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ABSTRACT
To assess the prospects of using reinforcement learning (RL) for
selecting and parameterizing quantum gates to build viable circuit
architectures, we introduce the quantum circuit designer (QCD).
By considering quantum control a decision-making problem, we
strive to profit from advanced RL exploration mechanisms to over-
come the need for granular specification and hand-crafted architec-
tures. To evaluate current state-of-the-art RL algorithms, we define
generic objectives that arise from quantum architecture search and
circuit optimization. Those evaluation results reveal challenges
inherent to learning optimal quantum control.
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1 INTRODUCTION
In the current NISQ era, quantum computing (QC) faces limitations
in terms of size and precision [15]. Hybrid applications address these
constraints to gain early insights and advantages. Hybrid quantum
machine learning (QML) involves the use of QC to improve machine
learning (ML) and vice versa, using ML to improve QC [4, 6]. This
work focuses on the latter aspect, employing reinforcement learn-
ing (RL) to enhance the search for viable quantum architectures.
Quantum architecture search denotes finding a sequence of unitary
operations or gates to execute on a quantum computer and altering
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its qubits’ state to achieve a specific objective [19]. Previous work
mainly examined using RL to solve application-specific tasks [14].
To assess the overall capabilities of RL for quantum circuit design
and quantum control, we posit a bottom-up approach and formu-
late a generic gymnasium [18] environment alongside common
objectives.

2 QUANTUM CIRCUIT DESIGNER
The quantum circuit designer (QCD) is parameterized by the number
of available qubits 𝜂 and the maximum feasible circuit depth 𝛿 .
To constantly monitor the current circuit, we base the QCD on
quantum simulation [3], allowing efficient readout of the state
vector. Thus, the observation is given by the full complex vector
representation of its current state 𝑠 = |𝚿⟩ ∈ C2𝜂 , similar to [11]. To
manipulate the carried quantum state, we use the 𝜙-parameterized
X-Rotation (1), the unparameterized CNOT operation (2), and the
parameterized PhaseShift (3) and Controlled-PhaseShift (4):

𝑹𝑿 (𝜙) = exp
(
−𝑖 𝜙2𝑿

)
(1)

𝑪𝑿 = |0⟩ ⟨0| ⊗ 𝑰 + |1⟩ ⟨1| ⊗ 𝑿 (2)

𝑷 (𝜙) = exp
(
𝑖
𝜙
2

)
· exp

(
−𝑖 𝜙2 𝒁

)
(3)

𝑪𝑷 (𝜙) = 𝑰 ⊗ |0⟩ ⟨0| + 𝑷 (𝜙) ⊗ |1⟩ ⟨1| (4)

To provide a balanced action space, we define the 4-dimensional
join action ⟨𝑜, 𝑞, 𝑐,Φ⟩ = 𝑎 ∈ A = {Γ×Ω×Ω×Θ}, with the discrete
operation choice 𝑜 , target and control qubits 𝑞, 𝑐 ∈ Ω = [0, 𝜂 − 1],
and continuous parameterization Φ ∈ [−𝜋, 𝜋]. To the best of our
knowledge, we are the first to consider learning the placement
and parameterization of gates in a single closed loop. In contrast,
most related work considers using a discrete action space, where
circuits must be further optimized post hoc [8, 17]. To reduce the
complexity of the operation decision 𝑜 ∈ Γ = {X, P,M,T}, we apply
an uncontrolled operation (𝑹𝑿 or 𝑷 ) iff. 𝑞 = 𝑐 and a controlled op-
eration (𝑪𝑿 or 𝑪𝑷 ) otherwise. Furthermore, the agent can measure
a specific qubit (M) or terminate the current episode (T), which is
otherwise terminated when all available qubits are measured or
the available depth 𝛿 is reached. Thus, given a deterministic action
selection policy 𝜋 (𝑎 |𝑠) and an operation mapping 𝑔 : A ↦→ 𝑈 , cir-
cuits can be generated as Σ𝑡 = ⟨𝑔(𝑎)⟩𝑡 at step 𝑡 ≤ 𝜂 · 𝛿 · 2 = 𝜎 . This
budget of available operations per episode 𝜎 allows us to define
a step cost C𝑡 = max

(
0, 3

2𝜎
(
𝑡 − 𝜎

3
) )

to foster short and compact
circuits. In addition to this agnostic cost, we consider the objectives

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2123

https://orcid.org/0000-0003-1134-176X
https://orcid.org/0000-0001-5727-9151
https://orcid.org/0000-0002-8472-9944
https://orcid.org/0000-0003-2048-8667
https://orcid.org/0000-0002-4390-8954
https://orcid.org/0000-0001-6284-9286
https://github.com/philippaltmann/QCD
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


