Computing Balanced Solutions for Large International Kidney Exchange Schemes When Cycle Length Is Unbounded

Márton Benedek
KRTK, Institute of Economics
Budapest, Hungary
marton.benedek@krtk.hu

Matthew Johnson
Durham University
Durham, United Kingdom
matthew.johnson2@durham.ac.uk

Extended Abstract

Péter Biró
KRTK, Institute of Economics
Budapest, Hungary
peter.biro@krtk.hu

Gergely Csáji
KRTK, Institute of Economics
Budapest, Hungary
csaji.gergely@krtk.hu

Daniël Paulusma
Durham University
Durham, United Kingdom
daniel.paulusma@durham.ac.uk

Xin Ye
Durham University
Durham, United Kingdom
xin.ye@durham.ac.uk

Abstract

In kidney exchange programmes (KEP) patients may swap their incompatible donors leading to cycles of kidney transplants. Countries try to merge their national patient-donor pools leading to international KEPs (IKEPs). Long-term stability of an IKEP can be achieved through a credit-based system. The goal is to find, in each round, an optimal solution that closely approximates this target allocation. We provide both theoretical and experimental results for the case where the cycle length is unbounded.

KEYWORDS

cooperative game; partitioned permutation game; kidney exchange

ACM Reference Format:

Márton Benedek, Péter Biró, Gergely Csáji, Matthew Johnson, Daniël Paulusma, and Xin Ye. 2024. Computing Balanced Solutions for Large International Kidney Exchange Schemes When Cycle Length Is Unbounded: Extended Abstract. In Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 - 10, 2024, IFAAMAS, 3 pages.

1 BALANCING KIDNEY EXCHANGE

The most effective treatment for kidney failure is transplant from a deceased or living donor, with better outcomes in the latter case. A kidney from a family member or friend might be medically incompatible with the patient. Therefore, many countries run Kidney Exchange Programmes (KEPs) [6], where patient-donor pairs are placed together in one pool. If for patient-donor pairs (p, d) and (p^{\prime}, d^{\prime}), d, p are incompatible, as well as d^{\prime}, p^{\prime}, but d and d^{\prime} could be donor for p^{\prime} and p, respectively, then we obtain a 2-way exchange.

We now generalize. We model a pool of patient-donor pairs as a directed graph $G=(V, A)$ (the compatibility graph) in which V consists of the patient-donor pairs, and A consists of every arc (u, v) such that the donor of u is compatible with the patient of v. In a directed cycle $C=u_{1} u_{2} \ldots u_{k} u_{1}$, for some $k \geq 2$, the kidney of the

This work is licensed under a Creative Commons Attribution International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, 7.S. Sichman (eds.), May 6-10, 2024, Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org).
donor of u_{i} could be given to the patient of u_{i+1} (with $u_{k+1}:=u_{1}$). This is a k-way exchange using the exchange cycle C. To prevent exchange cycles from breaking, (and a patient from losing their willing donor), hospitals perform the k transplants in a k-way exchange simultaneously. Hence, KEPs impose a bound ℓ (the exchange bound) on the maximum length of an exchange cycle, typically $2 \leq \ell \leq 5$. An ℓ-cycle packing of G is a set C of directed cycles, each of length at most ℓ, that are pairwise vertex-disjoint. The size of C is the number of arcs that belong to a cycle in C.

KEPs operate in rounds. A solution for round r is an ℓ-cycle packing in the associated compatibility graph G^{r}. To help as many patients as possible in each round r, we seek an optimal solution, i.e., a maximum (size) ℓ-cycle packing of G^{r}. After a round, some patients have received a kidney or died, and other patient-donor pairs may have arrived, resulting in a compatibility graph G^{r+1}. The main computational issue is to find an optimal solution.

Theorem 1.1 ([1]). If $\ell=2$ or $\ell=\infty$, we can find an optimal solution for a KEP round in polynomial time; else this is NP-hard.

As merging pools of national KEPs leads to better outcomes, international KEPs (IKEPs) are formed [8, 17]. How can we ensure long-term stability of an IKEP to avoid countries from leaving?

