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ABSTRACT
We investigate brokerage between traders from an online learning

perspective. At any round 𝑡 , two traders arrive with their private

valuations, and the broker proposes a trading price. Unlike other

bilateral trade problems already studied in the online learning liter-

ature, we focus on the case where there are no designated buyer and

seller roles: each trader will attempt to either buy or sell depending

on the current price of the good.

We assume the agents’ valuations are drawn i.i.d. from a fixed but

unknown distribution. If the distribution admits a density bounded

by some constant𝑀 , then, for any time horizon 𝑇 :

• If the agents’ valuations are revealed after each interaction,

we provide an algorithm achieving regret𝑀 log𝑇 and show

this rate is optimal, up to constant factors.

• If only their willingness to sell or buy at the proposed price

is revealed after each interaction, we provide an algorithm

achieving regret

√
𝑀𝑇 and show this rate is optimal, up to

constant factors.

Finally, if we drop the bounded density assumption, we show that

the optimal rate degrades to

√
𝑇 in the first case, and the problem

becomes unlearnable in the second.
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1 INTRODUCTION
Over-the-counter (OTC) markets offer a variety of decentralized

alternatives to traditional financial exchanges and have gained

prominence for their flexibility, diversity, and accessibility for par-

ticipants. Paraphrasing the words of Tolstoy, “All centralized mar-
kets are the same, but each OTC market is unique in its own way”
[21, 24]. In recent years, OTCmarkets have flourished, becoming an

indispensable part of the global financial ecosystem, with a steady

growth trend documented since 2016 [19] and the value of US assets
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traded in OTC markets surpassing a staggering 50,000 billion USD

(exceeding centralized markets by over 20,000 billion USD) in 2020

[24]. Central to the functioning of decentralized OTC markets are

brokers who, acting as intermediaries, bridge the gap between buy-

ers and sellers, ensuring that trades are executed smoothly. Beyond

mere intermediation, brokers play a significant role in price discov-

ery, gauging demand and supply to determine optimal asset prices.

However, the classical impossibility result of Myerson and Sat-

terthwaite [22] highlights that the role of the broker is not without

challenges. Inspired by a recent stream of literature [2, 8, 10, 11], we

approach the bilateral trade problem of brokerage between traders

through the lens of online learning. When viewed from a regret

minimization perspective, bilateral trade has been explored over

rounds of seller/buyer interactions with no prior knowledge of

their private valuations, but only under rigid buyer and seller roles.

In contrast, it’s important to note that in many key OTC markets,

traders are willing to either buy or sell, depending on the prevailing

market conditions [23]. These markets encompass a wide array of

asset trades, including stocks, derivatives, art, collectibles, precious

metals and minerals, energy commodities like gas and oil, as well

as digital currencies (cryptocurrencies), among others.

Motivated by brokerage between traders in these markets, we

will investigate scenarios where traders’ roles as buyers or sellers

are not strictly defined.

1.1 Setting
We study the following problem. At each time 𝑡 ∈ N,

(1) Two traders arrive with private valuations 𝑉2𝑡−1 and 𝑉2𝑡 .

(2) The broker proposes a trading price 𝑃𝑡 .

(3) If the price 𝑃𝑡 falls between the lowest
1 𝑉2𝑡−1 ∧ 𝑉2𝑡 and

highest 𝑉2𝑡−1 ∨ 𝑉2𝑡 valuations (i.e., if the trader with the

smallest valuation is eager to sell at price 𝑃𝑡 and the other is

willing to buy at 𝑃𝑡 ), the trader with the highest valuation

buys the item from the trader with the lowest valuation

paying the brokerage price 𝑃𝑡 .

(4) Some feedback is revealed.

Consistently with the existing bilateral trade literature, we assume

valuations and prices belong to [0, 1], and the reward associated

with each interaction is the sum of the utilities of the traders, known

as gain from trade. Formally, for any 𝑝, 𝑣1, 𝑣2 ∈ [0, 1], the gain from

trade of a price 𝑝 when the valuations of the traders are 𝑣1 and 𝑣2 is

g(𝑝, 𝑣1, 𝑣2) B (𝑣1 ∨ 𝑣2 − 𝑣1 ∧ 𝑣2) I {𝑣1 ∧ 𝑣2 ≤ 𝑝 ≤ 𝑣1 ∨ 𝑣2} .
The aim of the learner is to minimize the regret, defined, for any
time horizon 𝑇 ∈ N, as

𝑅𝑇 B sup𝑝∈[0,1] E
[∑︁𝑇

𝑡=1

GFT𝑡 (𝑝)
]
− E

[∑︁𝑇

𝑡=1

GFT𝑡 (𝑃𝑡 )
]
,

1
We denote the minimum (resp., maximum) of any two real numbers 𝑥, 𝑦 ∈ R by

𝑥 ∧ 𝑦 (resp., 𝑥 ∨ 𝑦).

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

216

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


where we let GFT𝑡 (𝑞) B g(𝑞,𝑉2𝑡−1,𝑉𝑡 ) for all 𝑞 ∈ [0, 1] and the

expectations are taken with respect to the (possible) randomness

of (𝑉𝑡 )𝑡 ∈N and (𝑃𝑡 )𝑡 ∈N.
We study this problem under the assumption that the traders’

valuations𝑉 ,𝑉1,𝑉2, . . . are generated i.i.d. from an unknown distri-

bution a , a natural assumption for large and stable markets.

Finally, we consider two different types of feedback:

• Full feedback. The valuations𝑉2𝑡−1 and𝑉2𝑡 of the two current

traders are revealed at the end of every round 𝑡 .

• Two-bit feedback. Only the indicator functions I{𝑃𝑡 ≤ 𝑉2𝑡−1}
and I{𝑃𝑡 ≤ 𝑉2𝑡 } are revealed at the end of every round 𝑡 .

The information collected by the full feedback model corresponds

to direct revelation mechanisms, where the traders communicate

their valuations 𝑉2𝑡−1 and 𝑉2𝑡 before each round, and the price

proposed by the mechanism at time 𝑡 only depends on past bids

𝑉1, . . . ,𝑉2𝑡−2. The two-bit feedback model corresponds to posted
price mechanisms, where traders only communicate their willing-

ness to buy or sell at the posted price,
2
and the valuations 𝑉2𝑡−1

and 𝑉2𝑡 are never revealed.

1.2 Overview of Our Contributions
If the distribution a of the traders’ valuations admits a density

bounded by some constant𝑀 , then, for any time horizon 𝑇 :

• In the full feedback case, we design an algorithm (Algo-

rithm 1) achieving regret 𝑂 (𝑀 log𝑇 ) (Theorem 3.1) and

provide a matching lower bound Ω (𝑀 log𝑇 ) (Theorem 3.2).

• In the two-bit feedback case, we design an algorithm (Algo-

rithm 2) achieving regret 𝑂
(√
𝑀𝑇

)
(Theorem 4.2) and pro-

vide a matching lower bound Ω
(√
𝑀𝑇

)
(Theorem 4.3).

We stress that ours is the first paper on online learning in bilateral

trade where lower bounds have the optimal dependency on𝑀 .

If we drop the bounded density assumption, we show that the

optimal rate degrades to Θ
(√
𝑇
)
in the full feedback case (Theo-

rem 5.1 and 5.3), while the problem becomes unlearnable in the

two-bit feedback case (Theorem 5.4).

1.3 Techniques and Challenges
The two feedback models we consider present different challenges.

Full Feedback. It can be proven that assuming a has a bounded

density implies the Lipschitzness of the expected gain from trade.

