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ABSTRACT
Moving Target Defense (MTD) has emerged as a proactive defense
framework to counteract ever-changing cyber threats. Existing ap-
proaches often make assumptions about attacker-side knowledge
and behavior, potentially resulting in suboptimal defense. This
paper introduces a novel MTD approach, leveraging a Markov Deci-
sion Process (MDP) model that eliminates the need for prior knowl-
edge about attacker intentions or payoffs. Our framework seam-
lessly integrates real-time attacker responses into the defender’s
MDP using a dynamic Bayesian network. We use a factored MDP
model to enable a more comprehensive and realistic representa-
tion of the system having multiple switchable aspects and also
accommodate incremental updates of an attack response predictor
as new attack data emerges, ensuring adaptive defense. Empirical
evaluations demonstrate the approach’s effectiveness in uncertain
scenarios with evolving as well as unknown attack landscapes.
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1 INTRODUCTION
An inherent information asymmetry exists in cyber systems, favor-
ing attackers due to their ability to conduct reconnaissance [13]
on static systems. Attackers can probe systems, gaining insights
into vulnerabilities and planning attacks over time. Moving Target
Defense (MTD) [4] aims to counter this advantage by introducing
uncertainty through dynamic alterations of system configurations,
making it challenging for attackers to study the system and launch
targeted attacks. However, MTD introduces overheads, including
maintenance overhead and possible service disruptions [2], making
it imperative to consider such switching costs involved.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

The MTD problem gets more complex as cyber systems evolve
[5], as it becomes harder to know the attacker’s intentions before-
hand. Prior approaches, often based in game theory, assume an
impractical amount of knowledge about the attacker side payoffs,
leading to suboptimal defense strategies. This paper models MTD
as a Factored Markov Decision Process (FMDP) [3], considering
uncertainty over a set of attacker types and doesn’t assume prior
knowledge about attacker rewards and intentions.

2 PROPOSED METHOD
The FMDP’s state space consists of all possible system configu-
rations with adaptation aspects [2] as factors. Actions represent
configurations switched to, and the defender obtains reward based
on attack executed and the switching action taken. The switching
costs (sc) depend solely on the current and next configurations and
lie in [0, 100]. Transitions between states occur deterministically
based on the switching action. We employ an attacker model of a
binary attacker response variable 𝜑 that takes value 1 on defender
observing a successful attack and 0 otherwise, captured into the
FMDP using a dynamic Bayesian Network [9]. Similar to prior
works [7, 10, 11], we consider that the system confronts various
attacker types. Initially, the attacker-type distribution is unknown
to the defender, but the defender maintains an estimation of it. We
also account for an "unknown" attacker, encompassing all attacker
types not known to the defender. An attack success rate denoted by
𝜇 (𝜏, 𝑠) ∈ [0, 1] for each attacker type 𝜏 quantifies their proficiency
in executing a successful attack in state 𝑠 . An average unit time
system loss 𝑙 (𝜏, 𝑠) ∈ [0, 100] is experienced by the defender when
dealing with a successful attack from attacker type 𝜏 in state 𝑠 [7].

Algorithm 1 solves for the optimal policy through the approx-
imate linear programming formulation for the FMDP with con-
straints constructed by taking expectation over the possible values
of the binary response variable 𝜑 . In each timestep, if any anoma-
lous activity is detected, we run the re-estimation in Step 6 to update
the MDP policy 𝜋 based on the current estimate of attacker type
probabilities 𝑃𝑎𝑡𝑡 . The defender takes an action 𝑎 according to the
last calculated policy (Step 8), and receives response 𝜑 , the attacker
type 𝜏 , and the next state (Step 9). Using the attack response 𝜑 , unit-
time system loss 𝑙 (𝜏, (𝒔, 𝒂)) (tuple (𝒔, 𝒂) and next state 𝒔′ have the
same meaning as transitions are deterministic) due to the attacker
type 𝜏 and the switching cost, we calculate the defender’s reward.
We maintain a value 𝑛 for each attacker type 𝜏 , state 𝑠 , and action
tuple 𝑎, representing a weighted sum of the attack type’s success
in that state when that action was executed using a weighing factor
𝛽 > 1. At timestep 𝑡 , 𝑛 is updated in Step 12 and the attacker-type
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Algorithm 1 Adaptive Threat-Aware FMDP for MTD

