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ABSTRACT
In kidney exchange programmes (KEP) patients may swap their

incompatible donors leading to cycles of kidney transplants. Coun-

tries try to merge their national patient-donor pools leading to

international KEPs (IKEPs). Long-term stability of an IKEP can be

achieved through a credit-based system. The goal is to find, in each

round, an optimal solution that closely approximates this target

allocation. We provide both theoretical and experimental results

for the case where the cycle length is unbounded.
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1 BALANCING KIDNEY EXCHANGE
The most effective treatment for kidney failure is transplant from a

deceased or living donor, with better outcomes in the latter case.

A kidney from a family member or friend might be medically in-

compatible with the patient. Therefore, many countries run Kidney

Exchange Programmes (KEPs) [6], where patient-donor pairs are

placed together in one pool. If for patient-donor pairs (𝑝,𝑑) and
(𝑝′, 𝑑′), 𝑑, 𝑝 are incompatible, as well as 𝑑′, 𝑝′, but 𝑑 and 𝑑′ could be
donor for 𝑝′ and 𝑝 , respectively, then we obtain a 2-way exchange.

We now generalize. We model a pool of patient-donor pairs as

a directed graph 𝐺 = (𝑉 ,𝐴) (the compatibility graph) in which 𝑉

consists of the patient-donor pairs, and𝐴 consists of every arc (𝑢, 𝑣)
such that the donor of 𝑢 is compatible with the patient of 𝑣 . In a

directed cycle 𝐶 = 𝑢1𝑢2 . . . 𝑢𝑘𝑢1, for some 𝑘 ≥ 2, the kidney of the
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donor of 𝑢𝑖 could be given to the patient of 𝑢𝑖+1 (with 𝑢𝑘+1 := 𝑢1).

This is a 𝑘-way exchange using the exchange cycle 𝐶 . To prevent

exchange cycles from breaking, (and a patient from losing their will-

ing donor), hospitals perform the 𝑘 transplants in a 𝑘-way exchange

simultaneously. Hence, KEPs impose a bound ℓ (the exchange bound)
on the maximum length of an exchange cycle, typically 2 ≤ ℓ ≤ 5.

An ℓ-cycle packing of 𝐺 is a set C of directed cycles, each of length

at most ℓ , that are pairwise vertex-disjoint. The size of C is the

number of arcs that belong to a cycle in C.
KEPs operate in rounds. A solution for round 𝑟 is an ℓ-cycle

packing in the associated compatibility graph 𝐺𝑟
. To help as many

patients as possible in each round 𝑟 , we seek an optimal solution,
i.e., a maximum (size) ℓ-cycle packing of 𝐺𝑟

. After a round, some

patients have received a kidney or died, and other patient-donor

pairs may have arrived, resulting in a compatibility graph 𝐺𝑟+1
.

The main computational issue is to find an optimal solution.

Theorem 1.1 ([1]). If ℓ = 2 or ℓ = ∞, we can find an optimal
solution for a KEP round in polynomial time; else this is NP-hard.

As merging pools of national KEPs leads to better outcomes,

international KEPs (IKEPs) are formed [8, 17]. How can we ensure
long-term stability of an IKEP to avoid countries from leaving?

A (cooperative) game is a pair (𝑁, 𝑣), where 𝑁 is a set of 𝑛 players
and 𝑣 : 2

𝑁 → R is a value functionwith 𝑣 (∅) = 0. A subset 𝑆 ⊆ 𝑁 is

a coalition. If for every possible partition (𝑆1, . . . , 𝑆𝑟 ) of 𝑁 it holds

that 𝑣 (𝑁 ) ≥ 𝑣 (𝑆1) + · · · + 𝑣 (𝑆𝑟 ), then players will benefit most by

forming the grand coalition 𝑁 . The problem is then how to fairly

distribute 𝑣 (𝑁 ) amongst the players of 𝑁 . An allocation is a vector

𝑥 ∈ R𝑁
with 𝑥 (𝑁 ) = 𝑣 (𝑁 ) (we write 𝑥 (𝑆) = ∑

𝑝∈𝑆 𝑥𝑝 for 𝑆 ⊆ 𝑁 ).

A solution concept prescribes a set of fair allocations for a game

(𝑁, 𝑣). In particular, the core consists of all allocations 𝑥 ∈ R𝑁
with

𝑥 (𝑆) ≥ 𝑣 (𝑆) for all 𝑆 ⊆ 𝑁 . Core allocations ensure 𝑁 is stable, as no

subset 𝑆 will benefit from leaving. However, a core may be empty.