The standard approach for Lipschitz objectives is to discretize the

domain uniformly and run an optimal expert algorithm on the

discretization, which yields straightforwardly an
𝑀
𝐾
𝑇 +

√︁
𝑇 log𝐾

regret guarantee, where 𝐾 is the number of prices in the discretiza-

tion and 𝑇 is the time horizon. Alternatively, one could build a

reduction to known bilateral trade problems to obtain an improved√
𝑇 bound (for further details, see the Related Work section). Both

2
For the nitpicker, the natural feedback model in this case would be to reveal the four

bits I{𝑃𝑡 < 𝑉2𝑡−1 }, I{𝑃𝑡 = 𝑉2𝑡−1 }, I{𝑃𝑡 < 𝑉2𝑡 }, and I{𝑃𝑡 = 𝑉2𝑡 }. This feedback is

more informative than the one we propose; hence our upper bounds hold a fortiori in
the four-bit feedback model. For the lower bounds, in the bounded density case, given

that the two and four-bit feedback give the same information with probability 1, the

same results hold; in the general case, a straightforward adaptation of the exact same

construction in our lower bounds gives the result for the four-bit feedback case. Given

this equivalency between these two models, we opt for the two-bit feedback for the

sake of conciseness.

these natural choices are highly suboptimal. In contrast, we exploit

the specific structure of our problem to achieve an exponential gain,

resulting in an𝑀 log𝑇 regret bound. Regarding the lower bound,

it’s worth noting that determining the optimal dependence on𝑀

in such problems is remarkably challenging. In fact, no previous

papers on online learning for bilateral trade problems showcased

lower bounds displaying any dependence on𝑀 , let alone the opti-

mal one. We manage to achieve this through two pivotal lemmas:

an Approximation (Lemma 2.1) and a Representation (Lemma 2.2)

lemma. These two technical results lead us to Theorem 2.3, which

establishes two points: first, E[𝑉 ] is always a maximizer of the

expected gain from trade; second, posting a price close to the max-

imizer has a cost only quadratic in the distance. These two facts

point to a peculiar similarity between ours and the statistical prob-

lem of estimating an expectation online with a quadratic loss, an

observation that turns out to be crucial in a setting where we could

not otherwise recycle any of the existing techniques of other online

learning settings in bilateral trade (none of which features logarith-

mic rates). Still, following this path is made technically challenging

by the fact that building a hard instance (in a setting where we

cannot control the gain from trade directly but only indirectly

through the distributions of traders’ valuations) is far from being

straightforward. We manage to circumvent this roadblock by care-

fully designing a 1-parameter family of hard distributions which

are used to build a reduction to a Bayesian problem. By means of

non-trivial information-theoretic and probabilistic arguments, we

can exploit the quadratic loss intuition, to obtain a lower bound

featuring the optimal𝑀 log𝑇 rate.

Beyond this, the Approximation and Representation Lemmas

also suggest the best pathway to tackle the non-bounded-density

setting. The idea of trying to approximate the representation given

by the second lemma and the fact that this representation reduces

to a simpler form in the bounded-density case allows us to design

a simple algorithm that enjoys optimal regret guarantees both in

the bounded-density (𝑀 log𝑇 regret) and the non-bounded density

(

√
𝑇 regret) cases while being completely oblivious to which of the

two assumptions hold.

Two-Bit Feedback. A clear challenge of the two-bit feedback is

posed by its low quality: at each time step, this feedback is not

even sufficient to reconstruct the so-called bandit feedback (i.e.,

the reward GFT𝑡 (𝑃𝑡 ) of the posted price 𝑃𝑡 ), which is typically

considered the bare minimum in online learning. Once more, the

Approximation and Representation Lemmas point to the strategy

of estimating E[𝑉 ] with the available feedback. Leveraging a dis-

cretization argument (Lemma 4.1) and concentration inequalities,

we obtain an upper bound of

√
𝑀𝑇 in the bounded-density case.

To show that this rate is optimal, we build on the hard instances

we designed for the full feedback case. The difference now is that

the scarcity of feedback leads to a setting similar to the so-called

“revealing action” problem [12]. A notable difference is that the

regular revealing action problem has an optimal 𝑇 2/3
regret, but,

cast in our problem, due to the shape of the reward around the

maximizer, a careful analysis shows that the regret of the adapted

revealing action is

√
𝑀𝑇 . Again, we stress that this is the first lower

bound in online learning with two-bit feedback for bilateral trade

with any dependence on𝑀 , let alone the optimal one.
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As for the full feedback case, we show how the problem changes

without the bounded density assumption. Dropping the assump-

tion leads to a pathological phenomenon typical of bilateral trade

problems (known as needle-in-a-haystack) leading us to the design

of hard instances in which all-but-one prices suffer a high Ω(1)-
regret, and where it is essentially impossible to find the optimal

price among the continuum amount of suboptimal ones given the

small amount of information carried by the two-bit feedback.

1.4 Related Work
Since its inception in the seminal work of Myerson and Satterth-

waite [22], a large body of literature on bilateral trade has emerged,

mainly from a best-approximation/game-theoretic perspective [1,

3, 5, 7, 14–18, 20]. For a discussion about this literature, see [8].

In recent years, bilateral trade has also been studied in online

learning settings. Given that these works are the most closely re-

lated to ours, we focus on discussing our relationship with them.

In [10], the authors studied a bilateral trade setting where the

sequence of seller/buyer valuations (𝑆𝑡 , 𝐵𝑡 )𝑡 ∈N is an i.i.d. process.

This is also the case in our setting, via the reduction where we

set 𝑆𝑡 B 𝑉2𝑡−1 ∧ 𝑉2𝑡 and 𝐵𝑡 B 𝑉2𝑡−1 ∨ 𝑉2𝑡 . In the full-feedback

case, they obtain regret 𝑂
(√
𝑇
)
(improved to 𝑂

(√
𝑇
)
in [8]) and

show that any algorithm suffers worst-case
3
regret Ω

(√
𝑇
)
, even

under the bounded density assumption (shorthanded by BDA, in the

rest of this section), i.e., when the joint distribution of seller/buyer

valuations has a density bounded by some constant𝑀 . In contrast,

in the full feedback case, we prove that this rate is suboptimal

in our setting under BDA, and can be improved exponentially to

an optimal Θ(𝑀 log𝑇 ) (Theorem 3.1 and 3.2). Without BDA, one

could run their FBP algorithm in our setting, keeping its 𝑂
(√
𝑇
)

guarantees. Instead, we elected to propose a different algorithm

(Algorithm 3) with a simpler analysis, achieving a regret with the

same dependence on 𝑇 but with better numerical constants. We

also remark that a new lower bound proof is required to prove this

rate is optimal (Theorem 5.3), given that the family of instances to

prove the lower bound in [10] cannot arise via the reduction above.

In the two-bit feedback i.i.d. setting, [10] show that any algo-

rithm has to suffer linear worst-case
3
regret, even under BDA. In

contrast, we prove that in the two-bit feedback case, our problem

is learnable under BDA and obtain optimal Θ
(√
𝑀𝑇

)
guarantees

(Theorem 4.2 and 4.3). Without BDA, we show that our problem is

also unlearnable (Theorem 5.4).

Under BDA and the additional assumption that 𝑆𝑡 and 𝐵𝑡 are

independent of each other (which in not the case in our problem

because of the correlation between the maximum and the minimum

of the traders’ valuations), [10] achieve a regret 𝑂 (𝑀1/3𝑇 2/3) (im-

proved to𝑂 (𝑀1/3𝑇 2/3) in [8]) and show that any algorithm suffers

worst-case regret Ω(𝑇 2/3) when𝑀 is sufficiently large.

