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ABSTRACT
Among the most insidious attacks on Reinforcement Learning (RL)
solutions are training-time attacks (TTAs) that create loopholes
and backdoors in the learned behaviour. Not limited to a simple
disruption, constructive TTAs (C-TTAs) are now available, where
the attacker forces a specific, target behaviour upon a training RL
agent (victim). However, even state-of-the-art C-TTAs focus on
target behaviours that could be naturally adopted by the victim if
not for a particular feature of the environment dynamics, which
C-TTAs exploit. In this work, we show that a C-TTA is possible
even when the target behaviour is un-adoptable by the victim (in
the default/un-attacked environment) due to both environment dy-
namics as well as due to the behaviour’s non-optimality w.r.t. the
victim’s objective(s). To find efficient attacks in this context, we de-
velop a specialised flavour of the DDPG algorithm, which we term
𝛾DDPG, that learns this stronger version of C-TTA. 𝛾DDPG dynam-
ically alters the attack policy planning horizon based on the victim’s
current behaviour. This improves effort distribution throughout
the attack timeline and reduces the effect of uncertainty that the
attacker has about the victim. To demonstrate the features of our
method and better relate the results to prior research, we borrow a
3D grid domain from a state-of-the-art C-TTA for our experiments.
The full paper is available at "bit.ly/AdaptiveDiscountingofTTA".

KEYWORDS
Dynamic Discount; Adaptive Discount; Constructive Training-Time
Attacks; Environment Poisoning; Reinforcement Learning

ACM Reference Format:
Ridhima Bector, Abhay Aradhya, Chai Quek, and Zinovi Rabinovich. 2024.
Adaptive Discounting of Training Time Attacks: Extended Abstract. In Proc.
of the 23rd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS,
3 pages.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

1 INTRODUCTION
Success of RL stands threatened by a wide variety of attacks [2–4],
most insidious of which are training-time attacks (TTAs) that “pre-
program” back-doors and behavioural triggers into an RL strategy
[1, 7, 9–12]. In TTAs, the attacker learns to optimally modify/poison
a victim RL agent’s internal aspects (i.e., sensor(s), processor(s),
memory) and/or external influences (i.e., environment) while the
victim agent trains to learn its task. The level of information ac-
cess assumed by the adversary categorises the TTA as white-box
[8, 10, 13] or black-box [7, 11, 12]. This work aims to develop and
study an environment-poisoning black-box C-TTA which modi-
fies/poisons the dynamics of the victim agent’s environment with-
out accessing any internal mechanism of the victim. Like prior
works on environment-poisoning black-box C-TTAs [11, 12], the
adversary in this research is an RL agent which learns the opti-
mal C-TTA to be applied on the victim RL agent. However, unlike
the prior works that enforce un-adoptable but optimal target be-
haviour on the victim agent and train the attack by infusing all
attack objectives into the reward of the optimisation problem; our
attack enforces a non-optimal target behaviour which is learned
by distributing the attack objectives into the reward and the re-
ward discounting factor of the attacker’s optimisation problem. In
addition to pushing the victim agent towards this non-optimal tar-
get behaviour, the attack must also preserve the environment as
much as possible or, equivalently, reduce the effort expended to
modify it. Attack actions are thus constrained by the magnitude of
change a single attack action is permitted to make, as well as by
treating environment modification effort as a second objective in
the attacker’s optimisation problem. The attacker, therefore, faces
a multi-objective problem of finding an attack strategy that: a) gen-
erates the target behaviour in the victim with high accuracy, and b)
has low-effort environment modifications.