1: Initialize parameters Total timesteps 𝑇 , weighting factor 𝛽 ,
start state 𝒔0, constant𝑀 = 200, 𝑛𝜏,𝑠,𝑎 = 0∀𝜏, 𝑠, 𝑎

2: Load domain information (Dom): states, actions, attacker
types, switching costs (𝑠𝑐), attack success rates (𝜇), unit time
system losses (𝑙 )

3: for 𝑡 ← 1 to 𝑇 do
4: if re-estimation triggered then
5: 𝑓𝑚𝑑𝑝 [𝑃𝑎𝑡𝑡 , 𝐷𝑜𝑚] ← 𝑐𝑟𝑒𝑎𝑡𝑒_𝑓𝑚𝑑𝑝 (𝑃𝑎𝑡𝑡 , 𝐷𝑜𝑚)
6: 𝜋 ← 𝑙𝑝_𝑠𝑜𝑙𝑣𝑒𝑟 (𝑓𝑚𝑑𝑝 [𝑃𝑎𝑡𝑡 , 𝐷𝑜𝑚], 𝑃𝑎𝑡𝑡 , 𝐷𝑜𝑚) ⊲

Re-calculate FMDP policy 𝜋

7: end if
8: 𝒂𝒕 ← 𝜋 ⊲ Choosing action 𝒂𝒕 using last calculated policy
9: 𝜑𝑡+1, 𝜏𝑡 , 𝒔𝒕+1 ←𝑚𝑡𝑑_𝑠𝑖𝑚(𝒔𝒕 , 𝒂𝒕 ) ⊲ Real-world Interaction
10: As 𝒔𝒕+1 is fixed given (𝒔𝒕 , 𝒂𝒕 ), we use them interchangeably.
11: 𝑟𝑡 ← 𝑀 − 1[𝜑𝑡+1 = 1]𝑙 (𝜏𝑡 , (𝒔𝒕 , 𝒂𝒕 )) − 𝑠𝑐 (𝒔𝒕 , 𝒂𝒕 )
12: 𝑛𝜏,𝒔,𝒂 ← 𝑛𝜏,𝒔,𝒂

𝛽
+ 1[𝜑𝑡+1 = 1, 𝜏 = 𝜏𝑡 , 𝒔 = 𝒔𝒕 , 𝒂 = 𝒂𝒕 ] ∀𝜏, 𝒔, 𝒂

13: 𝑃𝑎𝑡𝑡 (𝜏 |𝒔, 𝒂) ← 1
N

𝑛𝜏,𝒔,𝒂
𝜇 (𝜏,(𝒔,𝒂) ) ∀𝜏, 𝒔, 𝒂 ⊲ Eq. 1

14: end for

probability estimates (𝑃𝑎𝑡𝑡 ) are updated in Step 13 as follows:

𝑃𝑎𝑡𝑡 (𝜏 |𝒔, 𝒂) =
𝑃 (𝜏, 𝜑 = 1, 𝒔, 𝒂)

𝑃 (𝜑 = 1|𝒔, 𝒂, 𝜏)𝑃 (𝒔, 𝒂) =
1
N

𝑛𝜏,𝒔,𝒂

𝜇 (𝜏, (𝒔, 𝒂)) (1)

where 𝑛𝜏,𝒔,𝒂 is a temporally weighted estimate of the number
of attack successes that happened in the state 𝑠 , on taking action 𝑎

under attacks by attacker type 𝜏 andN is the normalizing factor. We
take 𝜇 of 1 for 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 attacker as the defender lacks information
about its proficiency.

(a) Switching Costs

𝐶1 𝐶2 𝐶3 𝐶4

𝐶1 0 20 60 100
𝐶2 20 0 90 50
𝐶3 60 90 0 20
𝐶4 100 50 20 0

(b) Attacker Type Capabilities, Attack Success Rates, and Unit Time
System Losses (true values for the unknown type)

𝐶1 𝐶1 𝐶1 𝐶1

𝜈𝑀𝐻 {PHP, MySQL} {Python, MySQL} {PHP} {Python}
𝜇𝑀𝐻 0.32 0.32 0.36 0.36
𝑙𝑀𝐻 61 43 66 29