The bilateral trade problem has also been studied under a weak
budget balance assumption in [8]. In this setting, the learner can

post two different prices: a selling price 𝑝 (to the seller) and a

buying price 𝑞 (to the buyer), with 𝑝 ≤ 𝑞. The authors prove that
this bilateral trade problem is learnable even without assuming the

independence of seller’s 𝑆𝑡 and buyer’s 𝐵𝑡 valuations, providing an

3
Among all i.i.d. sequences (𝑆𝑡 , 𝐵𝑡 )𝑡 ∈N , not just those arising from the reduction

𝑆𝑡 B 𝑉2𝑡−1 ∧𝑉2𝑡 and 𝐵𝑡 B 𝑉2𝑡−1 ∨𝑉2𝑡 .

𝑂 (𝑀𝑇 3/4) upper bound. [9, 11] prove that this rate is optimal in

𝑇 (up to logarithmic terms), providing a matching (in 𝑇 ) Ω(𝑇 3/4)
lower bound. We remark that even if the broker were permitted to

offer two distinct prices, 𝑝 ≤ 𝑞 (with 𝑝 as the selling price and 𝑞 as

the buying price), our results would still be optimal. This is because

there’s no reason to do so in the full feedback scenario
4
, and our

two-bit case lower bound remains valid with slight adjustments.

In the adversarial case, [10] show that learning is impossible.

Their lower bound construction yields that learning in the adver-

sarial case is also impossible in our setting. In fact, given that in the

adversarial case the sequence of traders’ valuations can be chosen

arbitrarily, we can set𝑉2𝑡−1 B 𝑠𝑡 and𝑉2𝑡 B 𝑏𝑡 where 𝑠𝑡 and 𝑏𝑡 are

defined as in the adversarial lower bound construction in the proof

of Theorem 5.1 in [10], and the same proof applies verbatim.

To achieve learnability in the adversarial case, [2] weakened the

notion of regret, setting as a benchmark a multiple of (and not ex-

actly the) the cumulative reward of the best fixed price in hindsight.

In the full-feedback case they obtained Θ̃(
√
𝑇 ) guarantees on the

2-regret, while in the two-bit-feedback case they obtained a mis-

matching upper𝑂 (𝑇 3/4) and lower Ω(𝑇 2/3) bounds on the 2-regret

(and closing this gap is still an open problem in the bilateral trade

literature). Analogous considerations such as the ones made above

for the standard adversarial setting apply also to this weakened

notion of regret in our setting.

As a final note on the current online learning literature on bilat-

eral trade, we remind the reader again that ours is the first paper in

this literature that has the optimal dependency on both𝑀 and 𝑇 .

2 STRUCTURAL RESULTS
We denote the Dirac measure based at 𝑥 ∈ R by 𝛿𝑥 , i.e., 𝛿𝑥 is the

measure defined via the equation 𝛿𝑥 [𝐴] = I{𝑥 ∈ 𝐴} for any set 𝐴.

For any (signed) measure ` and any measurable set 𝐸, we will write

`𝐸 rather than ` [𝐸] whenever this does not cause confusion. For
any measure ` over [0, 1], we let ¯̀ B

∫
[0,1] 𝑥 d` (𝑥), and we define

the functions 𝜌 (`) and 𝜌 (`), for all 𝑝 ∈ [0, 1], by

𝜌 (`) (𝑝) B
∫ 𝑝

0

(
` [0, _] + ` [0, _)

)
d_ +

(
` [0, 𝑝] + ` [0, 𝑝)

)
( ¯̀ − 𝑝) ,

𝜌 (`) (𝑝) B 𝜌 (`) (𝑝) + `{𝑝}
(∫ 𝑝

0

` [0, _] d_ +
∫

1

𝑝

` [_, 1] d_

)
.

The following lemma shows that ¯̀ maximizes 𝜌 (`) (in general) and

𝜌 (`) (if ` has a bounded density), and the cost of approximating ¯̀.

Lemma 2.1 (Approximation). If ` is a probability measure on
[0, 1], then 𝜌 (`) ( ¯̀) = max𝑝∈[0,1] 𝜌 (`) (𝑝) and, for any 𝑝 ∈ [0, 1],
𝜌 (`) ( ¯̀) − 𝜌 (`) (𝑝) ≤ 2| ¯̀ − 𝑝 |. If ` has a density bounded by𝑀 > 0,
then 𝜌 (`) = 𝜌 (`) and

0 ≤ 𝜌 (`) ( ¯̀) − 𝜌 (`) (𝑝) ≤ 𝑀 | ¯̀ − 𝑝 |2 , ∀𝑝 ∈ [0, 1] .

Proof. For _ ∈ [0, 1], let𝑚(_) B ` [0, _] + ` [0, _) and note that
𝑚 is a [0, 1]-valued non-decreasing function of _. For any 𝑝 ∈ [0, 1],

𝜌 (`) ( ¯̀) − 𝜌 (`) (𝑝) =
∫

¯̀

𝑝

(
𝑚(_) −𝑚(𝑝)

)
d_

{≥ 0 ,

≤ 2| ¯̀ − 𝑝 | , (1)

4
As [11] remark, “The only reason for a budget-balanced algorithm to post two different

prices is to obtain more information. A direct verification shows that the expected

gain from trade can always be maximized by posting the same price to both the seller

and the buyer”
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which implies that 𝜌 (`) ( ¯̀) = max𝑝∈[0,1] 𝜌 (`) (𝑝). Next, note that
for all 𝑝 ∈ [0, 1],

��𝜌 (`) (𝑝) − 𝜌 (`) (𝑝)
�� ≤ `{𝑝}, which, if ` has a

density 𝑓 bounded by a constant𝑀 , implies 𝜌 (`) (𝑝) = 𝜌 (`) (𝑝) and

𝜌 (`) ( ¯̀) − 𝜌 (`) (𝑝) = 𝜌 (`) ( ¯̀) − 𝜌 (`) (𝑝) (1)

=

∫
¯̀

𝑝

(
𝑚(_) −𝑚(𝑝)

)
d_

= 2

∫
¯̀

𝑝

∫ _

𝑝

𝑓 (𝑥) d𝑥 d_ ≤ 2𝑀

�����∫ ¯̀

𝑝

|_ − 𝑝 | d_

����� = 𝑀 | ¯̀ − 𝑝 |2 . □

The next lemma provides a crucial representation of the objective

𝑝 ↦→ E
[
GFT𝑡 (𝑝)

]
. Its long and (somewhat) tedious proof is deferred

to the supplementary material.

Lemma 2.2 (Representation). For any 𝑡 ∈ N and 𝑝 ∈ [0, 1],

E
[
GFT𝑡 (𝑝)

]
= 𝜌 (a) (𝑝) .

The following is an immediate corollary of Lemmas 2.1 and 2.2.

Theorem 2.3. If a admits a density bounded by some constant𝑀 ,
then for any 𝑡 ∈ N and any 𝑝 ∈ [0, 1], it holds that

0 ≤ E
[
GFT𝑡

(
E[𝑉 ]

) ]
− E

[
GFT𝑡 (𝑝)

]
≤ 𝑀 ·

��E[𝑉 ] − 𝑝 ��2 ,
and, in particular, max𝑝∈[0,1] E

[
GFT𝑡 (𝑝)

]
= E

[
GFT𝑡

(
E[𝑉 ]

) ]
.

The previous theorem gives much intuition on the problem un-

der the bounded density assumption. It proves that the optimal

action would be to post the (unknown) expected value E[𝑉 ] of the
valuations. Moreover, it suggests the strategy of approximating this

value on the basis of the observed feedback, since posting a price

close to expectation has only a quadratic cost in the approximation.

3 FULL FEEDBACK
We begin by studying the full feedback case (corresponding to direct

revelation mechanisms) under the bounded density assumption.

3.1 Upper Bound
Following the intuition provided by Theorem 2.3, we introduce

the Follow-the-Mean algorithm (FTM), which simply posts the

empirical average of the past valuations (Algorithm 1).