A2C PPO SAC TD3 Random

0.2M 0.4M 0.6M 0.8M 1M
Steps

0

2

M
ea

n 
Q

ub
it
s

0

1

M
ea

n 
R
et

ur
n

(a) Bell State Preparation | 𝜂 = 2, 𝛿 = 12
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(b) Random Unitary Composition | 𝜂 = 2, 𝛿 = 12

Figure 1: Benchmarking A2C (orange) [13], PPO (blue) [16], SAC (green) [10], and TD3 (red) [5] against a random baseline
(dashed line) for the Bell State Preparation and Random Unitary Composition, challenges with regards to the Mean Return
(solid) and Mean Qubits utilized (dotted) averaged over eight runs. Shaded areas mark the 95% confidence intervals.

of preparing a specific quantum state (SP) [9] and composing an
arbitrary unitary (UC) [20]. Therefore, we define a task-specific
reward 𝑟𝑡 = R𝑡 − 𝐶𝑡 ∈ [0, 1], with R𝑆𝑃

𝑡 = | ⟨𝑠𝑡 |Ψ⟩ |2, given by
the fidelity between the final state 𝑠𝑡 and the target state Ψ, and
R𝑈𝐶
𝑡 = 1 − arctan (∥𝑼 − 𝑽 (Σ𝑡 )∥), given by the Frobenius norm

∥·∥ between the unitary of the final circuit 𝑽 (Σ𝑡 ) and the target
unitary 𝑼 . As we are mainly interested in the resulting state post-
measurement, the agent receives the reward sparsely upon episode
termination. In addition to the undiscounted return 𝐺 (𝜏) = ∑𝑇

𝑡=0 𝑟𝑡
averaged over 100 episodes 𝜏 (Mean Return), we use theMean Qubits
utilized in the generated circuits (bounded by 𝜂).

3 EVALUATION
To evaluate the performance of current RL approaches for QCD,
we use the two-qubit bell state reflecting basic entanglement and
the unitary of a random operation [12], central to versatile simu-
lation capabilities [7]. The two-qubit bell state can be created by
combining CNOT with the Hadamard operator, which, however, is
precluded from our gate set and therefore needs to be reconstructed
itself, e.g., via 𝐻 = 𝑷 (𝜋/2)𝑹𝑿 (𝜋/2)𝑷 (𝜋/2). This dependency con-
stitutes the first central challenge QC yields for RL: Complex circuit
architectures are often built upon hierarchical building blocks. This
inherent structure justifies multi-level optimization approaches re-
sembling similar hierarchies. However, prospects of the proposed
closed-loop approach include exploring unconventional approaches
that may provide out-of-the-box solutions to complex multi-level
challenges. Indications of these prospects can be observed for the
bell state preparation results shown in Fig. 1a, where SAC reaches
mean returns above 60%. In contrast, the other approaches converge
to a mean return of 0.5, with only TD3 showing some deviation.
Looking at the utilized qubits reveals primal convergence to empty
circuits, most likely caused by the multi-objective nature of the
QCD. Consequently, RL exploits a local optimum introduced by
the step cost, which, to be overcome, would require a performance
decrease caused by using additional operations. Only SAC utilized
both available qubits, presumably due to a more advanced explo-
ration mechanism for continuous control spaces. This exploration

challenge is less prominent with the composition of random uni-
taries, as shown in Fig. 1b. While SAC again shows the highest
utilization of the available qubits, A2C and PPO at least explore
single-qubit circuits. Except for TD3, all approaches exceed the ran-
dom baseline with a final mean return of around 20%. As expected,
random unitary composition poses a significantly harder objective
when compared to bell state preparation, as the exact resemblance
of the operator is required. Consequently, another challenge can
be identified: In addition to the discrete choice of operation, target,
and control qubits, precise control over the parameterization is
required.

4 CONCLUSION
We introduced the Quantum Circuit Designer, a unified framework
for benchmarking RL for low-level quantum control. To assess
state-of-the-art RL algorithms, we consider two concrete objectives;
preparing an entangled state and composing a random unitary
operation, combined with the ubiquitous objective of producing
compact circuits within the specified bound for the number of
qubits 𝜂 and circuit depth 𝛿 . Consequently, we identified the cen-
tral challenges current RL algorithms face. Those mainly concern
exploring a multi-modal reward landscape in combination with a
complex non-uniform high-dimensional action space. Overcoming
those challenges and using RL to design viable quantum circuits
requires algorithms that support joint action spaces that combine
discrete and continuous actions. Furthermore, smoother reward
metrics, including intermediate rewards, are needed to ease the
exploration of the intricate action space for quantum control. Also,
an attention mechanism or partial observability might be helpful to
focus on relevant parts of the state space and further decrease the
exploration challenge [2]. Future work should also collect further
concrete and relevant states and unitaries. Also, the overall objec-
tive might be extended to account for mitigating errors. Overall,
however, we believe that the quantum circuit designer provides
a profound base for future research on applying RL to quantum
circuit design.
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