geometric series, we have

𝐼 (𝑘, 𝜆, 𝑠) = 1 − (1 − 𝑠𝜆)𝑘 (6)

It is easy to see that 𝐼 (𝑘, 𝜆, 𝑠) increases as 𝑠 gets larger. Since a few
influential agents can have the same combined social influence

as that of many less influential ones, a large value of𝑚 does not

necessarily give a large value of 𝑠 . This leads to our first insight

through function analysis:

(A1) if the timing option is consensus, then the exter-
nal agent should aim for the more influential ones to
maximise its social influence.

What this analysis also tells us is that the number of agents that can

be influenced by the external agent is not the most accurate measure

of “coverage.” A better choice is the combined social influence of

such agents.

With the function 𝐼 (𝑘, 𝜆, 𝑠), we note that its three variables have
nothing to do with the structure of the social network, which means

the latter has no impact on the external agent’s social influence.

This leads to our second insight:

(A2) if the timing option is consensus, then the structure
of the social network is irrelevant to the external agent’s
social influence.

The insight might seem trivial, nevertheless, it is of great signifi-

cance in practice. Often a social network’s structure is unknown to

an external organisation, so knowing that it is irrelevant brings cer-

tainty and assurance to an organisation’s influencing effort. Hence,

we consider this irrelevance as an advantage of the “consensus”

timing option over the others with which the structure does matter.

With 𝐼 (𝑘, 𝜆, 𝑠), we also note that the extra influence accumulated

by participating one more round of interaction is 𝐼 (𝑘 + 1, 𝜆, 𝑠) −
𝐼 (𝑘, 𝜆, 𝑠). Substituting 𝐼 (𝑘 + 1, 𝜆, 𝑠) and 𝐼 (𝑘, 𝜆, 𝑠) with their full ex-

pression, we have

𝐼 (𝑘 + 1, 𝜆, 𝑠) − 𝐼 (𝑘, 𝜆, 𝑠) = (1 − 𝑠𝜆)𝑘𝑠𝜆.

Since 0 < 1 − 𝑠𝜆 < 1, 𝐼 (𝑘 + 1, 𝜆, 𝑠) − 𝐼 (𝑘, 𝜆, 𝑠) decreases as 𝑘 gets

larger. This leads to our third insight:

(A3) if the timing option is consensus, then the external
agent’s influencing effort becomes less and less effective
as it participates in more rounds of interaction.

Next, we will analyse 𝐼 (𝑘, 𝜆, 𝑠) to decide which of the three vari-

ables 𝑠 , 𝑘 , and 𝜆 has a more profound effect on the external agent’s

social influence. As an immediate consequence of Equation (6), the

following lemma shows that 𝐼 (𝑘, 𝜆, 𝑠) gains the same increase by

scaling up 𝑠 as it does by scaling up 𝜆.

Lemma 1. Let 𝑟 ∈ R, 𝑟 ≥ 1, 𝑟𝑠 < 1 and 𝑟𝜆 < 1. Then

𝐼 (𝑘, 𝑟𝜆, 𝑠) = 𝐼 (𝑘, 𝜆, 𝑟𝑠).

Note that both the weight the other agents place on the external

agent and the combined social influence of the agents that can be in-

fluenced by the external one are percentages, thus the precondition

in Lemma 1. The lemma leads to our four insights:
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(A4) if the timing option is consensus, then it is equally
effective to scale up the coverage or intensity factor to
maximise the external agent’s social influence.

Since 𝜆 and 𝑠 are equally important in determining the value of

𝐼 (𝑘, 𝜆, 𝑠), it remains to compare either one of them with 𝑘 . The

following lemma shows that 𝐼 (𝑘, 𝜆, 𝑠) increases more by scaling up

𝑠 than it does by scaling up 𝑘 .

Lemma 2. Let 𝑟 ∈ Z, 𝑟 ≥ 2, 𝑟𝑠 < 1 and 𝑟𝜆 < 1. Then

𝐼 (𝑘, 𝜆, 𝑟𝑠) > 𝐼 (𝑟𝑘, 𝜆, 𝑠).