2 METHODOLOGY : 𝛾-VARIANT DDPG
Commonly, an RL agent’s objectives are represented by a reward
signal and the agent strives to find a behaviour/policy which, when
executed in the given environment, maximises the produced cu-
mulative reward. Likewise, in environment-poisoning C-TTAs, the
attacker’s reward typically inculcates both attack objectives: the ac-
curacywithwhich the victim adopts the target behaviour, and the ef-
fort applied by the attacker, in terms of environment modifications,
to achieve this accuracy. This can be done either by having several
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(a) @Acc KDE (b) @SoftAcc KDE (c) @Effort KDE (d) Legend

(e) Test-Time @Acc (f) Test-Time @SoftAcc (g) Test-Time @Effort (h) Test-Time @Time

Figure 1: Training-Time statistics (a-c) and Test-Time performance (e-h) w.r.t. Accuracy (@Acc), Softmax Accuracy (@SoftAcc),
Effort (@Effort), and Time (@Time) of baseline TEPA vs 𝛾DDPG with dynamic discounts TargetKLR and WD.

reward terms, allowing for prioritisation (through weights) of the
attacker’s objectives; or, by measuring the discrepancy between
combined behaviour-environment pairs, as done in [11, 12]. More
specifically, these works utilise the Kullback Leibler Divergence
Rate (KLR) to provide a unified estimate of effort and effectiveness
of an attack bymeasuring the discrepancy between the combination
of the victim’s current behaviour with the poisoned environment
and the combination of the target behaviour with the default envi-
ronment. However, both the aforementioned approaches have their
shortcomings. Due to high symmetry, the KLR-based approach can-
not properly distinguish between a high-accuracy, medium-effort
behaviour-environment pair and a medium-accuracy, low-effort
pair; while, weighted multiple terms of reward cannot address the
fact that some behaviour-environment discrepancies cancel each
other and, are thus, irrelevant.

In this work, we propose an alternative route. We avoid packing
both attack effort and effectiveness into a single element of the
attacker’s problem. Rather, we use both the reward and the reward
discounting factor to encode and prioritise these objectives. We
propose a modification of DDPG [6] called 𝛾DDPG that supports
dual-priority dual-objective optimisation with the aid of a dynamic
discount function. Herein, the discount function, 𝛾 adapts in re-
sponse to the current level of effort exerted by the attacker (and
the current level of attack accuracy achieved with that effort) to
create a bounded search space that bounds the lower priority ob-
jective (attacker effort), and enables the attacker to optimise the
higher-priority objective (attack accuracy) within this bounded
space. Furthermore, given that large discount factors lead to un-
reliable optimisation in uncertain environments [5], the bounded
search space (created by the bounded discount function) in this

work improves the optimisation capability of 𝛾DDPG by reducing
the effect of uncertainty in the given black-box environment.

3 EXPERIMENTS
This work develops four adaptive discount functions based on Kull-
back Leibler Divergence Rate and Wasserstein Distance; two condi-
tioned only on attacker effort (TargetKLR, TargetWD) while two
conditioned on both attacker effort and accuracy (KLR, WD). Our
results show that when TEPA, a SOTA baseline, is trained to enforce
non-optimal target behaviour on a victim, it gets stuck in a local
optima, unable to exit it even after ∼20k training episodes. This
is reflected in the KDE plots (a-c) in Figure 1 (and clearly shown
via line-plots in the Full Paper) that compares the best-performing
effort- and effort+accuracy-based dynamic discounts (TargetKLR
andWD), with TEPA. In addition, the test-time plots (e-h) show that
the best attack strategy found by TEPA performs worse than both
WD and TargetKLR dynamic discounts w.r.t. @Acc, @SoftAcc and
@Time while WD successfully finds strategies that maximise accu-
racy (higher-priority objective) and minimise effort (lower-priority
objective) in low time.

4 FUTUREWORK
In this work, formulation of the attacker’s state space, as well as
(adaptive) discount, requires the underlying victim environment
to be discrete in nature. Therefore, our next step entails extension
of the proposed methodology to continuous victim environments.
Furthermore, the proposed algorithm supports only dual-priority
dual-objective optimisation. Future work constitutes expanding the
developed methodology to multi-objective optimisation with more
than two objectives and priority levels.
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