Algorithm 1: Follow the Mean (FTM)

Post 𝑃1 B 1/2, then receive feedback 𝑉1, 𝑉2;

for time 𝑡 = 2, 3, . . . do

Post 𝑃𝑡 B
∑

2(𝑡−1)
𝑠=1

𝑉𝑠

2(𝑡−1) , then receive feedback 𝑉2𝑡−1, 𝑉2𝑡 ;

The next theorem shows that FTM enjoys an𝑀 log𝑇 regret.

Theorem 3.1. If a has density bounded by some constant𝑀 > 0,
then the regret of FTM satisfies, for all time horizons 𝑇 ≥ 2

𝑅𝑇 ≤ 1

2

+ 𝑀
4

(
1 + ln(𝑇 − 1)

)
.

Proof. For all time horizons 𝑇 ≥ 2, we have

𝑅𝑇 − 1

2

≤
𝑇∑︁
𝑡=2

(
E
[
GFT𝑡

(
E[𝑉 ]

) ]
− E

[
GFT𝑡 (𝑃𝑡 )

] )

(l)
=

𝑇∑︁
𝑡=2

E

[ [
E
[
GFT𝑡

(
E[𝑉 ]

)
− GFT𝑡 (𝑝)

] ]
𝑝=𝑃𝑡

]
(t)
≤

𝑇∑︁
𝑡=2

E

[ [
𝑀

��𝑝 − E[𝑉 ]��2]
𝑝=𝑃𝑡

]
= 𝑀

𝑇∑︁
𝑡=2

E
[��𝑃𝑡 − E[𝑉 ]��2]

(f )
= 𝑀

𝑇∑︁
𝑡=2

∫ ∞

0

P
[��𝑃𝑡 − E[𝑉 ]��2 ≥ Y

]
dY

(h)
≤ 𝑀

𝑇−1∑︁
𝑡=1

∫ ∞

0

2𝑒−8𝑡Y
dY

=
𝑀

4

𝑇−1∑︁
𝑡=1

1

𝑡
≤ 𝑀

4

(
1 +

∫ 𝑇−1

1

1

𝑠
d𝑠

)
≤ 𝑀

4

(
1 + ln(𝑇 − 1)

)
,

where (l) follows from the Freezing Lemma (see, e.g., [13, Lemma 8])

after observing that GFT𝑡 (𝑃𝑡 ) = g(𝑃𝑡 ,𝑉2𝑡−1,𝑉2𝑡 ) and 𝑃𝑡 is indepen-
dent of (𝑉2𝑡−1,𝑉2𝑡 ); (t) from Theorem 2.3; (f) follows from Fubini’s

Theorem; and (h) from Hoeffding’s inequality. □

3.2 Lower Bound
In this section, we prove the optimality of FTM by showing a match-

ing𝑀 log𝑇 lower bound. This is the most technically challenging

result of the paper. For a high-level overview of its proof, we refer

the reader back to Section 1.3.

Theorem 3.2. There exist two numerical constants 𝑐1, 𝑐2 > 0 such
that, for any𝑀 ≥ 2 and any time horizon 𝑇 ≥ 𝑐2𝑀

4, the worst-case
regret of any algorithm satisfies

sup

a∈D𝑀

𝑅a
𝑇
≥ 𝑐1𝑀 log𝑇 ,

where 𝑅a
𝑇
is the regret at time𝑇 of the algorithm when the underlying

i.i.d. sequence of traders’ valuations follows the distribution a , and
D𝑀 is the set of all distributions a with density bounded by𝑀 .

Proof. Given that we are in a stochastic i.i.d. setting, we can

restrict this proof to deterministic algorithms without loss of gen-

erality. Let 𝑀 ≥ 2, 𝐽𝑀 B
[

1

2
− 1

14𝑀
, 1

2
+ 1

14𝑀

]
, 𝑓 B I[0, 3

7
] +

𝑀I𝐽𝑀 + I[ 4

7
,1] , and, for any Y ∈ [−1, 1], 𝑔Y B −YI[ 1

7
, 3

14
] + YI( 3

14
, 2

7
]

and 𝑓Y B 𝑓 + 𝑔Y (see Fig. 1, left). For any Y ∈ [−1, 1], note that

0 ≤ 𝑓Y ≤ 𝑀 and

∫
1

0
𝑓Y (𝑥) d𝑥 = 1, hence 𝑓Y is a valid density

on [0, 1] bounded by 𝑀 , and we will denote the corresponding

probability measure by aY . Consider for each 𝑞 ∈ [0, 1], an i.i.d.

sequence (𝐵𝑞,𝑡 )𝑡 ∈N of Bernoulli random variables of parameter 𝑞,

an i.i.d. sequence (�̃�𝑡 )𝑡 ∈N of Bernoulli random variables of parame-

ter 1/7, an i.i.d. sequence (𝑈𝑡 )𝑡 ∈N of uniform random variables on

[0, 1], a uniform random variable 𝐸 on [−Y𝑀 , Y𝑀 ] where Y𝑀 := 7

𝑀
,

such that

(
(𝐵𝑞,𝑡 )𝑡 ∈N,𝑞∈[0,1] , (�̃�𝑡 )𝑡 ∈N, (𝑈𝑡 )𝑡 ∈N, 𝐸

)
is an independent

family. Let 𝜑 : [0, 1] → [0, 1] be such that, if 𝑈 is a uniform ran-

dom variable on [0, 1], then the distribution of 𝜑 (𝑈 ) has density
7

6
· 𝑓 · I[0,1]\[1/7,2/7] (which exists by the Skorokhod representation

theorem [25, Section 17.3]). For each Y ∈ [−1, 1] and 𝑡 ∈ N, define

𝑉Y,𝑡 B

(
2 +𝑈𝑡

14

(1 − 𝐵 1+Y
2
,𝑡 ) +

3 +𝑈𝑡
14

𝐵 1+Y
2
,𝑡

)
�̃�𝑡 +𝜑 (𝑈𝑡 ) (1−�̃�𝑡 ). (2)

Straightforward computations show that, for each Y ∈ [−1, 1] the
sequence (𝑉Y,𝑡 )𝑡 ∈N is i.i.d. with common distribution given by aY ,

and this sequence is independent of 𝐸. For any Y ∈ [−1, 1], 𝑝 ∈ [0, 1],
and 𝑡 ∈ N, let GFTY,𝑡 (𝑝) B g(𝑝,𝑉Y,2𝑡−1,𝑉Y,2𝑡 ) (for a qualitative
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Figure 1: On the left, the density 𝑓Y of a “hard” instance used to prove the lower bounds in Theorems 3.2 and 4.3. A base uniform
distribution is warped in the intervals [1/7, 2/7] (green) and [3/7, 4/7] (blue+red). The density on [1/7, 2/7] is split into two
uneven parts, differing by Y from the original. The mass on [3/7, 4/7] is concentrated in a small set 𝐽𝑀 of size Θ(1/𝑀) around
1/2. The corresponding gain from trade, on the right, has a smooth spike of height Θ(𝑀 |Y |2) situated in 𝐽𝑀 , at a distance Θ( |Y |)
from 1/2. When Y < 0 (resp., Y > 0), the spike is left (resp., right) of 1/2, and posting 1/2 is better than posting any price after
(resp., before) 1/2. In the two-bit feedback lower bound, the only way to gather usable feedback is to post prices in [1/7, 2/7],
which give rewards Θ(1)-away from the optimal one.

representation of its expectation, see Fig. 1, right). For any Y ∈
[−1, 1] and 𝑡 ∈ N, a direct computation shows that āY = E[𝑉Y,𝑡 ] =
1

2
+ Y

196
. By Lemmas 2.1 and 2.2, we have, for all Y ∈ [−1, 1], 𝑡 ∈ N,

and 𝑝 ∈ [0, 1],

E
[
GFTY,𝑡 (𝑝)

