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ABSTRACT
Imitation Learning (IL) algorithms show promise in learning human-
level driving behavior, but they often suffer from "causal confusion,"
a phenomenon where the lack of explicit inference of the under-
lying causal structure can result in misattribution of the relative
importance of scene elements, especially pronounced in complex
scenarios like urban driving with abundant information per time
step. Our key idea is that while driving, human drivers naturally ex-
hibit an easily obtained, continuous signal that is highly correlated
with causal elements of the state space: eye gaze. We collect human
driver demonstrations in a CARLA-based VR driving simulator, al-
lowing us to capture eye gaze in the same simulation environment
commonly used in prior work. Further, we propose a method to
use gaze-based supervision to mitigate causal confusion in driving
IL agents — exploiting the relative importance of gazed-at and not-
gazed-at scene elements for driving decision-making. We present
quantitative results demonstrating the promise of gaze-based su-
pervision improving the driving performance of IL agents.
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1 INTRODUCTION
Imitation learning (IL) is a popular method for learning urban driv-
ing policies due to its ease of implementation and de-coupling of
the data collection/action step and the training step by allowing of-
fline learning of control, among other factors. However, it does not
explicitly model underlying causal structures of tasks, instead infer-
ring causality from strongly correlated elements of the state space
that occur before specific actions are performed. This results in a
policy that does the right things for the wrong reasons in the train-
ing distribution and thus doesn’t generalize well at test time. The
most straightforward resolution to the causal confusion problem
would be to simply learn the correct underlying causal structure.
De Haan et al [4] propose methods using targeted interventions to
prune a set of 2𝑁 causal hypotheses where 𝑁 is the dimensionality
of the state space. This is a huge search space for visuomotor tasks
like driving. Moreover, expert queries or environment interaction
in the training loop can often be unfeasible.

Taking a complementary approach, we seek to use a signal that
human drivers naturally exhibit while operating vehicles which
is highly correlated with causal parts of the state space — eye
gaze. Our idea is to use driver eye gaze as a supervisory signal,
alongside driving control, to highlight the lower dimensional parts
of the (very high-dimensional) visual state space that the driver
fixated on before making their driving decision. Specifically, we
use a contrastive learning formulation to encourage visuomotor
IL driving policies to change driving decisions based on visual
information in the fixated-at regions. This gaze supervision seeks
to mitigate causal confusion by directing the causal function of the
policy towards the variables of the observation (clusters of pixels),
which correspond to an underlying state variable that the human
believes is causal to the optimal behavior.
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The benefit of using eye gaze from human driving demonstra-
tors is that it is essentially “free”, i.e. it is a signal that is naturally
exhibited by humans as they drive. Importantly, it does not re-
quire additional labeling or intervention from human experts and
is non-intrusive, with gaze data being able to be collected with
a pair of wearable glasses or even in-cabin sensors. In fact, some
data-collection vehicles are already instrumented with cabin-facing
visual or infrared sensors, that can be used to obtain traffic-scene
registered eye gaze directly.

We propose a gaze-based contrastive supervision method to
incorporate driver gaze into policy training and show that fine-
tuning a pre-trained IL driving policy using our method results in
better driving performance than the pre-trained model. Our formu-
lation encourages the trained policy network’s driving actions to
be affected by gazed-at regions. Further, the fine-tuned method’s
saliency better matches drivers’ attention as indicated by their
gaze. In summary, we investigate the utility of natural driver eye
gaze-based supervision as a tool for mitigating causal confusion in
imitation learning-based driving agents.

2 METHOD
Causal confusion in IL driving agents: As an example algorithm
for exploring causal confusion in IL-based driving agents, we con-
sider the Learning by Cheating (LBC) [2] model for autonomous
urban driving in CARLA. As one may expect, the LBC model also
shows symptoms of suffering from causal confusion [1]. These
problems seem to occur primarily in the absence of surrounding
vehicles which may be wrongly used as causal cues. We especially
notice traffic light infractions where the LBC agent either does not
stop for or fails to restart after stopping at, a red light. We also
observe cases where the agent stops at a red light but restarts when
opposing traffic moves, even though the red light has not changed.

To investigate the relative importance of regions of the input
state space in making decisions, we used a saliency method to inves-
tigate the decision-making process of the LBC model. Specifically,
we used the blur-based saliency method by Greydanus et al. [5].
The method is network architecture agnostic and works by blur-
ring different regions of the given visual input and measuring the
difference in output with the original input. It reasons that input
image regions which, when blurred, cause the greatest difference
in the agent’s policy network output, are the most salient.

