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ABSTRACT
In numerous real-world scenarios, we encounter periodic patterns
in the dynamics of non-stationary data. Unfortunately, current ap-
proaches to addressing non-stationary bandit problems overlook
the valuable potential offered by the presence of periodicity. In re-
sponse, we introduce SW-PUCB, a novel sliding window algorithm
explicitly designed to exploit periodicity in bandit arms, surpassing
the performance of the conventional UCB approach when dealing
with perfectly periodic bandit environments. Recognizing that per-
fect periodicity is seldom encountered in real-world setting, we
further present SW-NPUCB, another sliding window algorithm
tailored to data exhibiting near-periodic characteristics. Lastly, we
demonstrate the practical efficacy of our algorithms through com-
prehensive experimentation, on synthetically generated data. By
bench-marking against existing non-stationary bandit techniques,
we emphasize the superiority of our approaches.
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1 INTRODUCTION
In real world applications of non-stationary multi armed bandits,
there are many cases where the non-stationarity in the true means
of the arms is periodic in nature. For instance, in network selection,
data usage and network quality follow periodic patterns daily [6].
Metrics such as google searches and number of users in a store also
follow predictable patterns on a yearly basis, if not exactly periodic
patterns [7]. We can exploit this periodicity in non-stationary multi-
armed bandits to get better estimates of the true arms means

There have been numerous papers tacking the non-stationary
multi-armed bandit problem. [1] introduces two approaches to-
wards solving this problem, a sliding window approach and a dis-
counted approach. More recently, there have been several other
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approaches [3]. In this paper, we attempt to extend existing ap-
proaches for solving non-stationary multi armed bandits for a case
where the distributions of the rewards for all arms is periodic with
period 𝑃 . Our contributions from this work are:

• We introduce a new setting in non-stationary bandits where
the true means of arms can vary in a periodic fashion.

• We propose algorithms SW-PUCB and SW-NPUCB for the
perfectly periodic and nearly periodic settings respectively
and show their regret bounds.

• We evaluate our algorithms performance in a continuously
varying simulated environment where they outperform all
existing previous works adapted in our settings

2 PROBLEM FORMULATION
We consider a non-stationary multi armed bandit problem where
there are𝑘 arms. To simplify our proofs, we consider that the reward
of each arm is bounded in the range [0, 1] with mean 𝑟𝑖,𝑡 for arm 𝑖

at time step 𝑡 . The means for all the arms are non-stationary. 𝑇 is
the horizon. We analyse 2 cases:

• Perfectly Periodic: We assume that 𝑟𝑖,𝑡 is periodic with a
period of 𝑃 time steps. More formally, 𝑟𝑖,𝑡+𝑃 = 𝑟𝑖,𝑡 is satisfied
∀𝑖 and ∀𝑡 . We define a piece-wise budget 𝐵 such that the
means for all arms 𝑖 satisfy the condition |𝑟𝑖,𝑡+1 − 𝑟𝑖,𝑡 | ≤ 𝐵

for all timesteps 𝑡 .
• Nearly Periodic: We allow the means of arms to vary be-
tween periods. Therefore, we have two budgets 𝐵1 and 𝐵2.∑𝑖=𝑇−𝑃
𝑖=1 |𝑟𝑖,𝑡+𝑃 −𝑟𝑖,𝑡 | ≤ 𝐵2 is satisfied∀𝑖 . Here 𝐵2 is called the

periodic budget for our problem. Also a piece-wise budget
𝐵1, like the previous setting, holds true for ∀𝑖 and ∀𝑡 .

3 PERFECTLY PERIODIC BANDITS
In this section we analyse the case when means of arms are Per-
fectly periodic with a known period 𝑃 . We propose an algorithm,
namely Sliding Window Periodic UCB (SW-PUCB). The sliding
window algorithm was first studied by [1]. Here we do an intuitive
modification to it in our periodic setting by considering window
length rewards at each time step, 𝑃 steps apart. In addition to this,
we also consider a naive UCB estimate, which considers rewards
only at time steps apart by multiple of periods. The arm picked at
each time step is the maximum of the minimum of the above 2 UCB
estimates. Intuitively, we improve over the naive UCB algorithm by
using an additional UCB estimate obtained from more timesteps.
SWUCB is described in 1
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Algorithm 1 SW-PUCB
Input: 𝑃 , 𝐵, number of arms 𝑘 , horizon 𝑇 , window𝑤

