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ABSTRACT
A common theory of choice posits that individuals make choices

in two steps, first selecting a subset of the alternatives to consider

before making a choice from the resulting consideration set. How-

ever, inferring unobserved consideration sets (or item consideration

probabilities) in this “consider then choose” setting poses significant

challenges: even simple models of consideration with strong inde-

pendence assumptions are not identifiable, even if item utilities are

known. We consider a natural extension of consider-then-choose

models to a top-𝑘 ranking setting, where we assume rankings are

constructed according to a Plackett–Luce model after sampling a

consideration set. While item consideration probabilities remain

non-identified in this setting, we prove that knowledge of item

utilities allows us to infer bounds on the relative sizes of consid-

eration probabilities. Additionally, given a bound on the expected

consideration set size, we derive absolute upper and lower bounds

on item consideration probabilities. We also provide an algorithm

to tighten those bounds on consideration probabilities by propagat-

ing inferred constraints. Thus, we show that we can learn useful

information about consideration probabilities despite their non-

identifiability. We demonstrate our methods on a dataset from a

psychology experiment with two different ranking tasks (one with

fixed consideration sets and one with unknown consideration sets).

This combination of data allows us to estimate utilities and then

learn about unknown consideration probabilities using our bounds.
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Background. Among the wide-ranging topics studied in the be-

havioral sciences, predicting and explaining human decisions is a

central challenge. (Why that entrée at that café with that person,
of all the restaurants you can think of, of all your potential dates,

of all the dishes on the menu?) Settings where individuals select an

item from a collection of available alternatives are well-studied in

the literature on discrete choice [30], with applications ranging from

marketing [8] and voting [29] to transportation policy [13] and

recommender systems [9]. A closely related line of work studies

rankings [2], often modeling a ranking as a sequence of discrete

choices (selecting the top-ranked item, then the second, etc.). The

Plackett–Luce ranking model [15, 22] exemplifies the tight link be-

tween discrete choice and ranking, positing that items at each of 𝑘

positions are selected in turn according to a logit choice model [18].

In keeping with the framework of bounded rationality [27], a

prominent line of work in discrete choice suggests that selection

is a two-stage process, where individuals first narrow their op-

tions to a small consideration set from which a final selection is

made [12, 26]. These “consider then choose” models have shown

considerable promise [4, 24], but suffer from the unobservability

of consideration sets (except in carefully controlled experimental

settings) and cannot in general be identified from observed choice

data [14, 31]. Perhaps as a result, consider-then-choose models have

received comparatively little attention in the ranking literature.

Plackett–Luce with consideration: the PL+Cmodel. Here, we study
the natural consider-then-rank model obtained by augmenting

top-𝑘 Plackett-Luce with the independent-consideration rule [17],

which we term PL+C. Each of the 𝑛 items in a universe U has

an item-specific consideration probability 𝑝𝑖 ∈ (0, 1] and a utility
𝑢𝑖 ∈ R. The two-stage choice unfolds as follows, for fixed 𝑘 ≤ 𝑛:

(1) Consideration: Each item 𝑖 ∈ U advances to the second

stage randomly and independently with probability 𝑝𝑖 , yield-

ing some consideration set 𝐶 ⊆ U. (We do not observe cases
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where |𝐶 | < 𝑘—either such instances are thrown out before

we observe them, or the chooser resamples a new set.)

(2) Ranking: A length-𝑘 ranking is formed by a sequence of

𝑘 choices; the probability of selecting 𝑖 is proportional to

exp(𝑢𝑖 ), first choosing a top-ranked item, then a second-

ranked item (distinct from the first), etc. The choice in PL+C

is made from among the elements of 𝐶 . (In the classical

Plackett–Luce model, all elements of U are considered.)

We imagine making observations of many individuals’ rankings,

hoping to infer consideration probabilities and/or utilities. One

might hope that richer observations—a 𝑘-item ranking rather than

just a single choice—wouldmake it feasible to identify consideration

probabilities, at least for large 𝑘 . Unfortunately, it does not:

Theorem 1. For all 𝑛 ≥ 1 and 1 ≤ 𝑘 ≤ 𝑛, there exist multiple
sets of consideration probabilities that generate exactly the same
distribution over rankings, with fixed utilities 𝑢𝑖 for each 𝑖 ∈ U.

However, we show that it is nonetheless possible to derive mean-

ingful bounds. In addition to observations of rankings, we draw on

two types of information for learning consideration probabilities:

(1) known item utilities and (2) a lower bound on expected consid-

eration set size. The intuition is that if 𝑖 has higher utility then 𝑗 ,

then we would expect to see 𝑖 ranked highly more often than 𝑗—but

if instead 𝑗 outperforms 𝑖 , then consideration must be the culprit.

Theorem 2. For items 𝑖, 𝑗 ∈ U with 𝑢𝑖 > 𝑢 𝑗 , if, for some ℓ ≥ 1,
item 𝑖 appears less often in top-ℓ rankings than item 𝑗 , then 𝑝 𝑗 > 𝑝𝑖 . (If
𝑖 appears 𝑐 < 1 times as often as 𝑗 , then 𝑝𝑖/(1−𝑝𝑖 ) ≤ 𝑐 ·𝑝 𝑗/(1−𝑝 𝑗 ).)