Proof. Since, according to Equation (6), 𝐼 (𝑘, 𝜆, 𝑟𝑠) = 1 − (1 −
𝑟𝑠𝜆)𝑘 and 𝐼 (𝑟𝑘, 𝜆, 𝑠) = 1− (1− 𝑠𝜆)𝑟𝑘 , it suffices to show (1− 𝑟𝑠𝜆) <
(1 − 𝑠𝜆)𝑟 . We will prove by induction on 𝑟 . For the base case, we

have 𝑟 = 2. Then (1 − 2𝑠𝜆) < (1 − 𝑠𝜆)2 follows from (1 − 𝑠𝜆)2 =

1 − 2𝑠𝜆 + (𝑠𝜆)2 and 𝑠𝜆 > 0.

For the induction step, suppose (1 − 𝑟𝑠𝜆) < (1 − 𝑠𝜆)𝑟 holds for
𝑟 = 𝑙 , we need to show it also holds for 𝑟 = 𝑙 + 1.

1 − 𝑟𝑠𝜆 = 1 − (𝑙 + 1)𝑠𝜆
= (1 − 𝑙𝑠𝜆) − 𝑠𝜆

and

(1 − 𝑠𝜆)𝑟 = (1 − 𝑠𝜆)𝑙+1

= (1 − 𝑠𝜆)𝑙 (1 − 𝑠𝜆)

= (1 − 𝑠𝜆)𝑙 − 𝑠𝜆(1 − 𝑠𝜆)𝑙 .

We have by the induction hypothesis that (1 − 𝑙𝑠𝜆) < (1 − 𝑠𝜆)𝑙 .
Also since (1 − 𝑠𝜆)𝑙 < 1, we have 𝑠𝜆 > 𝑠𝜆(1 − 𝑠𝜆)𝑙 . It follows from
(1 − 𝑙𝑠𝜆) < (1 − 𝑠𝜆)𝑙 and 𝑠𝜆 > 𝑠𝜆(1 − 𝑠𝜆)𝑙 that (1 − 𝑙𝑠𝜆) − 𝑠𝜆 <

(1 − 𝑠𝜆)𝑙 − 𝑠𝜆(1 − 𝑠𝜆)𝑙 which implies 1 − 𝑟𝑠𝜆 < (1 − 𝑠𝜆)𝑟 . This
completes the proof.

□

Note that it is meaningless to scale up the number of participation

rounds by a non-integer or by the integer 1, thus the precondition

of Lemma 2. The lemma leads to our fifth insight:

(A5) if the timing option is “consensus,” then it is more
effective to scale up the coverage or intensity factor than
the duration factor to maximise the external agent’s
social influence.

Finally, it is not uncommon that an organisation can influence ev-

eryone in its target group. For example, this may happen if the group

is relatively small with respect to the organisation’s resources. In

the remaining of this section, we deal with this special but realistic

“full coverage” case.

In our model, full coverage means𝑚 = 𝑛 with which Equation (5)

reduces to

p(𝑡 ) = (1 − 𝜆)Tp(𝑡−1) + Λ (7)

where Λ is the 𝑛-dimensional vector (𝜆, . . . , 𝜆)⊤.
The distinguishing property of the full coverage case is that

the timing factor does not play a part in determining the external

agent’s social influence. The key to appreciating this property is

the following easily verifiable equality.

(1 − 𝜆)T(Tp(𝑡 ) ) + Λ = T((1 − 𝜆)Tp(𝑡 ) + Λ)

By Equation (1) and (7), if the current opinion vector is p(𝑡 ) then
the LHS of the equality is the opinion vector after two rounds of

interaction where the external agent participates in the second

round and the RHS is the opinion vector after two rounds of in-

teraction where the external agent participates in the first round.