]
= 2

∫ 𝑝

0

∫ _

0

𝑓Y (𝑠) d𝑠 d_ + 2(āY − 𝑝)
∫ 𝑝

0

𝑓Y (𝑠) d𝑠 ,

which, together with the fundamental theorem of calculus —[4,

Theorem 14.16], noting that 𝑝 ↦→ E
[
GFTY,𝑡 (𝑝)

]
is absolutely con-

tinuous with derivative defined a.e. by 𝑝 ↦→ 2(āY − 𝑝) 𝑓Y (𝑝)— yields,

for any 𝑝 ∈ 𝐽𝑀 ,

E
[
GFTY,𝑡 (āY )

]
− E

[
GFTY,𝑡 (𝑝)

]
= 𝑀 |āY − 𝑝 |2 . (3)

Note also that for all Y ∈ [−Y𝑀 , Y𝑀 ], 𝑡 ∈ N, and 𝑝 ∈ [0, 1] \ 𝐽𝑀 ,

E
[
GFTY,𝑡 (𝑝)

]
≤ E

[
GFTY,𝑡 (1/2)

]
. (4)

Fix any arbitrary deterministic algorithm for the full feedback set-

ting (𝛼𝑡 )𝑡 ∈N, i.e., a sequence of functions 𝛼𝑡 :

(
[0, 1] × [0, 1]

)𝑡−1 →
[0, 1] mapping past feedback into prices (with the convention that

𝛼1 is just a number in [0, 1]). For each 𝑡 ∈ N, define 𝛼𝑡 :

(
[0, 1] ×

[0, 1]
)𝑡−1 → 𝐽𝑀 equal to 𝛼𝑡 whenever 𝛼𝑡 takes values in 𝐽𝑀 , and

equal to 1/2 otherwise. Defining 𝑍 B 1+𝐸
2
, and 𝑅a

𝑇
as the regret

of the algorithm (𝛼𝑡 )𝑡 ∈N at time 𝑇 when the underlying sequence

of traders’ valuations follows the distribution a , we have that the

worst-case regret supa∈D𝑀
𝑅a
𝑇
is lower bounded by

sup

Y∈[−Y𝑀 ,Y𝑀 ]

𝑇∑︁
𝑡=1

E
[
GFTY,𝑡 (āY ) − GFTY,𝑡

(
𝛼𝑡 (𝑉Y,1, . . . ,𝑉Y,2(𝑡−1) )

) ]
(4)
≥ sup

Y∈[−Y𝑀 ,Y𝑀 ]

𝑇∑︁
𝑡=1

E
[
GFTY,𝑡 (āY ) − GFTY,𝑡

(
𝛼𝑡 (𝑉Y,1, . . . ,𝑉Y,2(𝑡−1) )

) ]
♠
= 𝑀 sup

Y∈[−Y𝑀 ,Y𝑀 ]

𝑇∑︁
𝑡=1

E
[��āY − 𝛼𝑡 (𝑉Y,1, . . . ,𝑉Y,2(𝑡−1) )

��2]

≥ 𝑀

𝑇∑︁
𝑡=1

E
[��ā𝐸 − 𝛼𝑡 (𝑉𝐸,1, . . . ,𝑉𝐸,2(𝑡−1) )

��2]
r
≥ 𝑀

𝑇∑︁
𝑡=1

E
[��ā𝐸 − E[ā𝐸 | 𝑉𝐸,1, . . . ,𝑉𝐸,2(𝑡−1) ]

��2]
=
𝑀

196

𝑇∑︁
𝑡=1

E
[��𝐸 − E[𝐸 | 𝑉𝐸,1, . . . ,𝑉𝐸,2(𝑡−1) ]

��2]
q
≥ 𝑀

196

𝑇∑︁
𝑡=1

E
[��𝐸 − E[𝐸 | 𝐵 1+𝐸

2
,1
, . . . , 𝐵 1+𝐸

2
,2(𝑡−1) ]

��2] =
=
𝑀

98

𝑇∑︁
𝑡=1

E
[��𝑍 − E[𝑍 | 𝐵𝑍,1, . . . , 𝐵𝑍,2(𝑡−1) ]

��2]
where ♠ follows from (3) and the fact that 𝛼𝑡 takes values in 𝐽𝑀 ;

r from the fact that the minimizer of the 𝐿2 (P)-distance from

ā𝐸 in 𝜎 (𝑉𝐸,1, . . . ,𝑉𝐸,2(𝑡−1) ) is E[ā𝐸 | 𝑉𝐸,1, . . . ,𝑉𝐸,2(𝑡−1) ] (see, e.g.,
[25, Section 9.4]); q follows from the fact that, by Eq. (2) and the

independence of 𝐸 from

(
(𝐵𝑞,𝑡 )𝑡 ∈N,𝑞∈[0,1] , (�̃�𝑡 )𝑡 ∈N, (𝑈𝑡 )𝑡 ∈N

)
, the

conditional expectation E[𝐸 | 𝑉𝐸,1, . . . ,𝑉𝐸,2(𝑡−1) ] is a measurable

function of 𝐵 1+𝐸
2
,1
, . . . , 𝐵 1+𝐸

2
,2(𝑡−1) , together with the same obser-

vation made in r about the minimization of 𝐿2 (P) distance.
Finally, the general term of this last sum is the expected squared

distance between the random parameter (drawn uniformly over

[(1 − Y𝑀 )/2, (1 + Y𝑀 )/2]) of an i.i.d. sequence of Bernoulli random

variables and the conditional expectation of this random parameter

given 2(𝑡 − 1) independent realizations of these Bernoullis. A prob-

abilistic argument shows that there exist two universal constants

𝑐, 𝑐2 > 0 such that, for all 𝑡 ≥ 𝑐2𝑀
4
,

E
[��𝑍 − E[𝑍 | 𝐵𝑍,1, . . . , 𝐵𝑍,2(𝑡−1) ]

��2] ≥ 𝑐 1

𝑡 − 1

. (5)

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

220



At a high level, this is because, in an event of probability Ω(1), if 𝑡 is
large enough, the conditional expectationE[𝑍 | 𝐵𝑍,1, . . . , 𝐵𝑍,2(𝑡−1) ]
is very close to the empirical average

1

2(𝑡−1)
∑

2(𝑡−1)
𝑠=1

𝐵𝑍,𝑠 , whose

expected squared distance from𝑍 is Ω
(
1/(𝑡−1)

)
. For a formal proof

(5) with explicit constants, see the supplementary material. Sum-

ming over 𝑡 and putting everything together gives the result. □

4 TWO-BIT FEEDBACK
We now study the two-bit feedback case (corresponding to posted

price mechanisms) under the bounded density assumption.

4.1 Upper Bound
Motivated once more by the intuition provided by Theorem 2.3,

we begin this section by giving a way to approximate the expected

value of traders’ valuations on the basis of the two-bit feedback

and quantify the approximation power of this strategy.

Lemma 4.1. For any random variable 𝑋 on [0, 1] and any 𝑇0 ∈ N,

0 ≤ E[𝑋 ] − 1

𝑇0

𝑇0∑︁
𝑡=1

P

[
𝑡

𝑇0

≤ 𝑋
]
≤ 1

𝑇0

Proof. Notice that

1

𝑇0

𝑇0∑︁
𝑡=1

P

[
𝑡

𝑇0

≤ 𝑋
]
=

𝑇0∑︁
𝑡=1

∫ 𝑡
𝑇

0

𝑡−1

𝑇
0

P

[
𝑡

𝑇0

≤ 𝑋
]

d_

≤
𝑇0∑︁
𝑡=1

∫ 𝑡
𝑇

0

𝑡−1

𝑇
0

P [_ ≤ 𝑋 ] d_

≤
𝑇0∑︁
𝑡=1

∫ 𝑡
𝑇

0

𝑡−1

𝑇
0

P

[
𝑡 − 1

𝑇0

≤ 𝑋
]
=

1

𝑇0

𝑇0∑︁
𝑡=1

P

[
𝑡 − 1

𝑇0

≤ 𝑋
]

d_ .