A (cooperative) game is a pair (N, v), where N is a set of n players and $v: 2^{N} \rightarrow \mathbb{R}$ is a value function with $v(\emptyset)=0$. A subset $S \subseteq N$ is a coalition. If for every possible partition $\left(S_{1}, \ldots, S_{r}\right)$ of N it holds that $v(N) \geq v\left(S_{1}\right)+\cdots+v\left(S_{r}\right)$, then players will benefit most by forming the grand coalition N. The problem is then how to fairly distribute $v(N)$ amongst the players of N. An allocation is a vector $x \in \mathbb{R}^{N}$ with $x(N)=v(N)$ (we write $x(S)=\sum_{p \in S} x_{p}$ for $S \subseteq N$). A solution concept prescribes a set of fair allocations for a game (N, v). In particular, the core consists of all allocations $x \in \mathbb{R}^{N}$ with $x(S) \geq v(S)$ for all $S \subseteq N$. Core allocations ensure N is stable, as no subset S will benefit from leaving. However, a core may be empty.

For a directed graph $G=(V, A)$ and subset $S \subseteq V$, we let $G[S]=$ ($S,\{(u, v) \in A \mid u, v \in S\}$. An ℓ-permutation game on $G=(V, E)$ is the game (N, v), where $N=V$ and for $S \subseteq N$, the value $v(S)$ is the maximum size of an ℓ-cycle packing of $G[S]$. We have a matching game if $\ell=2$, whose core may be empty, and a permutation game if $\ell=\infty$, whose core is always nonempty [16]. A partitioned ℓ permutation game on a directed graph $G=(V, A)$ with a partition $\left(V_{1}, \ldots, V_{n}\right)$ of V is the game (N, v), where $N=\{1, \ldots, n\}$, and for
$S \subseteq N$, the value $v(S)$ is the maximum size of an ℓ-cycle packing of $G\left[\bigcup_{i \in S} V_{i}\right]$. We obtain a partitioned matching game $[2,7]$ if $\ell=2$, and a partitioned permutation game if $\ell=\infty$. The width of (N, v) is $c=\max \left\{\left|V_{i}\right| \mid 1 \leq i \leq n\right\}$.

For a round of an IKEP with exchange bound ℓ, let (N, v) be the partitioned ℓ-permutation game on the compatibility graph $G=(V, A)$, where $N=\{1, \ldots, n\}$ is the set of countries in the IKEP, and V is partitioned into sets V_{1}, \ldots, V_{n} such that every V_{p} consists of the patient-donor pairs of country p. The game (N, v) is the associated game for G. We use a solution concept \mathcal{S} for (N, v) to obtain an initial allocation y, where y_{p} prescribes the initial number of kidney transplants country p should receive in this round.

To ensure IKEP stability, we use the model of Klimentova et al. [12], which is a credit-based system. For round $r \geq 1$, let G^{r} be the computability graph with associated game $\left(N^{r}, v^{r}\right)$; let y^{r} be the initial allocation (as prescribed by some solution concept \mathcal{S}); and let $c^{r}: N^{r} \rightarrow \mathbb{R}$ be a credit function, which satisfies $\sum_{p \in N^{r}} c_{p}^{r}=0$; if $r=1$, we set $c^{r} \equiv 0$. For $p \in N$, we set $x_{p}^{r}:=y_{p}^{r}+c_{p}^{r}$ to obtain the target allocation x^{r} for round r (which is indeed an allocation, as y^{r} is an allocation and $\sum_{p \in N} c_{p}^{r}=0$). We choose some maximum ℓ-cycle packing C of G^{r} as optimal solution for round r (out of possibly exponentially many optimal solutions). Let $s_{p}(C)$ be the number of kidney transplants for patients in country p (with donors both from p and other countries). For $p \in N$, we set $c_{p}^{r+1}:=x_{p}^{r}-s_{p}(C)$ to get the credit function c^{r+1} for round $r+1$ (note that $\sum_{p \in N} c_{p}^{r+1}=0$). For round $r+1$, a new initial allocation y^{r+1} is prescribed by \mathcal{S} for the associated game (N^{r+1}, v^{r+1}). For every $p \in N$, we set $x_{p}^{r+1}:=y_{p}^{r+1}+c_{p}^{r+1}$, and we repeat the process.

We must also determine how to choose in each round r a maximum ℓ-cycle packing C (optimal solution) of the corresponding compatibility graph G. We will choose C, such that the vector $s(C)$, with entries $s_{p}(C)$, is closest to the target allocation x for round r. Let $\left|x_{p}-s_{p}(C)\right|$ be the deviation of country p from its targe x_{p} if C is chosen. We order the deviations $\left|x_{p}-s_{p}(C)\right|$ non-increasingly as a vector $d(C)=\left(\left|x_{p_{1}}-s_{p_{1}}(C)\right|, \ldots,\left|x_{p_{n}}-s_{p_{n}}(C)\right|\right)$. We say C is strongly close to x if $d(C)$ is lexicographically minimal over all optimal solutions. If we only minimize $d_{1}(C)=\max _{p \in N}\left\{\left|x_{p}-s_{p}(C)\right|\right\}$ over all optimal solutions, we obtain a weakly close optimal solution.