For a directed graph𝐺 = (𝑉 ,𝐴) and subset 𝑆 ⊆ 𝑉 , we let𝐺 [𝑆] =
(𝑆, {(𝑢, 𝑣) ∈ 𝐴 | 𝑢, 𝑣 ∈ 𝑆}. An ℓ-permutation game on 𝐺 = (𝑉 , 𝐸) is
the game (𝑁, 𝑣), where 𝑁 = 𝑉 and for 𝑆 ⊆ 𝑁 , the value 𝑣 (𝑆) is the
maximum size of an ℓ-cycle packing of 𝐺 [𝑆]. We have a matching
game if ℓ = 2, whose core may be empty, and a permutation game
if ℓ = ∞, whose core is always nonempty [16]. A partitioned ℓ-
permutation game on a directed graph 𝐺 = (𝑉 ,𝐴) with a partition

(𝑉1, . . . ,𝑉𝑛) of 𝑉 is the game (𝑁, 𝑣), where 𝑁 = {1, . . . , 𝑛}, and for
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𝑆 ⊆ 𝑁 , the value 𝑣 (𝑆) is the maximum size of an ℓ-cycle packing of

𝐺 [⋃𝑖∈𝑆 𝑉𝑖 ]. We obtain a partitioned matching game [2, 7] if ℓ = 2,

and a partitioned permutation game if ℓ = ∞. The width of (𝑁, 𝑣) is
𝑐 = max{|𝑉𝑖 | | 1 ≤ 𝑖 ≤ 𝑛}.

For a round of an IKEP with exchange bound ℓ , let (𝑁, 𝑣) be
the partitioned ℓ-permutation game on the compatibility graph

𝐺 = (𝑉 ,𝐴), where 𝑁 = {1, . . . , 𝑛} is the set of countries in the

IKEP, and 𝑉 is partitioned into sets 𝑉1, . . . ,𝑉𝑛 such that every 𝑉𝑝
consists of the patient-donor pairs of country 𝑝 . The game (𝑁, 𝑣) is
the associated game for𝐺 . We use a solution concept S for (𝑁, 𝑣) to
obtain an initial allocation 𝑦, where𝑦𝑝 prescribes the initial number

of kidney transplants country 𝑝 should receive in this round.

To ensure IKEP stability, we use the model of Klimentova et

al. [12], which is a credit-based system. For round 𝑟 ≥ 1, let 𝐺𝑟
be

the computability graph with associated game (𝑁 𝑟 , 𝑣𝑟 ); let𝑦𝑟 be the
initial allocation (as prescribed by some solution concept S); and
let 𝑐𝑟 : 𝑁 𝑟 → R be a credit function, which satisfies

∑
𝑝∈𝑁 𝑟 𝑐𝑟𝑝 = 0;

if 𝑟 = 1, we set 𝑐𝑟 ≡ 0. For 𝑝 ∈ 𝑁 , we set 𝑥𝑟𝑝 := 𝑦𝑟𝑝 + 𝑐𝑟𝑝 to

obtain the target allocation 𝑥𝑟 for round 𝑟 (which is indeed an

allocation, as 𝑦𝑟 is an allocation and

∑
𝑝∈𝑁 𝑐𝑟𝑝 = 0). We choose

some maximum ℓ-cycle packing C of 𝐺𝑟
as optimal solution for

round 𝑟 (out of possibly exponentially many optimal solutions). Let

𝑠𝑝 (C) be the number of kidney transplants for patients in country 𝑝

(with donors both from 𝑝 and other countries). For 𝑝 ∈ 𝑁 , we set

𝑐𝑟+1𝑝 := 𝑥𝑟𝑝−𝑠𝑝 (C) to get the credit function 𝑐𝑟+1 for round 𝑟+1 (note
that

∑
𝑝∈𝑁 𝑐𝑟+1𝑝 = 0). For round 𝑟 + 1, a new initial allocation 𝑦𝑟+1

is prescribed by S for the associated game (𝑁 𝑟+1, 𝑣𝑟+1). For every
𝑝 ∈ 𝑁 , we set 𝑥𝑟+1𝑝 := 𝑦𝑟+1𝑝 + 𝑐𝑟+1𝑝 , and we repeat the process.

We must also determine how to choose in each round 𝑟 a max-

imum ℓ-cycle packing C (optimal solution) of the corresponding

compatibility graph𝐺 . We will choose C, such that the vector 𝑠 (C),
with entries 𝑠𝑝 (C), is closest to the target allocation 𝑥 for round 𝑟 .

