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ABSTRACT
Multiagent Reinforcement Learning (MARL) has been success-
fully applied to domains requiring close coordination among many
agents. However, real-world tasks require safety specifications that
are not generally considered by MARL algorithms. In this work, we
introduce an Entropy Seeking Constrained (ESC) approach aiming
to learn safe cooperative policies for multiagent systems. Unlike
previous methods, ESC considers safety specifications while maxi-
mizing state-visitation entropy, addressing the exploration issues
of constrained-based solutions.
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1 INTRODUCTION
Multiagent Reinforcement Learning (MARL) has achieved impres-
sive results in many realistic cooperative domains such as remote
exploration missions [7, 11, 22]. Such approaches generally do
not handle safety specifications, which are crucial for real-world
tasks [15, 18, 19, 30]. In contrast, constrained optimization has been
widely used in single-agent RL to foster safety [24, 29]. However,
constraints limit exploration, which is critical to discovering effec-
tive cooperative behaviors among multiple agents [14, 25, 27].

We introduce Entropy Seeking Constrained (ESC)-MARL, foster-
ing efficient exploration while satisfying constraints for multiagent
systems. To this end, we derive an exploration-driven reward that
increases the diversity of visited states, leading to state entropy
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maximization [2, 4, 26]. Entropy maximization encourages agents
to actively explore the scenario when constraints are satisfied, ad-
dressing the typical trade-off between safety and performance [3].

Our evaluation in the multi-rover exploration task [1], shows
the efficacy of ESC-MARL at optimizing two crucial objectives;
defined constraint (i.e., collision avoidance), and team coordination,
outperforming the underlying constrained MARL baseline.

2 PRELIMINARIES
The multiagent domain that we consider is a fully cooperative
tasks. In the literature, these problems are commonly represented
as Dec-POMDPs [21]. In particular, the Centralized Training with
Decentralized Execution (CTDE) learning paradigm has been re-
cently investigated as a way to centralize information at learning
time while maintaining decentralized execution in Dec-POMDPs
[16, 17, 23, 31]. Hence, it overcomes typical real-world issues related
to sharing information (e.g., limited communication bandwidth)
and centralization. In addition, real multiagent systems require
satisfying desired safety specifications, that are usually modeled
as constraints. However, previous methods disregard the negative
impact of constraints on exploration [9, 12]. This leaves a signifi-
cant margin for developing novel safe MARL algorithms such as
ESC-MARL.

2.1 Entropy Seeking Constrained Agents
Considering MAPPO as the baseline algorithm [31], ESC-MARL
learns a centralized advantage estimator𝐴𝜙 (𝒉, 𝒖) over the joint his-
tory𝒉 and actions 𝒖 parametrized by𝜙 , and a policy𝜋𝜃𝑖 parametrized
by 𝜃𝑖 for each agent 𝑖 ∈ N . Policies’ parameters are updated as:

max
𝜃𝑖

min
𝝀
E𝜋𝜃𝑖

[
min

(
𝑞(𝜃𝑖 , 𝜃 ′𝑖 )𝐴𝜙 (𝒉, 𝒖),

clip
(
𝑞(𝜃𝑖 , 𝜃 ′𝑖 ), 1 − 𝜖, 1 + 𝜖

)
𝐴𝜙 (𝒉, 𝒖)

)
+ 𝑞(𝜃𝑖 , 𝜃 ′𝑖 )LC (𝝀)

] (1)

where

𝑞(𝜃𝑖 , 𝜃 ′𝑖 ) =
𝜋𝜃 (𝑢𝑖 |ℎ𝑖 )
𝜋𝜃 ′ (𝑢𝑖 |ℎ𝑖 )

;

𝐴𝜙 (𝒉, 𝒖) = 𝑟 + 𝛾𝑉𝜙 (𝒉′) −𝑉𝜙 (𝒉)
(2)

with 𝒉′ being the joint history after performing 𝒖.
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2.1.1 Team-level constraints. The role of LC (𝝀) varies depending
on the type of constraints we are considering. Here we discuss
a single team-level constraint 𝑐 , with a hard-coded threshold 𝑙 .
Following the Lagrangian formalization [20], we incorporate the
constraint by learning a multiplier 𝝀, a centralized cost-advantage
estimator 𝐴𝑐 (𝒉, 𝒖), and minimize the following:1

min
𝜆≥0
−𝝀(𝐴𝑐 (𝒉, 𝒖) − 𝑙) (3)

The observation-visitation entropy component is then incorpo-
rated into the agent-specific reward as follows.

