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ABSTRACT
We investigate the problem of fair allocation of indivisible items
when certain item pairs conflict, where conflicts are represented by
an interval graph. In this setting, no two conflicting items may be
allocated to the same agent. Our problem has practical applications
specifically for course allocation where students are agents and
course seats are items; courses may have conflicting schedules. We
devise algorithms for finding fair, specifically envy-freeness up
to one item (EF1), allocations of courses to students in the most
general setting: when students have non-uniform, non-identical,
additive utility functions. In this extended abstract, we provide one
of the algorithms that finds a EF1 solution under identical utilities,
implying that, for any course, all students have the same utility.
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1 INTRODUCTION
Our work is motivated by the problem of allocating seats in courses
in the university setting. Often, the demand greatly exceeds the
capacity of these courses, limited by the availability of course staff,
and so many students do not obtain their preferred courses. We
seek a solution that every student deems fair.

In our problem setting, a student is an agent and each seat is an
indivisible resource. We would ideally like to compute an envy-free
assignment of seats to students. An envy-free allocation assigns
seats to students such that no student envies another student’s
allocation. A student 𝑖 envies another student 𝑖 ′ if the sum of the
utilities of the courses allocated to 𝑖 is less than the sum of the
utilities allocated to 𝑖 ′ (using 𝑖’s utility function); namely, student 𝑖
envies 𝑖 ′ when 𝑖 has higher utility for the bundle of courses allo-
cated to 𝑖 ′. Each seat occupies an interval of time corresponding
to the course meeting time. Each student has non-negative utili-
ties for each seat (course), and the total utility of a student is the
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sum of the utilities of the assigned courses calculated using that
student’s utility function. Having courses occupy intervals of time
results in a very interesting and hitherto under-explored problem
domain consisting of fair allocation of items with conflicts. Con-
flicts lead to a much harder problem setting; thus, fair solutions
when no such conflicts exist could become infeasible allocations
in our settings. Hence, our setting requires an entirely new set of
techniques. Thus far, only a few recent papers have studied fair allo-
cation with conflicting items [3, 7, 8, 11]. In this extended abstract,
we propose a technique to obtain a fair solution under (non-binary)
additive utilities, fixed credit caps, and strict restrictions on the
allocation of conflicting courses. None of the existing solutions can
simultaneously cater to all these challenges.

We now discuss the fairness criterion that we aim to achieve.
While an assignment where no student gets a seat in any course
is certainly envy-free (fair), unfortunately, such a solution is not
desirable. As a result, we propose the concept of Charity to pre-
clude such trivial solutions. All courses that remain unassigned at
the end of running the course allocation algorithm become part of
the Charity. Not only do we want students to envy other students
as little as possible, we also want no student to envy the Char-
ity. Specifically, no student should envy any non-conflicting set of
courses in the Charity. This ensures non-trivial allocations.

Ideally, we desire an envy-free (EF) assignment of courses to stu-
dents and also with the Charity. However, there are settings where
such allocations are impossible. The impossibility of allocating indi-
visible items (such as course seats) without envy has led to defining
a notion of almost envy-freeness, called envy-freeness up to one item
(EF1) [6]. In our context, if a student 𝑖 envies another student 𝑖 ′,
then there exists a course 𝑗 ′ that has been allocated to student 𝑖 ′
whose removal from the allocation of 𝑖 ′ eliminates student 𝑖’s envy
towards 𝑖 ′. Although EF1 has been studied for capacity-constrained
or knapsack settings [2, 5, 9, 10], these papers did not consider
non-conflicting allocations, particularly pertinent in the context of
course allocation. In this paper, we guarantee EF1 among students
and envy-freeness with respect to Charity. We formally refer to
this definition as EF1-CC+. Biswas et al. [3] introduced the specific
course allocation problem we study in our paper and a weaker fair-
ness notion, called EF1-CC. Although they introduced the problem
setting, the results they present only hold for the very restrictive
settings of binary and uniform utility functions. We significantly
expand and extend their results into the much broader setting of
additive utility functions.