Since by Fubini’s Theorem,

E[𝑋 ] =
∫

1

0

P[_ ≤ 𝑋 ] d_ =

𝑇0∑︁
𝑡=1

∫ 𝑡
𝑇

0

𝑡−1

𝑇
0

P[_ ≤ 𝑋 ] d_ ,

we obtain

0 ≤ 𝑇0E[𝑋 ] −
𝑇0∑︁
𝑡=1

P

[
𝑡

𝑇0

≤ 𝑋
]
≤

𝑇0∑︁
𝑡=1

(
P

[
𝑡 − 1

𝑇0

≤ 𝑋
]
− P

[
𝑡

𝑇0

≤ 𝑋
] )

=

𝑇0∑︁
𝑡=1

P

[
𝑡 − 1

𝑇0

≤ 𝑋 <
𝑡

𝑇0

]
= P[0 ≤ 𝑋 < 1] ≤ 1 . □

The previous lemma suggests the design of a simple Explore-

then-Commit (ETC) strategy (Algorithm 2), where the learner spends

an initial phase of length𝑇0 trying to estimate E[𝑉 ] and then posts

this estimate every round up to the time horizon𝑇 . ETC algorithms

are of great practical importance due to their easy implementability

and interpretability. This usually comes at a cost of performance.

As the following result (together with Theorem 4.3, in the next

section) will show, our ECT algorithm is free of this flaw.

Theorem 4.2. If a has density bounded by some constant𝑀 > 0,
then the regret of ETC satisfies, for all time horizons 𝑇 ,

𝑅𝑇 ≤ 𝑇0 −
1

2

+𝑀 (𝑇 −𝑇0)
(

2

𝑇 2

0

+ 1

𝑇0

)

Algorithm 2: Explore-then-Commit (ETC)

Input: Exploration time 𝑇0 ∈ N;
for time 𝑡 = 1, 2, . . . ,𝑇0 do

Post 𝑃𝑡 B 𝑡/𝑇0;

Receive feedback I{𝑃𝑡 ≤ 𝑉2𝑡−1}, I{𝑃𝑡 ≤ 𝑉2𝑡 };
for time 𝑡 = 𝑇0 + 1,𝑇0 + 2, . . . do

Post 𝑃𝑡 B
1

2𝑇0

∑𝑇0

𝑠=1

(
I{𝑃𝑠 ≤ 𝑉2𝑠−1} + I{𝑃𝑠 ≤ 𝑉2𝑠 }

)
;

Tuning the parameter 𝑇0 B
⌈√
𝑀𝑇

⌉
yields

𝑅𝑇 ≤ 2.5 + 2

√
𝑀𝑇 .

Proof. Fix any 𝑇0 ∈ N and let 𝑝0 B
1

𝑇0

∑𝑇0

𝑠=1
P

[
𝑠
𝑇0

≤ 𝑉
]
. By

Hoeffding’s inequality and Fubini’s theorem, we get

E
[��𝑝0 − 𝑃𝑇0+1

��2] = ∫ +∞

0

P
[��𝑝0 − 𝑃𝑇0+1

��2 ≥ Y
]

dY

≤
∫ +∞

0

2 exp(−4Y𝑇0) dY =
1

2𝑇0

,

from which, leveraging also Lemma 4.1, it follows that

E
[��E[𝑉 ] − 𝑃𝑇0+1

��2] ≤ 2 |E[𝑉 ] − 𝑝0 |2 + 2E
[��𝑝0 − 𝑃𝑇0+1

��2] ≤ 2

𝑇 2

0

+ 1

𝑇0

.

Proceeding as in the proof of Theorem 3.1, we obtain, for all 𝑡 ∈ N,

E
[
GFT𝑡

(
E[𝑉 ]

)
− GFT𝑡 (𝑃𝑡 )

]
≤ 𝑀E

[��E[𝑉 ] − 𝑃𝑡 ��2] .
Putting everything together, we get, for all 𝑇 ≥ 𝑇0 + 1

𝑅𝑇 −𝑇0 +
1

2

≤
𝑇∑︁

𝑡=𝑇0+1

E
[
GFT𝑡

(
E[𝑉 ]

)
− GFT𝑡 (𝑃𝑡 )

]
≤ 𝑀

𝑇∑︁
𝑡=𝑇0+1

E
[��E[𝑉 ] − 𝑃𝑡 ��2] = 𝑀 𝑇∑︁

𝑡=𝑇0+1

E
[��E[𝑉 ] − 𝑃𝑇0+1

��2]
≤ 𝑀 (𝑇 −𝑇0)

(
2

𝑇 2

0

+ 1

𝑇0

)
.

Substituting the selected parameters in the final expression yields

the second part of the result. □

4.2 Lower Bound
In this section, we prove the optimality of our ETC algorithm by

showing a matching

√
𝑀𝑇 lower bound. For a high-level overview

of its proof, we refer the reader back to Section 1.3.

Theorem 4.3. There exist two numerical constants 𝑐1, 𝑐2 > 0 such
that, for any𝑀 ≥ 2 and any time horizon 𝑇 ≥ 𝑐2𝑀

3, the worst-case
regret of any algorithm satisfies

sup

a
𝑅a
𝑇
≥ 𝑐1

√
𝑀𝑇 ,

where 𝑅a
𝑇
is the regret at time𝑇 of the algorithm when the underlying

i.i.d. sequence of traders’ valuations follows the distribution a , and
D𝑀 is the set of all distributions a with density bounded by𝑀 .

Proof sketch. Fix 𝑀 ≥ 2 and 𝑇 ∈ N. We will use the same

random variables, distributions, densities, and notation as in the

proof of Theorem 3.2. We will show that for each algorithm for the
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2-bit feedback setting and each time horizon𝑇 , if 𝑅a
𝑇
is the regret of

the algorithm at time horizon 𝑇 when the underlying distribution

of the traders’ valuations is a , then max

(
𝑅
a−Y
𝑇

, 𝑅
a+Y
𝑇

)
= Ω

(√
𝑀𝑇

)
if

𝑇 = Ω(𝑀3).
Note that for all Y > 0, 𝑡 ∈ N, and 𝑝 < 1

2

E
[
GFTY,𝑡 (1/2)

]
≥ E

[
GFTY,𝑡 (𝑝)

]
. (6)

Similarly, for all Y < 0, 𝑡 ∈ N, and 𝑝 > 1

2
,

E
[
GFTY,𝑡 (1/2)

]
≥ E

[
GFTY,𝑡 (𝑝)

]
. (7)

Furthermore, a direct verification shows that, for each Y ∈ [−1, 1]
and 𝑡 ∈ N,

max

𝑝∈[0,1]
E
[
GFTY,𝑡 (𝑝)

]
− max

𝑝∈[ 1

7
, 2

7
]
E
[
GFTY,𝑡 (𝑝)

]
≥ 1

50

= Ω(1) . (8)

Now, assume that 𝑇 ≥ 𝑀3/14
4
so that, defining Y B (𝑀𝑇 )−1/4

, we

have that the maximizer of the expected gain from trade
1

2
+ Y

196

belongs to the spike region 𝐽𝑀 . In the +Y (resp., −Y) case, the optimal

price belongs to the region

(
1

2
, 1

2
+ 1

14𝑀

]
(resp.,

[
1

2
− 1

14𝑀
, 1

2

)
). By

posting prices in the wrong region

[
0, 1

2

]
(resp.,

[
1

2
, 1

]
) in the +Y

(resp., −Y) case, the learner incurs a Ω(𝑀Y2) = Ω
(√︁
𝑀/𝑇

)
instan-

taneous regret by (3) and (6) (resp., (3) and (7)). Then, in order to

attempt suffering less than Ω
(√︁
𝑀/𝑇 · 𝑇

)
= Ω

(√
𝑀𝑇

)
regret, the

algorithm would have to detect the sign of ±Y and play accordingly.