Initialization:- 𝑅(𝑎, 𝑡) = 0, 𝑁 (𝑎, 𝑡) = 0, 𝑈𝐶 (𝑎, 𝑡) = 1, 𝐿𝐶 (𝑎, 𝑡) =
−1
For first 𝑘 periods, pull arm 𝑖 for the 𝑖𝑡ℎ period
for t = k*P to T do
𝑡𝑟 = 𝑡%𝑃
𝑛𝑎𝑡 =

∑𝑙=𝑡𝑟+𝑤
𝑙=𝑡𝑟 −𝑤 𝑁 (𝑎, 𝑙%𝑃)

𝑑 (𝑖, 𝑡) = min(𝑖%𝑃 − 𝑡%𝑃, 𝑡%𝑃 − 𝑖%𝑃)
𝑒 (𝑎, 𝑖) = min(𝑑 (𝑖, 𝑡)𝐵 , 𝑈𝐶 (𝑎, 𝑡𝑟 ) − 𝐿𝐶 (𝑎, 𝑖))

𝑥𝑎𝑡,1 =
∑𝑖=𝑡𝑟 +𝑤

𝑖=𝑡𝑟 −𝑤 (𝑅 (𝑎,𝑖 )+𝑒 (𝑎,𝑖 )𝑁 (𝑎,𝑖 ) )∑𝑖=𝑡𝑟 +𝑤
𝑖=𝑡𝑟 −𝑤 𝑁 (𝑎,𝑖 )

𝑥𝑎𝑡,2 =
𝑅 (𝑎,𝑡𝑟 )
𝑁 (𝑎,𝑡𝑟 )

𝑣1 (𝑎) = 𝑥𝑎𝑡,1 +
√︃

3𝑙𝑛 (𝑡 )
2𝑛𝑎𝑡

𝑣2 (𝑎) = 𝑥𝑎𝑡,2 +
√︃

3𝑙𝑛 (𝑡 )
2𝑁 (𝑎,𝑡𝑟 )

𝑎𝑜𝑝𝑡 = argmax
𝑎

min(𝑣1 (𝑎), 𝑣2 (𝑎))
Pull arm 𝑎𝑜𝑝𝑡 and obtain reward 𝑟
𝑁 (𝑎𝑜𝑝𝑡 , 𝑡𝑟 ) = 𝑁 (𝑎𝑜𝑝𝑡 , 𝑡𝑟 ) + 1
𝑅(𝑎𝑜𝑝𝑡 , 𝑡𝑟 ) = 𝑅(𝑎𝑜𝑝𝑡 , 𝑡𝑟 ) + 𝑟

𝑈𝐶 (𝑎𝑜𝑝𝑡 , 𝑡𝑟 ) =
𝑅 (𝑎𝑜𝑝𝑡 ,𝑡𝑟 )
𝑁 (𝑎𝑜𝑝𝑡 ,𝑡𝑟 ) +

√︂
3𝑙𝑛 (𝑡 )

2𝑁 (𝑎𝑜𝑝𝑡 ,𝑡𝑟 )

𝐿𝐶 (𝑎𝑜𝑝𝑡 , 𝑡𝑟 ) =
𝑅 (𝑎𝑜𝑝𝑡 ,𝑡𝑟 )
𝑁 (𝑎𝑜𝑝𝑡 ,𝑡𝑟 ) -

√︂
3𝑙𝑛 (𝑡 )

2𝑁 (𝑎𝑜𝑝𝑡 ,𝑡𝑟 )
end for

The regret bound for the SW-PUCB algorithm can be derived with
relative ease as follows:

𝑅(𝑇 ) ≤
𝑖=𝑃−1∑︁
𝑖=0

∑︁
𝑎≠𝑎∗

6𝑙𝑛(𝑇 )
Δ𝑎,𝑖

+ 𝑘𝜋2

2

The above expression implies that our algorithm cannot perform
worse than a naive UCB approach where every 𝑃𝑡ℎ sample is con-
sidered by more than a constant factor.