For the first time, we establish that it is possible to find an EF1-
CC+ allocation under non-identical additive utilities, when the
credit caps are non-uniform. We present this result in the full ver-
sion of our paper. In this extended abstract, we focus on the simpler
setting of identical, additive utilities with uniform credit caps .
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2 PRELIMINARIES
We consider a set of students, [𝑛], and a set of courses, [𝑚], where
[𝑥] denotes the set of elements in {1, . . . , 𝑥} for any 𝑥 ∈ Z+. The
set of courses allocated to a student 𝑖 ∈ [𝑛] is denoted by 𝐴𝑖 .
A = (𝐴1, . . . , 𝐴𝑛) denotes an allocation. Courses are represented
as intervals, with a start and end time. 1 The intervals that overlap
are said to be in conflict with each other. Thus, the conflict graph
of courses in this case is an interval graph.

Each course takes up one credit in the number of credits a student
can take; each student can take at most 𝑘 courses. In summary, our
goal is to find an fair (defined below) allocation of at most 𝑘 courses
that do not overlap or conflict. Furthermore, no course can be as-
signed to more students than its seat capacity. We consider additive
utility, generalizing the uniform and binary assumptions [1, 3, 11].
Each course 𝑗 has an associated non-negative utility which is a
non-negative integer 𝑢𝑖 ( 𝑗) ∈ {0, 1, . . . ,𝑈 }. The maximum weighted
independent set, MWIS𝑘 (𝐴𝑖 ) takes in a set of courses [𝑚] and out-
puts the maximum weighted set of size at most 𝑘 non-conflicting
courses with the weights given by 𝑢 𝑗 for each course 𝑗 ∈ 𝐴𝑖 . Find-
ing a maximum weighted independent set (MWIS) is polynomial
time when the underlying graph is an interval graph.

Our fairness definition is a stronger version of the definition
given by Biswas et al. [3] that considered only binary (i.e. {0, 1})
utilities. We extend these definitions to additive utilities. In addi-
tion, we consider stronger guarantees between any student and
Charity (a dummy student who is assigned the set 𝐷 of all un-
allocated courses/seats), namely that no student envies Charity.
More formally, we define EF1-CC+ as a conflict-free allocation
A = (𝐴1, . . . , 𝐴𝑛),2 where, for any pair of students 𝑖, 𝑖 ′ ∈ [𝑛], ei-
ther 𝑖 does not envy 𝑖 ′ or there exists at least one course 𝑗 ′ ∈ 𝐴𝑖′

such that 𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (MWIS𝑘 (𝐴𝑖 ) \ { 𝑗 ′}). MWIS𝑘 (𝐴𝑖 ) is the max-
imum weight independent set of size at most 𝑘 in 𝐴𝑖′ using 𝑢𝑖
as the weights. Moreover, for all students 𝑖 ∈ [𝑛], it holds that
𝑢 (𝐴𝑖 ) ≥ 𝑢 (𝑆𝑐𝑖 ) for all 𝑆𝑐𝑖 ∈ S, where S contains all independent
sets of size at most 𝑘 in the Charity; in other words, no student
envies Charity (the set of unassigned courses).
3 ENVY-FREE COURSE ALLOCATION

CONSIDERING CHARITY
We devise Algorithm 1 that returns an EF1-CC+ allocation for 𝑛
students with identical, additive, non-negative, integral utilities.
The algorithm has two phases. After the first phase ends, the alloca-
tion satisfies EF1 among all the students, and the end of the second
phase ensures EF1-CC+.

In the first phase, each course is sorted by non-decreasing end
time in Line 2, 𝐴𝑖 are empty sets, and 𝐷 is initialized to [𝑚]. Ac-
cording to the sorted order, a course 𝑗 is offered to the student,
say 𝑖 , with the current lowest utility 𝑢 (𝐴𝑖 ). Then, we compare the
utility of the current allocation 𝑢 (𝐴𝑖 ) to the maximum weighted
independent set of size ≤ 𝑘 of the union between her current allo-
cation and 𝑗 , (𝐴𝑖 \ Conf (𝐴𝑖 , 𝑗)) ∪ { 𝑗}, where Conf (𝐴𝑖 , 𝑗) is the set
of courses in 𝐴𝑖 that conflict with 𝑗 . Then, 𝑖 accepts the maximum

1In this model, we assume a course meets once a week but, in practice, typically, many
universities have courses meeting on Mon-Wed-Fri, Mon-Wed, or Tu-Th during the
same time period on each of those days. If we pick the Mon-Tue schedule, we can
essentially capture the schedule for almost all courses.
2A conflict-free allocation is one where no two classes in any bundle𝐴𝑖 overlap.

of the two independent sets𝐴𝑖 and ({ 𝑗}∪𝐴𝑖 \Conf (𝐴𝑖 , 𝑗)) (Line 8).
The courses assigned to 𝑖 are removed from the 𝐷 and any rejected
courses from 𝐴𝑖 end up in the Charity 𝐷 .

