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ABSTRACT
This paper introduces a methodology for establishing linguistic
conventions in populations of autonomous agents in a fully de-
centralised manner. As agents take part in local communicative
interactions, they gradually establish a common conceptual system
and vocabulary that enables them to communicate about arbitrary
entities in their continuous environment. Apart from introducing
the methodology, we also present six experiments that showcase
the robustness of the methodology against sensor defects, its abil-
ity to handle noisy observations and uncalibrated sensors, and its
suitability for continual learning.
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1 INTRODUCTION
The field of emergent communication investigates how popula-
tions of artificial agents can collaboratively solve tasks by devel-
oping communication protocols that evolve through processes of
interaction and adaptation. In recent years, the multi-agent rein-
forcement learning (MARL) framework has been adopted to tackle
this challenge [3–6, 10–12, 14–17, 19, 22, 24, 33, 37]. While impres-
sive results have been achieved within the MARL framework, the
experimental setups in these studies often deviate significantly

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

from how languages emerge and evolve in humans [34]. For exam-
ple, some experiments involve only two agents [4, 12, 22], restrict
agents to either speaking or listening [6, 7, 15, 19], or learning is
not decentralised [11, 14]. In contrast, our objective is to facilitate
language emergence through self-organisation, drawing inspira-
tion from the language game experimental paradigm [27] and prior
research on the emergence of perceptually grounded vocabularies
[1, 2, 18, 20, 21, 23, 25–32, 34–36, 38, 39].

This paper introduces a methodology to establish, in a fully
decentralised manner, a linguistic convention within a popula-
tion of autonomous agents that enables the agents to refer to ar-
bitrary entities in their environment. As they take part in local
communicative interactions, agents gradually build up a linguistic
inventory consisting of word forms associated with conceptual
representations. Our contribution surpasses previous efforts in the
language game paradigm as the methodology achieves three proper-
ties at once: decentralised, communication-based concept learning
(i) in continuous feature spaces (as opposed to the discrete set-
ting in [38]), (ii) in multi-agent emergent settings (as opposed to
the tutor-learner setting in [21]), and (iii) with direct applicability
to any dataset characterising entities in terms of continuously-
valued features. An extended version of this paper is available at
https://arxiv.org/abs/2401.08461.

2 METHODOLOGY
Autonomous agents are endowed with sensors to perceive their
environment. However, due to variations in hardware, noisy ob-
servations, uncalibrated sensors, and potential sensor defects, a
misalignment can emerge in the information perceived by individ-
ual agents. To address this mismatch, agents create abstractions
in the form of concepts. Rather than directly transmitting sensor
values, agents learn to communicate by associating words with
internal learned conceptual representations. These representations,
unique to each agent, serve as a bridge between the raw sensor
data and an emergent linguistic convention [21]. Agents start out
with an empty linguistic inventory, i.e. there are no predefined
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Figure 1: Examples of emerged concepts for the CLEVR (a),
WINE (b) and CREDIT (c) datasets.

concepts or words. As they take part in pairwise, local communica-
tive interactions, agents gradually build up this personal linguistic
inventory.

In our methodology, the conceptual representation consists of
a set of weighted Gaussian distributions, inspired by [21]. The
agent’s sensors perceive each entity within the environment, pro-
ducing a set of values. These values are encapsulated by individual
Gaussian distributions, each representing the sampled values from
a specific sensory channel. The weight associated with each distri-
bution signifies the importance of each sensor to the conceptual
representation.

The agents employ a discrimination-based strategy, which fo-
cuses on constructing conceptual representations that enable ef-
fective differentiation of objects based on their distinct attributes.
In each interaction, two randomly selected agents from the pop-
ulation assume the roles of speaker and hearer. The goal of the
speaker is to draw the attention of the hearer to a specific object.
To achieve this, the strategy involves creating representations that
combine attributes that facilitate the discrimination between ob-
jects. Critically, the representation is bidirectional as it can be used
to both produce and understand utterances in communication. Af-
ter each interaction, the speaker provides feedback to the hearer
by revealing the intended topic. Depending on the outcome of the
game, the agents independently update their knowledge by adjust-
ing their conceptual representations. As agents engage in iterative
interactions, they progressively refine their representations and
communicate more effectively. Over time, this dynamic process
gives rise to the emergence of linguistic conventions within the
population. Our methodology introduces novel invention, adoption,
conceptualisation and alignment mechanisms for constructing such
representations in a fully decentralised manner.

3 EXPERIMENTAL VALIDATION
We experimentally validate the effectiveness, flexibility, and robust-
ness of our methodology using three large tabular datasets. These
datasets cover three different types of domains. The CLEVR dataset
consists of 85k visual scenes of geometric objects [13], the WINE
dataset consists of physicochemical analyses of Portuguese wines
[8], and finally the CREDIT dataset consists of approximately 250k

principal component analyses of credit card transactions [9]. Each
row of a dataset represents an entity in the agents’ environment.

We conduct six different experiments. The first baseline experi-
ment demonstrates the methodology’s effectiveness on the three
datasets. After 1 million interactions, the population can success-
fully communicate ±99.6% of the time on all three datasets. The
second experiment tackles compositional generalisability by apply-
ing our methodology to a modified version of CLEVR (CoGenT)
[13], showcasing the emergent concepts’ adaptability to previously
unseen attribute combinations. The third experiment extends the
evaluation to heteromorphic populations, revealing that even when
agents possess varying sensor combinations, a high degree of com-
municative success is still achievable. The fourth experiment tests
the methodology’s resilience against sensor defects, demonstrating
its robustness in the face of sudden malfunctions and highlighting
the lasting benefits of an established linguistic convention. The fifth
experiment explores the methodology’s robustness against differ-
ences in agents’ perception. Lastly, the sixth experiment focuses on
continual learning, confirming the methodology’s adequacy and
resistance to catastrophic forgetting.

Figure 1 depicts three concepts that emerged in the first base-
line experiment. We only visualise feature channels with positive
weights. Through a qualitative analysis, the emerged concept “de-
moxu” (see Fig. 1a) is found to be primarily used by agents to refer
to small objects in the CLEVR environment. Likewise, “zapose” (see
Fig. 1b) is used by agents to refer to “medium-sweet” wines in the
WINE environment. Finally, “bogezi” (see Fig. 1c) emerged to refer
to a particular kind of credit card transaction. While this concept
remains transparent, it is not interpretable by humans due to its
grounding in principal component analyses. This example demon-
strates the usefulness of a self-organising system with emergent
conventions. In such a system, agents are not limited to existing
words but are able to create and adapt a convention that is tailored
to their sensory endowment and their communicative needs.

4 CONCLUSION
In this paper, a novel methodology is presented for the emergence
of communicatively effective, robust, and adaptive linguistic con-
ventions among autonomous agents. The methodology facilitates
the decentralised emergence of linguistic conventions through lo-
cal, task-oriented interactions between pairs of agents, resulting in
symbolic labels associated with concept representations grounded
in a multi-dimensional, continuous feature space. These associa-
tions are individually constructed by agents, yet compatible on a
communicative level. The methodology is validated through exper-
iments across three diverse datasets, showcasing its effectiveness
in various domains. We introduce a model for the emergence and
evolution of linguistic conventions in populations of autonomous
agents which is applicable to any dataset that characterises entities
using continuously-valued features.
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