Since this “one-step” change does not affect the opinion vector after

two rounds of interaction neither does it to the limiting opinion. By

realising that we can repeat this “one-step” change for any number

of times to have the 𝑘 rounds of participation at any 𝑘 time points

without affecting the limiting opinion, the property must hold. This

leads to our final insight obtained through function analysis.

(A6) If the external agent can influence all agents, then
the timing factor is irrelevant to its social influence.

5 SIMULATION RESULTS
Function analysis has its limits, in this section, we resort to sim-

ulations to obtain insights tied to the timing options. We think

simulation might be our last resort for the start and uniform timing

options. Suppose the external agent participates in the first and

𝑟 th rounds where 𝑟 is 2 for “start” and an arbitrary number for

“uniform.” Then the limiting opinion and thus the external agent’s

social influence can be derived as follows

p∞ = lim

𝑡→∞
T𝑡p(𝑟 )

= lim

𝑡→∞
T𝑡 ((T − 𝜆(T)𝑚)p(𝑟−1) + Λ)

= lim

𝑡→∞
T𝑡 ((T − 𝜆(T)𝑚)T𝑟−2p(1) + Λ)

= lim

𝑡→∞
T𝑡 ((T − 𝜆(T)𝑚)T𝑟−2Λ + Λ)

= lim

𝑡→∞
T𝑡 (T𝑟−1Λ − 𝜆(T𝑟−1)𝑚Λ + Λ)

= 2 lim

𝑡→∞
T𝑡Λ − 𝜆 lim

𝑡→∞
T𝑡 (T𝑟−1)𝑚Λ.

Obviously, the matrix (T𝑟−1)𝑚 plays a part in determining p∞,

meaning that any variation of the social network can result in a

very different social influence of the external agent. Thus, the func-

tion that expresses the social influence must consider all entries

of T (as well as the 𝑘 timing factors). This is an overwhelmingly

large number of variables for function analysis to be feasible. For

“consensus” however (T𝑟−1)𝑚 is cancelled out in the above deriva-

tion, making it irrelevant to determining the social influence (see

the proof of Theorem 1).

In this paper, all simulations are conducted with 100 agents and

with 3000 rounds of interactions. Additionally, 1000 simulations are

conducted for each combination of values for the intensity, duration,

coverage and timing factor. Experimenting with various simulation

settings shows that a larger number of agents and simulations

makes no difference to the exhibited patterns, which are already

evident with as little as 10 agents and 10 simulations. Moreover,

the patterns do not rely on any specific factor values, though some

values make them easy to visualise.

Our first set of simulations intends to disentangle the varying

effects of the timing options as the duration value grows. While

holding the intensity and coverage factor constant, for each timing

option, we simulate our model for duration values ranging from 0 to

45 (with an increment value of 1). In Figure 1, we plot the external
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agent’s average social influence (in 1000 simulations) induced by

each timing option against the duration values.

0 5 10 15 20 25 30 35 40 45
0.0

0.2

0.4

0.6

0.8

1.0

start
uniform
consensus

Figure 1: Comparing the timing options with respect to a
growing duration factor.

Immediately we observe that the plot for “consensus” is virtually

always above those of “start” and “uniform,” with a noticeable gap

over the former and a tiny one over the latter. More specifically, the

gap between the plots is closing towards both ends of the horizontal

axis and becomes negligible at the very ends. The plots suggest

“consensus” and “start” respectively gives the largest and smallest

social influence while “uniform” is almost identical to “consensus.”

Closing of the gap, however, cannot be interpreted as suggesting the

less relevance of the timing options with small and large duration

values, rather the pattern is enforced by the bounded nature of

social influence values. Social influence is bounded from below by 0

and from above by 1, thus if the duration value is sufficiently small

or large, then the induced social influence must be close to 0 or 1

regardless of the timing option.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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0.8
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start
uniform
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Figure 2: Comparing the timing options with respect to a
growing coverage factor