Theorem 2 allows us to propagate an upper bound on 𝑝 𝑗 into one

on 𝑝𝑖 , and a lower bound on 𝑝𝑖 into one on 𝑝 𝑗 . To get started, we

also seek absolute upper and lower bounds on consideration proba-

bilities. (It is tempting to think that item 𝑖’s rate of occurrence in

observed top-𝑘 rankings would lower bound 𝑝𝑖 , but that bound does

not hold, because PL+C conditions samples on |𝐶 | ≥ 𝑘 . However,

with relatively mild assumptions—see (2), above—item occurrence

rates still yield a lower bound on consideration probabilities.) Using

broadly similarly techniques, we derive upper bounds, too. (The

technical infrastructure is more involved here; we derive bounds

on the counterintuitive impact of the effect in PL+C that increasing

𝑝 𝑗 can actually make item 𝑖 ≠ 𝑗 more likely to be chosen, not less.)

Theorem 3. Suppose
∑
𝑖∈U 𝑝𝑖 ≥ 𝛼𝑘 for some 𝛼 > 1. For any

𝑖 ∈ U, the consideration probability for 𝑖 is bounded as

𝑝𝑖 ≥ (frequency 𝑖 is ranked in the top 𝑘) · [1 − 𝜀1 (𝛼, 𝑘)] and
𝑝𝑖 ≤ 𝑓 (𝑢𝑖 ) · [(frequency 𝑖 is ranked in first place) + 𝜀2 (𝛼, 𝑘)]

for a function 𝑓 and small functions 𝜀1, 𝜀2 (decreasing in 𝛼 and 𝑘).

Finally, we provide efficient algorithms that tighten our absolute

bounds (Theorem 3) by propagating them over a directed acyclic

graph induced by our relative bounds (Theorem 2). Details of theo-

rems and algorithms are available in the full version of the paper.

Application to empirical data. Finally, we present an illustration

of how our theoretical machinery can reveal meaningful informa-

tion about consideration probabilities on real data. In an existing

psychology experiment about perceptions of U.S. history [23], par-

ticipants completed several tasks related to their view of the histor-

ical importance of particular U.S. states, such as naming the three

states they believe contributed most to U.S. history. They were also

provided with a random set of 10 states and asked to rate their

percentage contribution to U.S. history. (We convert the numerical

scores to rankings.) These two settings, Top-3 and Random-10, pro-
vide us both observations fromfixed consideration sets (Random-10)

and from unknown consideration sets (Top-3), in which participants

must recall the names of the states that they will list [6]. We thus

estimate utilities in the absence of consideration from the Random-

10 data, and then estimate consideration from the Top-3 data, using

the PL+C model and our bounds (implemented in Pytorch [21]).

The algorithms described above rely on the existence of pairs of

states whose utilities and top-ℓ ranking rates are flipped. Interest-

ingly, many such flips occur in this data, highlighting the apparent

importance of consideration in the Top-3 question. Using our meth-

ods, we find that, e.g., 𝑝
Massachusetts

> 𝑝Virginia > 𝑝
Pennsylvania

and 𝑝Virginia > 𝑝
New York

. Combining our lower and upper bounds

yields feasible intervals on consideration probabilities for each state,

revealing that, if our assumptions are valid, most states are con-

sidered less than 30–40% of the time. Additionally, the bounds on

consideration probabilities align with theories about why certain

states were highly rated in the data [23].

Related work. Prior research on consideration focused on single

choices rather than rankings. The approach most closely related

to our work adds a consideration stage to random utility mod-

els [4, 5, 24, 31], following Manski’s formulation [16], but there

are many alternative strategies [5, 7, 14, 17, 24]. Existing discrete

choice approaches to handle non-identifiability of consideration

probabilities use explicit item availability questions [5, 24, 28], on-

line browsing data [11, 19], observations of “none of the above”

outside options [14, 17], item features that change over time [1],

and parametric models of consideration [4, 31]. Consideration has

received only limited attention in the ranking literature [10, 20].

Discussion. We formalized a natural model of ranking with con-

sideration, augmenting Plackett–Luce with an independent consid-

eration model. Despite showing that consideration probabilities are

not identified in general, we derived relative and absolute bounds

that allow us to learn about possible ranges of consideration proba-

bilities from observed ranking data. Our data application demon-

strates how these bounds can be used in practice to gain insight

into consideration behavior from ranking data.

There remains much to explore regarding the PL+C model, and

ranking with consideration sets more generally. First, a thorough

characterization of PL+Cwould be valuable, including its expressive

power relative to other augmented Plackett–Luce models, such as

the contextual repeated selection model [25]. Another interesting

question concerns computing PL+C probabilities efficiently. If we

knowutilities and consideration probabilities, the direct approach to

computing ranking probabilities involves a sum over exponentially

many possible consideration sets. Is it possible to compute PL+C

probabilities in polynomial time, or is it provably hard?

For further discussion of related work, limitations, future direc-

tions, and technical details, we refer readers to the full paper [3].

Portions of this work were performed while all authors were at Carleton College.

Thanks to Aadi Akyianu, David Chu, Katrina Li, Adam Putnam, Sophie Quinn, Morgan

Ross, Laura Soter, and Jeremy Yamashiro for helpful discussions.
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