We will show now that even this strategy will not improve the

regret of the algorithm (by more than a constant) because of the

cost of determining the sign of ±Y with the available feedback. Since
the feedback received from the two traders at time 𝑡 by posting

a price 𝑝 is I{𝑝 ≤ 𝑉±Y,2𝑡−1} and I{𝑝 ≤ 𝑉±Y,2𝑡 }, the only way to

obtain information about (the sign of) ±Y is to post in the costly

(Ω(1)-instantaneous regret by Eq. (8)) sub-optimal region [ 1

7
, 2

7
]

(see Fig. 1). However, posting prices in the region [ 1

7
, 2

7
] at time 𝑡

can’t give more information about ±Y than the information carried

by 𝑉±Y,2𝑡−1 and 𝑉±Y,2𝑡 , which, in turn, can’t give more informa-

tion about ±Y than the information carried by the two Bernoullis

𝐵 1±Y
2
,2𝑡−1

and𝐵 1±Y
2
,2𝑡 . Since (via an information-theoretic argument)

in order to distinguish the sign of ±Y having access to i.i.d. Bernoulli
random variables of parameter

1±Y
2

requires Ω(1/Y2) = Ω
(√
𝑀𝑇

)
samples, we are forced to post at least Ω

(√
𝑀𝑇

)
prices in the costly

region

[
1

7
, 2

7

]
suffering a regret of Ω

(√
𝑀𝑇

)
· Ω(1) = Ω

(√
𝑀𝑇

)
.

Putting everything together, no matter what the strategy, each

algorithm will pay at least Ω
(√
𝑀𝑇

)
regret. □

5 BEYOND BOUNDED DENSITIES
In this section, we investigate how the problem changes when the

bounded density assumption is no longer guaranteed to hold.

5.1 The Full Feedback Case
Our Representation Lemma shows that our goal is to maximize 𝜌 (a),
where 𝜌 is known (by Lemma 2.2) but a is not (by assumption). A

natural strategy is then to approximate a through an empirical

distribution â𝑡 and then maximize 𝜌 (â𝑡 ). This is precisely what

we do in Algorithm 3. Note that maximizing 𝜌 (â𝑡 ) can be done

efficiently by an exhaustive search of Θ(𝑡) candidate points. The
next result gives a regret guarantee of

√
𝑇 for FT𝜌 .

Algorithm 3: Follow-the-𝜌 (FT𝜌)

Post 𝑃1 B 1/2, then receive feedback 𝑉1, 𝑉2;

for time 𝑡 = 2, 3, . . . do
Let â𝑡 B

1

2(𝑡−1)
∑

2(𝑡−1)
𝑠=1

𝛿𝑉𝑠 ;

Post 𝑃𝑡 ∈ argmax𝑝∈[0,1] B 𝜌 (â𝑡 ) (𝑝);
Receive feedback 𝑉2𝑡−1, 𝑉2𝑡 ;

Theorem 5.1. The regret of FT𝜌 satisfies, for all time horizons 𝑇 ,

𝑅𝑇 ≤ 1/2 + 4

(
3

√
𝜋 +

√
2

)√
𝑇 − 1 .

Proof sketch. For any price 𝑝★ ∈ [0, 1], and time step 𝑡 ≥ 2,

E
[
GFT𝑡 (𝑝★)

]
− E

[
GFT𝑡 (𝑃𝑡 )

] ♠
= 𝜌 (a) (𝑝★) − E

[
𝜌 (a) (𝑃𝑡 )

]
= E

[
𝜌 (a) (𝑝★) − 𝜌 (â𝑡 ) (𝑝★)

]
+ E

[
𝜌 (â𝑡 ) (𝑝★) − 𝜌 (â𝑡 ) (𝑃𝑡 )

]
+ E

[
𝜌 (â𝑡 ) (𝑃𝑡 ) − 𝜌 (a) (𝑃𝑡 )

] ♣
≤ 2E

[
sup

𝑝∈[0,1]

��𝜌 (â𝑡 ) (𝑝) − 𝜌 (a) (𝑝)��]
q
≤ 2E

[
6 sup

_∈[0,1]
| (a − a𝑡 ) [0, _] |

]
+ 2E

[�����E[𝑉 ] − ∑
2(𝑡−1)
𝑠=1

𝑉𝑠

2(𝑡 − 1)

�����
]

r
≤ 12

∫ +∞

0

P

[
sup

_∈[0,1]
| (a − a𝑡 ) [0, _] | ≥ Y

]
dY + 4√︁

2(𝑡 − 1)
•
≤ 24

∫ +∞

0

𝑒4Y2 (𝑡−1)
dY + 4√︁

2(𝑡 − 1)
≤ 2

3

√
𝜋 +

√
2

√
𝑡 − 1

,

where ♠ follows by Lemma 2.2 and the Freezing Lemma; ♣ by defi-

nition of 𝑃𝑡 ; q by elementary computations; r by Fubini’s Theorem

and upper bounding E
[
|. . . |

]
with the variance of

∑
2(𝑡−1)
𝑠=1

𝑉𝑠

2(𝑡−1) ; and •
by the DKW inequality (see, e.g., [8, Theorem J.1]). Summing over

𝑡 from 2 to 𝑇 , yields the result. □

Next, we show that running FTM until evidence is observed that

a does not have a bounded density (i.e., until we observe the same

sample twice), then switching to FT𝜌 (FTMT𝜌 , Algorithm 4), keeps

Algorithm 4: Follow-the-Mean-then-𝜌 (FTMT𝜌)

for time 𝑡 = 1, 2, . . . do
Post 𝑃𝑡 according to FTM (Algorithm 1);

if {𝑉2𝑡−1,𝑉𝑡 } ∩ {𝑉1, . . . ,𝑉2(𝑡−1) } ≠ ∅ then
𝜏 B 𝑡 and break;

Run FT𝜌 (Algorithm 3) up to time 𝜏 without posting prices;

for time 𝑡 = 𝜏 + 1, 𝜏 + 2, . . . do
Post 𝑃𝑡 according to FT𝜌 (Algorithm 3);

the guarantees of FTM if a has a bounded density and those of FT𝜌

if a does not, without requiring this a priori knowledge.

Theorem 5.2. For all time horizons𝑇 , the regret of FTMT𝜌 satisfies
(1) If a has density bounded by some constant𝑀 > 0 and 𝑇 ≥ 2,

𝑅𝑇 ≤ 1

2

+ 𝑀
4

(
1 + ln(𝑇 − 1)

)
.

(2) Otherwise, 𝑅𝑇 ≤ 7.5 + 6

(
2

√
𝜋 +

√
2

)√
𝑇 − 1 .
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Proof. If a has density bounded by some constant𝑀 > 0, then

the condition {𝑉2𝑡−1,𝑉𝑡 }∩{𝑉1, . . . ,𝑉2(𝑡−1) } ≠ ∅ never occurs with

probability 1; therefore, the expected regret of FTMT𝜌 coincides

with that of FTM, and Item 1 follows by Theorem 3.1.