Related Work. Benedek et al. [3] proved that, for partitioned matching games (the "matching" case), an optimal solution that is strongly close to a given target allocation x can be found in polynomial time; in contrast, Biró et al. [7] showed that it is NPhard to find a weakly close maximum matching even for $|N|=2$ once the games are defined on edge-weighted graphs. Benedek et al. [3] performed simulations for up to fifteen countries for $\ell=2$. Using the Shapley value for the initial allocation yielded best results (slightly overtaken by the Banzhaf value in the full version [4] of [3]). This is in line with the results of Klimentova et al. [12] and Biró et al. [5] for $\ell=3$. Due to Theorem 1.1, the simulations in [5, 12] are for up to four countries and use weakly close optimal solutions.

For $\ell=2$, we refer to [15] for an alternative model based on so-called selection ratios using lower and upper target numbers. IKEPs have also been modelled as non-cooperative games in the consecutive matching setting, which has 2-phase rounds: national pools in phase 1 and a merged pool for unmatched patient-donor pairs in phase 2; see [9,10,14] for some results in this setting.

Our Results. Permutation games, i.e. partitioned permutation games of width 1, have a nonempty core [16], and a core allocation can be found in polynomial time [11]. We generalize these two results, and also show a dichotomy for testing core membership, which is in contrast with the dichotomy for partitioned matching games, where the complexity jump is at $c=3$ [7].

Theorem 1.2. The core of every partitioned permutation game is non-empty, and it is possible to find a core allocation in polynomial time. Moreover, for partitioned permutation games offixed width c, the problem of deciding if an allocation is in the core is polynomial-time solvable if $c=1$ and coNP-complete if $c \geq 2$.

Due to Theorem 1.1, we cannot hope to generalize Theorem 1.2 to hold for any constant $\ell \geq 3$. Nevertheless, Theorem 1.1 leaves open the question if Theorem 1.2 is true for $\ell=\infty$ instead of only for $\ell=2$. We show that the answer is no (assuming $P \neq N P$).

Theorem 1.3. For partitioned permutation games even of width 2, the problem of finding an optimal solution that is weakly or strongly close to a given target allocation x is NP-hard.
Our last theoretical result is a randomized XP algorithm with parameter n; derandomizing it requires solving the notorious Exact Perfect Matching problem [13] in polynomial time.

Theorem 1.4. For a partitioned permutation game (N, v) on a directed graph $G=(V, A)$, the problem of finding an optimal solution that is weakly or strongly close to a given target allocation x can be solved by a randomized algorithm in $O\left(|A|^{O(n)}\right)$ time.
We now turn to our simulations. Due to Theorem 1.3 and because the algorithm in Theorem 1.4 is not practical, we formulate the problems of computing a weakly or strongly close optimal solution as integer linear programs, and use an ILP solver. We still exploit the fact that for $\ell=\infty$ (Theorem 1.1) we can find optimal solutions and values $v(S)$ in polynomial time. In this way we can perform simulations for IKEPs up to ten countries, so more than the four countries in the simulations for $\ell=3$ [5,12], but less than the fifteen countries in the simulations for $\ell=2$ [3].

For the initial allocations we use benefit value, contribution value, Banzhaf value, Shapley value, and nucleolus. Our simulations show, just like those for [3], that a credit system using strongly close optimal solutions makes an IKEP the most balanced without decreasing the overall number of transplants. Our simulations indicate that the Banzhaf value yields the best results: on average, a deviation of up to 0.90% from the target allocation. Moreover, moving from $\ell=2$ to $\ell=\infty$ yields on average 46% more kidney transplants, but cycles may be very large, in particular in the starting round.

ACKNOWLEDGMENTS

Benedek was supported by the National Research, Development and Innovation Office of Hungary (OTKA Grant No. K138945); Biró by the Hungarian Scientific Research Fund (OTKA, Grant No. K143858); Csáji by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, under the KDP-2023 and the UNKP-23-3 funding schemes.; and Paulusma by the Leverhulme Trust (Grant RF-2022-607) and EPSRC (Grant EP/X01357X/1). We thank Rob Powell for his help with setting up our simulations on Durham University's NCC cluster.