𝜈𝐷𝐻 {MySQL} {MySQL} {Postgres} {Postgres}
𝜇𝐷𝐻 0.7 0.7 0.65 0.65
𝑙𝐷𝐻 43 43 50 50

𝜈𝑢𝑛𝑘𝑛𝑜𝑤𝑛 {PHP, MySQL} {MySQL} {PHP} {}
𝜇𝑢𝑛𝑘𝑛𝑜𝑤𝑛 0.78 0.7 0.87 0.0
𝑙𝑢𝑛𝑘𝑛𝑜𝑤𝑛 100 100 100 0

Figure 1: Configurations 𝐶1 = (𝑃𝐻𝑃,𝑀𝑦𝑆𝑄𝐿), 𝐶2 =

(𝑃𝑦𝑡ℎ𝑜𝑛,𝑀𝑦𝑆𝑄𝐿),𝐶3 = (𝑃𝐻𝑃, 𝑃𝑜𝑠𝑡𝑔𝑟𝑒𝑠),𝐶4 = (𝑃𝑦𝑡ℎ𝑜𝑛, 𝑃𝑜𝑠𝑡𝑔𝑟𝑒𝑠)

3 EXPERIMENTS
Inspired by previous works [6, 7, 11], we employ the National Vul-
nerability Database (NVD) data [1] from the years 2020 to 2022 and
Common Vulnerability Scoring System (CVSS) [8] scores to estab-
lish the experimental framework for aweb appwith states character-
ized by language and database: {(𝑃𝐻𝑃 ,𝑀𝑦𝑆𝑄𝐿), (𝑃𝑦𝑡ℎ𝑜𝑛,𝑀𝑦𝑆𝑄𝐿),
(𝑃𝐻𝑃 , 𝑃𝑜𝑠𝑡𝑔𝑟𝑒𝑆𝑄𝐿), (𝑃𝑦𝑡ℎ𝑜𝑛, 𝑃𝑜𝑠𝑡𝑔𝑟𝑒𝑆𝑄𝐿)}. Unit time losses and
attack success rates are computed based on the CVSS scores [7]. 𝜈
represents technologies that can be attacked by an attacker type in
given state. Attacker types of Mainstream Attacker (𝑀𝐻 ), Database
Hacker (𝐷𝐻 ) and 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 attacker are considered.

(a) (b)

(c) (d)

Figure 2: Evolving Attack Landscape where (1) (𝑎, 𝑏) Between
timesteps 330 and 660, the 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 attacker prevails (2) (𝑐, 𝑑)
Strategic attackers resort to the most adverse strategy based
on defender policy estimated till current timestep.

Defense Methods Compared: Our approach, which we call
‘Adaptive Threat-Aware Factored MDP’, is compared to methods
that use a similar amount of prior information: (1) A bandit-based
approach (𝐹𝑃𝐿 −𝑀𝑇𝐷) [12]: This has proved as a strong baseline
amongst approaches that do not consider prior knowledge regard-
ing attackers, (2) 𝐸𝑃𝑆 −𝐺𝑅𝐸𝐸𝐷𝑌 approach: Epsilon-greedy based
exploration-exploitation and (3) Uniform Random Strategy (𝑈𝑅𝑆).

In subfigures (a, c), we compare the reward among the methods,
and subfigures (b, d) present the evolution of defender rewards over
1000 timesteps. In an evolving attack landscape where between
timesteps 330 and 660, the unknown attacker prevails (Fig. 2a, 2b),
our approach performs 13%, 34%, and 56% better than 𝐹𝑃𝐿 −
𝑀𝑇𝐷 , 𝐸𝑃𝑆−𝐺𝑅𝐸𝐸𝐷𝑌 , and𝑈𝑅𝑆 , respectively. Our approach quickly
adapts to the new scenario and is able to switch to a favorable
configuration, maintaining a high defender reward. In an evolving
attack landscape with strategic attackers (Fig 2c, 2d), our approach
performs 15%, 30%, and 52% better than 𝐹𝑃𝐿 − 𝑀𝑇𝐷 , 𝐸𝑃𝑆 −
𝐺𝑅𝐸𝐸𝐷𝑌 , and𝑈𝑅𝑆 , respectively. It consistently outperforms other
methods across the 1000 timesteps.
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