4 NEARLY PERIODIC BANDITS
In this section, we explore nearly periodic bandits, where across
periods the means of arms can change, bounded by a periodic bud-
get 𝐵2. We propose a sliding window algorithm, namely Sliding
Window Nearly Periodic UCB (SW-NPUCB).
To account for the variation across periods, we propose to use an-
other window𝑤2, which would determine the number of periods
from which rewards would be taken for UCB estimate. The 𝑤1
window would still be present to account for the piece-wise bud-
get. The SW-NPUCB Algorithm is described in 2. Refraining from
delving into a detailed proof, we ascertain that the total regret of
SW-NPUCB is bounded as :-

𝑅(𝑇 ) ≤ 2𝑤1𝑤2𝐵1 + 2𝑤1𝐵1 + 2𝑤2𝐵2 + 8𝑇
√︁
6𝑙𝑛(𝑇 )

√︁
|𝐴|

√
𝑤1𝑤2

+ 𝑘𝜋2

3

Optimizing for𝑤1 and𝑤2, we can get the order of regret 𝑅(𝑇 ) as:

𝑅(𝑇 ) = O(𝑇
2
3 |𝐴|

1
3 𝐵

1
3
1 +𝑇

1
3 |𝐴|

1
6 𝐵

1
6
1 𝐵

1
2
2 )

Algorithm 2 SW-NPUCB
Input: 𝑃 , number of arms 𝑘 , horizon 𝑇 , window sizes𝑤1 and𝑤2
Initialization:- 𝑅(𝑎, 𝑡𝑟 , [ 𝑡𝑃 ]) = 0, 𝑁 (𝑎, 𝑡𝑟 , [ 𝑡𝑃 ]) = 0
for t = 1 to T do
𝑡𝑟 = 𝑡%𝑃

𝑥𝑎𝑡 =

∑𝑘=[ 𝑡
𝑃

]
𝑘=max( [ 𝑡

𝑃
]−𝑤2+1,0)

∑𝑙=𝑡𝑟 +𝑤1−1
𝑙=𝑡𝑟 −𝑤1+1

𝑅 (𝑎,𝑙%𝑃,𝑘 )

max(1,∑𝑘=[ 𝑡
𝑃

]
𝑘=max( [ 𝑡

𝑃
]−𝑤2+1,0)

∑𝑙=𝑡𝑟 +𝑤1−1
𝑙=𝑡𝑟 −𝑤1+1

𝑁 (𝑎,𝑙%𝑃,𝑘 ) )

𝑛𝑎𝑡 =
∑𝑘=[ 𝑡

𝑃
]

𝑘=max( [ 𝑡
𝑃
]−𝑤2+1,0)

∑𝑙=𝑡𝑟+𝑤1−1
𝑙=𝑡𝑟 −𝑤1+1 𝑁 (𝑎, 𝑙%𝑃, 𝑘)

𝑐𝑎𝑡 = min(1,
√︃

3𝑙𝑛 (𝑡 )
2𝑛𝑎𝑡 )

𝑣 (𝑎) = 𝑥𝑎𝑡 + 𝑐𝑎𝑡
𝑎𝑜𝑝𝑡 = argmax

𝑎
𝑣 (𝑎)

Pull arm 𝑎𝑜𝑝𝑡 and obtain reward 𝑟
𝑁 (𝑎𝑜𝑝𝑡 , 𝑡𝑟 , [ 𝑡𝑃 ]) = 𝑁 (𝑎𝑜𝑝𝑡 , 𝑡𝑟 , [ 𝑡𝑃 ]) + 1
𝑅(𝑎𝑜𝑝𝑡 , 𝑡𝑟 , [ 𝑡𝑃 ]) = 𝑅(𝑎𝑜𝑝𝑡 , 𝑡𝑟 , [ 𝑡𝑃 ]) + 𝑟

end for

5 RESULTS
In this section, we evaluate our algorithms in a continuously vary-
ing environment where we vary the means of arms in a sinusoidal
fashion with a period 𝑃 = 100 and plot the cumulative regret over
time. For the nearly periodic case, we add some random uniform
noise over these waves so that they are not perfectly periodic. For
baselines comparison, for perfectly periodic case, the naive UCB
algorithm is adapted by taking rewards at period 𝑃 time steps apart.
For nearly periodic case, we adapt REXP3 [2], DTS [4], SWUCB
[8] and D-LinUCB [5] algorithms with their optimal gamma and
window values. We observe that, our algorithms clearly outperform
the baselines implying that it is imperative to leverage periodicity
in a dataset to get optimal performance (minimize regret)

(a) (b)

Figure 1: Comparison of (a) SW-PUCB with naive UCB, and
(b) SW-NPUCB with other non-stationary bandit algorithms

6 CONCLUSION AND FUTUREWORK
In this work, we have introduced a new framework in non station-
ary bandits by considering periodic variation in the rewards. and
proposed 2 novel algorithms, SW-PUCB and SW-NPUCB
There is great scope for expansion in our work. We used a simple
rectangular window in our work. Others may wish to experiment
with different window shapes. In some cases period might be un-
known to the agent or might vary after some duration. Handling
such cases would also improve the practicability.
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