REFERENCES

[1] David J. Abraham, Avrim Blum, and Tuomas Sandholm. 2007. Clearing algorithms for barter exchange markets: enabling nationwide kidney exchanges. In Proceedings 8th ACM Conference on Electronic Commerce (EC-2007), San Diego, California, USA, June 11-15, 2007. ACM, 295-304.
2] Márton Benedek, Péter Biró, Matthew Johnson, Daniël Paulusma, and Xin Ye. 2023. The Complexity of Matching Games: A Survey. Journal of Artificial Intelligence Research 77 (2023), 459-485.
[3] Márton Benedek, Péter Biró, Walter Kern, and Daniël Paulusma. 2022. Computing Balanced Solutions for Large International Kidney Exchange Schemes. In 21st International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2022, Auckland, New Zealand, May 9-13, 2022. International Foundation for Autonomous Agents and Multiagent Systems, 82-90.
[4] Márton Benedek, Péter Biró, Daniël Paulusma, and Xin Ye. 2023. Computing Balanced Solutions for Large International Kidney Exchange Schemes. CoRR abs/2109.06788 (2023).
[5] Péter Biró, Márton Gyetvai, Xenia Klimentova, João Pedro Pedroso, William Pettersson, and Ana Viana. 2020. Compensation Scheme With Shapley Value For Multi-Country Kidney Exchange Programmes. In Proceedings of the 34th International ECMS Conference on Modelling and Simulation, ECMS 2020, Wildau, Germany, Fune 9-12, 2020. European Council for Modeling and Simulation, 129136.
[6] Péter Biró, Bernadette Haase-Kromwijk, Tommy Andersson, and et al. 2019. Building Kidney Exchange Programmes in Europe - An Overview of Exchange Practice and Activities. Transplantation 103 (2019), 1514-1522.
[7] Péter Biró, Walter Kern, Dömötör Pálvölgyi, and Daniël Paulusma. 2019. Generalized Matching Games for International Kidney Exchange. In Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS '19, Montreal, QC, Canada, May 13-17, 2019. International Foundation for Autonomous Agents and Multiagent Systems, 413-421.
[8] Georg A Böhmig, Jiří Fronek, Antonij Slavcev, Gottfried F Fischer, Gabriela Berlakovich, and Ondrej Viklicky. 2017. Czech-Austrian kidney paired donation: first European cross-border living donor kidney exchange. Transplant International 30 (2017), 638-639.
[9] Margarida Carvalho and Andrea Lodi. 2023. A theoretical and computational equilibria analysis of a multi-player kidney exchange program. European fournal of Operational Research 305 (2023), 373-385.
[10] Margarida Carvalho, Andrea Lodi, João Pedro Pedroso, and Ana Viana. 2017. Nash equilibria in the two-player kidney exchange game. Mathematical Programming 161 (2017), 389-417.
[11] Imma J Curiel and Stef H. Tijs. 1986. Assignment games and permutation games. Methods of Operations Research 54 (1986), 323-334.
[12] Xenia Klimentova, Ana Viana, João Pedro Pedroso, and Nicolau Santos. 2021. Fairness models for multi-agent kidney exchange programmes. Omega 102 (2021), 102333.
[13] Christos H. Papadimitriou and Mihalis Yannakakis. 1982. The complexity of restricted spanning tree problems. Fournal of the ACM 29 (1982), 285-309.
[14] Bart Smeulders, Danny Blom, and Frits C. R. Spieksma. 2022. Identifying optimal strategies in kidney exchange games is Σ_{2}^{p}-complete. Mathematical Programming to appear (2022).
[15] Zhaohong Sun, Taiki Todo, and Toby Walsh. 2021. Fair Pairwise Exchange among Groups. In Proceedings of the Thirtieth International foint Conference on Artificial Intelligence, IFCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021. ijcai.org, 419-425.
[16] Stef Tijs, T. Parthasarathy, Jos A.M. Potters, and V. Rajendra Prassad. 1984. Permutation games: another class of totally balanced games. OR Spektrum 6 (1984), 119-123.
[17] María Oliva Valentín, Marta Garcia, Alessandro Nanni Costa, Catarina Bolotinha, Lluis Guirado, Fabio Vistoli, Alberto Breda, Pamela Fiaschetti, and Beatriz Dominguez-Gil. 2019. International cooperation for kidney exchange success. Transplantation 103 (2019), 180-181.