In a similar fashion, while holding the duration and intensity

factors constant, for each timing option, we simulate our model

for coverage values ranging from 0 to 0.9 (with an increment value

of 0.1). In Figure 2, the average social influence induced by each

timing option is plotted against the coverage values. Once again,

we observe that “consensus” is the clear winner against “start” but

not so much against “uniform”. Also, the gap is closing towards

both ends of the horizontal axis. Likewise, the bounded nature of

social influence plays a part in the closing of the gap. But this time,

as the coverage value grows, the gap closes so drastically that the

plots converge at a social influence (i.e., 0.8) well below 1. This

means the growing coverage value also plays a part. So, unlike the

duration value, it is righteous to interpret the closing of the gap

as suggesting the larger the coverage value the less relevant the

timing options. In fact, we have already proved a limiting case of

this pattern in (A6) which concludes the irrelevance of the timing

factor when the coverage value is at its largest. Hence, we obtain

the following insight.

(S1) Once the coverage value passes certain threshold,1

then the larger the coverage value, the less relevant
the timing options in determining the external agent’s
social influence.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0
start
uniform
consensus

Figure 3: Comparing the timing options with respect to a
growing intensity factor

Finally, we hold constant the duration and coverage factors and

simulate our model for intensity values ranging from 0 to 0.9 (with

an increment value of 0.1). The corresponding plots are given in

Figure 3. Yet another time, we observe the superiority of “consensus”

over “start” and “uniform,” but only slightly over the latter. This

unequivocal pattern exhibited in all three sets of simulations leads

to the following insight.

(S2) Among the three timing options, “consensus” gives
rise to the largest social influence of the external agent
and “start” the least.

Furthermore, the fact that “consensus” and “uniform” are almost

indistinguishable indicates that the key is to spread out the par-

ticipation times and avoid having them in a cluster. Last but not

least, we observe that, contrary to the previous simulations, the

gap between the plots enlarges towards the end of the horizontal

1
The threshold depends on the intensity and duration values.
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axis with larger intensity values. Noticeably, whatever mechanism

that drives this enlargement is very effective as it manages to do

so even though the bounded nature of social influence acts in an

opposite direction. This leads to our final insight.

(S3) The larger the intensity factor, the more relevant
the timing options in determining the external agent’s
social influence.

6 RELATEDWORK
Influence maximisation is a recurring topic in studies of opinion

formation and social networks. The term is often referred to as the

algorithmic problem of selecting a predefined number of agents

in a social network to maximise the spread of a binary opinion in

an opinion diffusion process [21]. [12] is the first to pose the algo-

rithmic problem. Later on, [19] proposed the so-called independent

cascade model and gave a greedy algorithm based on submodular

maximisation [19, 20]. These very influential papers have since

then promoted a large number of follow-up works improving and

extending various aspects of the selection techniques [6]. Although

the diffusion process and representation of opinions are different

from ours, these works are, in our terminology, concerning the

coverage factor. Rather than focusing on this single factor, we also

considered the intensity, duration and timing factors and attempt

to understand how the interplay between the four factors elevates

and restrains the overall influencing effort.

Apart from the above works, recent years have seen a surge in

the popularity of various forms of opinion diffusion in artificial

intelligence [1–5, 7–9, 13, 14, 16, 26]. Some tackled influence max-

imisation problems from the perspective of how the sequence of

opinion updates affects the influencing effort [1, 4]. [1] considered

the case of three alternative opinions in an asynchronous mode

of opinion update and investigated the sequence of updates that

maximises the spread of an opinion. [4] continued the effort and

provided upper and lower bounds on the length of such sequences

among other results.

7 CONCLUSION
In this paper, we generalised the DeGroot model of opinion forma-

tion to allow a temporary participant. We articulated four factors

namely, duration, intensity, coverage and timing that dominate the

temporary participant’s influencing effort and incorporated them

into the opinion formation process. Through function analysis and

simulation, we revealed the degree of importance and interplay

between the factors which leads to crucial insights into influence

maximisation. In summary, the temporary participant ought to

adopt the consensus timing option and focus its resources on the

intensity and coverage factor. The insights may aid organisations

and individuals in making better strategic choices when facing

limited resources to maximise their influence.
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