2.1.2 Observation Entropy Maximization. ESC-MAPPO considers
rewards at two levels, agent-level (for agent-specific behaviors)
and team-level (for overall team policy). In particular, the entropy-
maximizing rewards are agent-specific and aim at decreasing the
recurrence of similar observations [2]. Algorithm 1 describes how
we compute such entropy-maximizing rewards. The core idea is
that most states will likely occur once in continuous state spaces,
which are typical of real-world applications. Hence, we first employ
a quantizationmechanism [2] to cluster similar observation vectors
together. This allows us to distinguish observations to maximize
the entropy of the distribution of the visited ones during an episode,
enabling us to avoid premature entropy maximization.

Algorithm 1: Computes a sequence of local entropy seek-
ing reward for agent 𝑖 over a single episode.
1 Initialize state 𝑠0, history ℎ0

𝑖
= {𝑜0

𝑖
}.

2 for 𝑡 ∈ [0, ℎ − 1] do
3 Retrieve action 𝑎𝑡

𝑖
, state 𝑠𝑡+1 and observation 𝑜𝑡+1

𝑖

4 count← 1
5 for 𝑜𝑖 ∈ ℎ𝑡𝑖 do
6 if quantize(𝑜𝑡+1

𝑖
) == quantize(𝑜𝑖 ) then

7 count← count + 1

8 reward← 1
count

9 ℎ𝑡+1
𝑖
← ℎ𝑡

𝑖
∪ {𝑎𝑡

𝑖
, 𝑜𝑡+1

𝑖
}

10 if 𝑉 (ℎ𝑡+1
𝑖
) > 0 then

11 reward← reward ∗𝑉 (ℎ𝑡+1
𝑖
)

12 Yield reward

To summarize, the proposed framework enhances agents with
the local entropy maximizing reward [2] to keep exploration ac-
tive. Once constraints are satisfied and the optimization process
"focuses" on maximizing the main task objective (the discounted
team return), agents maximize the entropy of the intra-episode ob-
servation distribution. Specifically, they explore novel parts of the
space to find policies with higher payoffs (i.e., better behaviors).

3 EXPERIMENTS
We investigate the performance of our algorithm in a well-known
multiagent coordination problem, multi-rover domain [1], consider-
ing 8 agents and couplings of 3 and 4. The coupling value indicates
the number of rover that has to simultaneously visit a point of

1The centralized𝐴𝑐 does not scale well due to the cardinality of the joint action-
observation history, but it leverages joint information to improve predictions [13].

interest, in order to collect a positive reward. In this task, the safety
requirement is collision avoidance; each collision triggers a positive
cost and we aim at limiting their accumulation up to a hard-coded
threshold highlighted as a dashed line in Figure 1.

Due to the importance of having statistically significant results,
we report the Pareto frontier of average return versus cost at con-
vergence over 10 runs per method in Figure 1. We refer to our
approach as ESC-MARL (T), indicating we are using team-level
constraints, and ESC-MARL when using a separate constraint per
each agent. To address the partially observable nature of the tasks
[10, 28], we incorporate a GRU [5] layer into the network and use
weight sharing to speed up the training process [8].

Figure 1: Average reward versus cost for the unconstrained
MAPPO and (our) ESC-MARL and ESC-MARL (T) with 8
rovers and coupling factors of 3, and 4.

In general, ESC-MARL and ESC-MARL (T) have comparable task-
objective performance (i.e., average reward) to the unconstrained
version, but, on average, they halve the cost. This translates into the
rovers experiencing half of the number of collisions while navigat-
ing to visit the POIs. In addition, the team constraints of ESC-MARL
(T) achieve higher performance than the individual constraints of
ESC-MARL and the unconstrained MAPPO, especially when the
number of rovers increases.

4 DISCUSSION AND FUTUREWORK
We address the problem of safe cooperative multiagent exploration,
proposing a novel constrained MARL framework. Our framework
leverages entropy maximization to enabling agents to have a much
more effective search in the policy space, resulting in the discovery
of policies that satisfy both the task objective and the constraints.
We investigate the efficacy of the proposed method under various
task complexities representing the dependency of each agent on
its teammates. As this dependency increases, the performance of
multiagent teams gets significantly affected as more complex co-
operative behaviors are required. Results show that ESC-MARL
achieves a comparable or better score on the team objective while
learning safer policies that halve the number of collisions. Future
work will consider extending our approach to different constraints
(e.g., probabilistic [6] and instantaneous) and research the effects
of exploration-driven rewards in different multiagent contexts.
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