Let |𝑥𝑝 − 𝑠𝑝 (C)| be the deviation of country 𝑝 from its targe 𝑥𝑝 if C
is chosen. We order the deviations |𝑥𝑝 − 𝑠𝑝 (C)| non-increasingly as
a vector 𝑑 (C) = ( |𝑥𝑝1 − 𝑠𝑝1 (C)|, . . . , |𝑥𝑝𝑛 − 𝑠𝑝𝑛 (C)|). We say C is

strongly close to 𝑥 if 𝑑 (C) is lexicographically minimal over all opti-

mal solutions. If we only minimize 𝑑1 (C) = max𝑝∈𝑁 {|𝑥𝑝 −𝑠𝑝 (C)|}
over all optimal solutions, we obtain a weakly close optimal solution.

Related Work. Benedek et al. [3] proved that, for partitioned

matching games (the “matching” case), an optimal solution that

is strongly close to a given target allocation 𝑥 can be found in

polynomial time; in contrast, Biró et al. [7] showed that it is NP-
hard to find a weakly close maximum matching even for |𝑁 | = 2

once the games are defined on edge-weighted graphs. Benedek et

al. [3] performed simulations for up to fifteen countries for ℓ = 2.

Using the Shapley value for the initial allocation yielded best results

(slightly overtaken by the Banzhaf value in the full version [4] of [3]).

This is in line with the results of Klimentova et al. [12] and Biró et

al. [5] for ℓ = 3. Due to Theorem 1.1, the simulations in [5, 12] are

for up to four countries and use weakly close optimal solutions.

For ℓ = 2, we refer to [15] for an alternative model based on

so-called selection ratios using lower and upper target numbers.

IKEPs have also been modelled as non-cooperative games in the

consecutive matching setting, which has 2-phase rounds: national

pools in phase 1 and a merged pool for unmatched patient-donor

pairs in phase 2; see [9, 10, 14] for some results in this setting.

Our Results. Permutation games, i.e. partitioned permutation

games of width 1, have a nonempty core [16], and a core allocation

can be found in polynomial time [11]. We generalize these two

results, and also show a dichotomy for testing core membership,

which is in contrast with the dichotomy for partitioned matching

games, where the complexity jump is at 𝑐 = 3 [7].

Theorem 1.2. The core of every partitioned permutation game is
non-empty, and it is possible to find a core allocation in polynomial
time. Moreover, for partitioned permutation games of fixed width 𝑐 , the
problem of deciding if an allocation is in the core is polynomial-time
solvable if 𝑐 = 1 and coNP-complete if 𝑐 ≥ 2.

Due to Theorem 1.1, we cannot hope to generalize Theorem 1.2 to

hold for any constant ℓ ≥ 3. Nevertheless, Theorem 1.1 leaves open

the question if Theorem 1.2 is true for ℓ = ∞ instead of only for

ℓ = 2. We show that the answer is no (assuming P ≠ NP).

Theorem 1.3. For partitioned permutation games even of width 2,
the problem of finding an optimal solution that is weakly or strongly
close to a given target allocation 𝑥 is NP-hard.

Our last theoretical result is a randomized XP algorithm with pa-

rameter 𝑛; derandomizing it requires solving the notorious Exact

Perfect Matching problem [13] in polynomial time.

Theorem 1.4. For a partitioned permutation game (𝑁, 𝑣) on a
directed graph𝐺 = (𝑉 ,𝐴), the problem of finding an optimal solution
that is weakly or strongly close to a given target allocation 𝑥 can be
solved by a randomized algorithm in 𝑂 ( |𝐴|𝑂 (𝑛) ) time.

We now turn to our simulations. Due to Theorem 1.3 and because

the algorithm in Theorem 1.4 is not practical, we formulate the

problems of computing a weakly or strongly close optimal solution

as integer linear programs, and use an ILP solver. We still exploit

the fact that for ℓ = ∞ (Theorem 1.1) we can find optimal solutions

and values 𝑣 (𝑆) in polynomial time. In this way we can perform

simulations for IKEPs up to ten countries, so more than the four

countries in the simulations for ℓ = 3 [5, 12], but less than the

fifteen countries in the simulations for ℓ = 2 [3].

For the initial allocationswe use benefit value, contribution value,

Banzhaf value, Shapley value, and nucleolus. Our simulations show,

just like those for [3], that a credit system using strongly close opti-

mal solutions makes an IKEP the most balanced without decreasing

the overall number of transplants. Our simulations indicate that

the Banzhaf value yields the best results: on average, a deviation

of up to 0.90% from the target allocation. Moreover, moving from

ℓ = 2 to ℓ = ∞ yields on average 46% more kidney transplants, but

cycles may be very large, in particular in the starting round.
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