Thus, we can generate saliency maps for the LBC method. Ap-
plied to a vehicle stopped at a red light the frame before it turns
green, it shows that most of the salience lies erroneously on non-
causal parts of the input image, such as the base of the traffic light.

Gaze based supervisionWe collect driving demonstrations and
driver eye gaze in a VR based driving simulation and incorporate
gaze supervision as a contrastive loss to existing driving IL policies.

Human demonstrations were collected in the DReyeVR simula-
tor [6], which allows human driving in CARLA in VR. Eye gaze
movements were pre-processed to filter out high-frequency noise,
filtering out saccades, and aggregated into attention maps using a
Gaussian distribution over a 15-secondwindow. 7 drivers completed
five routes each, with some routes and participants excluded due
to motion sickness or data recording issues, resulting in a dataset
of 17 routes ≈ 70 minutes (henceforth: DRVR dataset).

Table 1: Driving performance and Model saliency IoU on the
Longest6 [3] benchmark. Base model for all rows is LBC [2]

Training Training Loss DS IoU
approach data used (↑) (↑)
Pre-trained [2] RBE LBC 7.01 0.13
Mixed (control only) Mix LBC 7.81 0.12
Mixed (control & gaze) Mix LBC+Triplet 9.61 0.18

Our idea to provide gaze supervision comes from correcting
misplaced salience using a triplet loss and gaze-based attention.
In our formulation, the original set of input images (left, center,
right, waypoint) constitutes the triplet’s anchor data point. The
negative input is constructed by applying Gaussian blur (same
parameters as [5]) to important gazed-at scene locations in the same
set of images (above 𝑥+, our formulation: 𝑥𝑔𝑎𝑧𝑒 ). The corresponding
positive point has the same blur applied to the unimportant scene
regions (above 𝑥− , our formulation: complement of attention maps
𝑥!𝑔𝑎𝑧𝑒 ). The reasoning for this formulation is as follows: the most
important regions for decision making for actions lie in the gazed-
at regions (as indicated by attention maps) and the non-gazed-at
regions do not contain information that would change the driving
decision. Hence, we can write the loss as follows 𝐿𝑡 (𝑥𝑎, 𝑥+, 𝑥−) =
max( | |𝜙 (𝑥𝑎)−𝜙 (𝑥+) | |2−||𝜙 (𝑥𝑎)−𝜙 (𝑥−) | |2+𝛼, 0) This loss enforces
that visual inputs blurred in locations unimportant to driving should
lead to a smaller change in network output than the same blur
applied in important regions.

We use two primary datasets: data from the rule-based expert
(RBE) and data from humans in the DReyeVR simulator (DRVR).

3 EXPERIMENTAL RESULTS
We evaluate the effectiveness of our gaze-based supervision method
in two parts: First, we show that after applying gaze supervision, the
saliency of the model matches the attention maps from human dri-
vers’ gaze more closely. Second, we show that the imitation agent’s
driving performance improves after applying gaze supervision.

To investigate the effect of gaze-based supervision on the driving
agent’s saliency, we use a modified version of Greydanus et al. [5]
to compute saliency maps. We use DRVR routes since those have
associated ground truth gaze (and hence, attention) available for
comparison. In our results (Table 1), we see that fine-tuning with
gaze supervision does indeed improve the Intersection over Union
of model saliency maps (i.e., they better match the true attention
maps from human demonstrators). Fine-tuning with Mixed data
and both gaze and control supervision achieves a good balance of
both IOU and driving performance.

To evaluate the driving performance of our fine-tuned models,
we used the Longest6 benchmark [3] and their 𝐷𝑟𝑖𝑣𝑖𝑛𝑔𝑆𝑐𝑜𝑟𝑒 (𝐷𝑆)
metric. From experiments investigating the agent’s driving perfor-
mance, using just control supervision on the Mixed (RBE + DRVR)
dataset does improve performance over the vanilla pre-trained LBC
model since it sees more training data than just the RBE dataset.
However, finetuning using Mixed data using the both gaze and
control losses in conjuction leads to the better driving performance
than using control loss alone.
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Societal Impact Statement
In our assessment, this work helps autonomous driving agents’
decisions to be based on parts of the environment human drivers
pay attention to. However, not all human drivers are equal and it is
important that we only distill those human behaviors into driving
policies that are deemed exemplarily safe. Here, we excluded drivers
who had not held a valid driver’s license for at least a year. For
on-road deployments a much higher bar should be set with multiple
independent raters verifying demonstrations for safety.
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