In the second phase of the algorithm, we assign courses from
Charity by making increasingly larger offers to the student with
the current lowest utility (Line 15). We offer the first course (in
earliest end time order by Line 12) of the Charity to the student
with the lowest utility. If the value of the largest independent set of
the union between this course and the student’s own allocation is at
most the value of her current allocation, then the student declines
the offer (Line 23). After declining, we then offer the bundle of the
first two courses in the sorted order, and if that also doesn’t suffice,
then offer the first three, and so on. We denote the first 𝑡 courses in
𝐷 by 𝐷 [𝑡 ] . If the student accepts the offer (Line 16) and takes the
maximum independent set of size ≤ 𝑘 (Line 17), then the leftover
courses go to the Charity (Line 18). After an offer is accepted,
this process starts over again with the earliest-ending course in
the Charity and the current lowest utility student (Line 21). The
algorithm terminates when the lowest utility student declines the
offer of the entire Charity.
Algorithm 1 EF1-CC+ for Identical Additive Utilities and Uniform
Credit Caps: Greedy and Gradual Improve algorithm
Input: Students [𝑛], courses [𝑚], identical credit cap 𝑘 and identi-

cal additive non-negative utility function 𝑢.
Output: EF1-CC+ allocation A.
1: Phase 1:
2: 𝑀 ← [𝑚]; Sort𝑀 by earliest end time
3: Initialize all 𝐴𝑖 = ∅
4: Initialize 𝐷 ← [𝑚] ⊲ All courses go to Charity
5: for course 𝑗 in𝑀 do
6: Let 𝑖 = argmin𝑠∈[𝑛] (𝑢 (𝐴𝑠 )) ⊲ Lowest utility student
7: if MWIS𝑘 (𝐴𝑖 ∪ 𝑗) > 𝑢 (𝐴𝑖 ) then
8: 𝐴′

𝑖
= MWIS𝑘 (𝐴𝑖 ∪ 𝑗)

9: 𝐷 ← (𝐷 ∪𝐴𝑖 ) \𝐴′𝑖 ⊲ Update the Charity
10: 𝐴𝑖 ← 𝐴′

𝑖
⊲ Update the allocation of 𝑖

11: Phase 2:
12: Sort and maintain 𝐷 dynamically by earliest end time
13: Let 𝑖 = argmin𝑠∈[𝑛] 𝑢 (𝐴𝑠 ) ⊲ Lowest utility student
14: 𝑡 = 1
15: while 𝑡 ≤ |𝐷 | do
16: if MWIS𝑘

(
𝐷 [𝑡 ] ∪𝐴𝑖

)
> 𝑢 (𝐴𝑖 ) then

17: 𝐴′
𝑖
= MWIS𝑘

(
𝐷 [𝑡 ] ∪𝐴𝑖

)
18: 𝐷 ← (𝐷 ∪𝐴𝑖 ) \𝐴′𝑖 ⊲ Update the Charity
19: 𝐴𝑖 ← 𝐴′

𝑖
⊲ Update the allocation of 𝑖

20: t = 1
21: 𝑖 = argmin𝑠∈[𝑛] 𝑢 (𝐴𝑠 ) ⊲ Lowest utility student
22: else
23: 𝑡 ← 𝑡 + 1
24: Return A = {𝐴1, . . . , 𝐴𝑛}
Theorem 1. Algorithm 1 outputs an EF1-CC+ allocation under

identical additive non-negative utilities and uniform credit caps in

𝑂

(
𝑛 ·𝑚 ·∑𝑚

𝑗=1 𝑢 ( 𝑗)
)
time.

The proof of Theorem 1 can be found in the full version of the
paper [4].
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