For Item 2, define the following: Y B sup𝑝∈[0,1] a{𝑝}; 𝑝Y ∈
[0, 1] such that a{𝑝} ≥ Y/2; 𝜏 ′ B 𝜏 ∧ 𝑇 ; 𝜏 ′′ B inf

{
𝑡 ∈ N |∑𝑡

𝑠=1
I{𝑉2𝑠 = 𝑝Y } ≥ 2

}
, and note that 𝜏 ′ ≤ 𝜏 ≤ 𝜏 ′′; 𝑃 ′

1
, 𝑃 ′

2
, . . . (resp.,

𝑃 ′′
1
, 𝑃 ′′

2
, . . . ) are the prices posted by FTM (resp., FT𝜌) run with feed-

back𝑉1,𝑉2, . . . ; 𝑝
★ ∈ argmax𝑝∈[0,1] 𝜌 (a) (𝑝);𝑋𝑡 (𝑝) B GFT𝑡 (𝑝★)−

GFT𝑡 (𝑝) for all 𝑡 ∈ N and 𝑝 ∈ [0, 1]; 𝑥 (𝑝) B 𝜌 (a) (𝑝★) − 𝜌 (a) (𝑝)
for all 𝑝 ∈ [0, 1], and note that 𝑥 ≥ 0. Then:

𝑅𝑇 = E

[
𝑇∑︁
𝑡=1

𝑥 (𝑃𝑡 )
]
= E

[
𝜏 ′∑︁
𝑡=1

𝑥 (𝑃 ′𝑡 )
]
+ E

[
𝑇∑︁

𝑡=𝜏 ′+1

𝑥 (𝑃 ′′𝑡 )
]

≤ E
[
𝜏 ′∑︁
𝑡=1

𝑥 (𝑃 ′𝑡 )
]
+ E

[
𝑇∑︁
𝑡=1

𝑥 (𝑃 ′′𝑡 )
]
,

where the first equality follows from the Freezing Lemma, the

inequality from 𝑥 ≥ 0, and note that the second expectation in the

last formula is the regret of FT𝜌 (by the Freezing Lemma), and can

be controlled applying Theorem 5.1. For the first term, we have

E

[
𝜏 ′∑︁
𝑡=1

𝑥 (𝑃 ′𝑡 )
]
− YE[𝜏 ′] ≤ E

[
𝜏 ′∑︁
𝑡=1

𝜌 (a)
(
E[𝑉 ]

)
−

𝜏 ′∑︁
𝑡=1

𝜌 (a) (𝑃 ′𝑡 )
]

≤ 2

𝑇∑︁
𝑡=1

E
[��E[𝑉 ] − 𝑃 ′𝑡 ��] ≤ 1 + 2

𝑇∑︁
𝑡=2

√√√
Var

(∑
2(𝑡−1)
𝑠=1

𝑉𝑠

2(𝑡 − 1)

)
= 1 +

√
2

𝑇−1∑︁
𝑡=1

𝑡−1/2 ≤ 1 + 2

√︁
2(𝑇 − 1) ,

where the first inequality follows from the definition of 𝜌 and the

second from Lemma 2.1. Noting that 𝜏 ′′ has a negative binomial

distribution with parameters 2 and Y/2, we get

YE[𝜏 ′] ≤ YE[𝜏 ′′] = Y · 2

1 − Y/2

Y/2

≤ 4 .

Putting everything together gives the result. □

We now show that when a does not have a bounded density, the√
𝑇 guarantee of FT𝜌 and FTMT𝜌 is optimal.

Theorem 5.3. There exists a numerical constant 𝑐 > 0 such that,
for any time horizon𝑇 , the worst-case regret of any algorithm satisfies

sup

a
𝑅𝑇 ≥ 𝑐

√
𝑇 ,

where the sup is over all distributions a .

Proof sketch. For each Y ∈
[
− 1

8
, 1

8

]
, consider the distribution

aY B
1

4
𝛿0 +

(
1

4
+ Y

)
𝛿

1/3
+

(
1

4
− Y

)
𝛿

2/3
+ 1

4
𝛿1. Then, prices 𝑝 ∈

{
1

3
, 2

3

}
are either Θ(Y)-suboptimal or optimal (depending on the sign of Y),

and the remaining prices 𝑝 in [0, 1] are Ω(1)-suboptimal. Noting

that Ω(Y𝑇 ) is the regret paid by posting suboptimal prices for 𝑇

time steps and, via an information-theoretic argument, that Ω(1/Y2)
rounds are needed to determine the sign of Y, one can conclude

that the regret of any algorithm is Ω
(
min

(
Y𝑇 , Y 1

Y2

) )
= Ω

(√
𝑇
)
, if Y =

𝑇 −1/2
. See the supplementary material for additional details. □

5.2 The Two-Bit Feedback Case
Finally, learning becomes impossible if the bounded density as-

sumption on a is lifted in the two-bit feedback case. We show this

by leveraging a needle-in-a-haystack phenomenon. The idea is that

any deterministic algorithm is capable of posting just a finite num-

ber of prices since all the possible sequences of 2-bit feedback, up

to a certain time horizon 𝑇 , are 4
𝑇
. The goal is then to design a

hard instance whose maximizer is never played by the algorithm

and whose value is Ω(1) higher than the other values.

Theorem 5.4. For any time horizon 𝑇 , the worst-case regret of
any algorithm satisfies

sup

a
𝑅𝑇 ≥ 𝑇

9

,

where the sup is over all distributions a .

Proof. Given that we are in a stochastic i.i.d. setting, it is enough

to consider deterministic algorithms. Let (𝛼𝑡 )𝑡 ∈N be a determinis-

tic algorithm for the two-bit feedback setting, i.e., a sequence of

functions 𝛼𝑡 :

(
{0, 1} × {0, 1}

)𝑡−1 → [0, 1] mapping past feedback

into prices (with the convention that 𝛼1 is just a number in [0, 1]).
Fix a time horizon 𝑇 . Note that there are 4

𝑇
different sequences of

pairs of zeroes and ones representing the feedback the algorithm

could receive up to time 𝑇 . Hence, the algorithm (𝛼𝑡 )𝑡 ∈N selects

the prices it posts in a set 𝐴 which has no more than 4
𝑇
different

prices. For each [ ∈
(
0, 1

2

)
, select any 𝑥 ∈

(
1

2
− [, 1

2

)
\𝐴 and define

a𝑥 B
1

3

𝛿0 +
1

3

𝛿𝑥 + 1

3

𝛿1 .

Consider an i.i.d. sequence of traders’ valuations 𝑉1,𝑉2, . . . with

common distribution a𝑥 , and for each 𝑡 ∈ N and 𝑝 ∈ [0, 1], let
GFT𝑡 (𝑝) B g(𝑝,𝑉2𝑡−1,𝑉2𝑡 ). For each 𝑡 ∈ N, notice that
E
[
GFT𝑡 (𝑥)

]
= max

𝑝∈[0,1]
E
[
GFT𝑡 (𝑝)

]
E
[
GFT𝑡 (𝑥)

]
− max

𝑝∈[0,1]\{𝑥 }
E
[
GFT𝑡 (𝑝)

]
=

4

9

− 4

9

+ 2

9

𝑥 ≥ 1 − 2[

9

.

Given that the algorithm never posts the price 𝑥 up to time 𝑇 , it

follows that the regret at time 𝑇 of the algorithm is lower bounded

by
1−2[

9
𝑇 . Given that[ was arbitrarily chosen, the worst-case regret

of the algorithm at time 𝑇 is lower bounded by
𝑇
9
. □

6 FUTURE RESEARCH DIRECTIONS
Our paper motivates further study of brokerage in a few different

directions. It would be interesting to study the “contextual” version

of this problem, where some information about the traders (and,

therefore, about their valuations for the item being traded) is avail-

able to the broker before making a decision. Another intriguing

topic is discovering intermediate cases for which something mean-

ingful could be said between the stationary (that we fully fleshed

out) and adversarial (that, as discussed in the Related Work section,

is unlearnable) cases. Finally, a natural question in bilateral trade is

learning to optimize performance measures focused more on the

broker’s earnings than the traders’; for instance, rather than the

gain from trade, a natural objective is to maximize the total number

of trades, as it directly increases the broker’s business volume and,

consequently, their profits.
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