
Anytime Multi-Agent Path Finding using Operation Parallelism in
Large Neighborhood Search

Extended Abstract

Shao-Hung Chan
University of Southern California

Los Angeles, USA
shaohung@usc.edu

Zhe Chen
Monash University
Melbourne, Australia
zhe.chen@monash.edu

Dian-Lun Lin
University of Wisconsin-Madison

Madison, USA
dianlun.lin@wisc.edu

Yue Zhang
Monash University
Melbourne, Australia

yue.zhang@monash.edu

Daniel Harabor
Monash University
Melbourne, Australia

daniel.harabor@monash.edu

Sven Koenig
University of Southern California

Los Angeles, USA
skoenig@usc.edu

Tsung-Wei Huang
University of Wisconsin-Madison

Madison, USA
tsung-wei.huang@wisc.edu

Thomy Phan
University of Southern California

Los Angeles, USA
thomy.phan@usc.edu

ABSTRACT
Multi-Agent Path Finding (MAPF) is the problem of finding a set
of collision-free paths for multiple agents in a shared environment
while improving the solution quality. The state-of-the-art anytime
MAPF algorithm is based on Large Neighborhood Search (MAPF-
LNS), which is a combinatorial search algorithm that iteratively
destroys and repairs a subset of collision-free paths. In this paper,
we propose Destroy-Repair Operation Parallelism for MAPF-LNS
(DROP-LNS), a parallel framework that performs multiple destroy
and repair operations concurrently to explore more regions of the
search space and improve the solution quality. Unlike MAPF-LNS,
DROP-LNS is able to exploit multiple threads during the search.
The results show that DROP-LNS outperforms the state-of-the-art
anytime MAPF algorithms, namely MAPF-LNS and LaCAM*, with
respect to solution quality when terminated at the same runtime.

KEYWORDS
Multi-Agent Path Finding; Anytime Algorithm; Parallelism

ACM Reference Format:
Shao-Hung Chan, Zhe Chen, Dian-Lun Lin, Yue Zhang, Daniel Harabor,
Sven Koenig, Tsung-Wei Huang, and Thomy Phan. 2024. Anytime Multi-
Agent Path Finding using Operation Parallelism in Large Neighborhood
Search: Extended Abstract. In Proc. of the 23rd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2024), Auckland, New
Zealand, May 6 – 10, 2024, IFAAMAS, 3 pages.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

1 INTRODUCTION
AMulti-Agent Path Finding (MAPF) instance contains an undirected
and unweighted graph with a set of agents moving from their start
to goal vertices [3]. At each timestep, an agent can move to an
adjacent vertex or wait at its current vertex. A path 𝑝𝑖 for an agent
𝑎𝑖 is a sequence of vertices indicating where agent 𝑎𝑖 is at each
timestep. The cost 𝑐 (𝑝𝑖) of path 𝑝𝑖 is the number of timesteps to
move from its start vertex to its goal vertex. The shortest path
with cost 𝑑𝑖 for an agent 𝑎𝑖 is the path with the minimum cost
while ignoring collisions with other agents. The solution of a MAPF
instance is a set of collision-free paths, one for each agent. The
objective is to minimize the suboptimality ratio, defined as

suboptimality ratio =
∑
𝑎𝑖 ∈𝐴 (𝑐 (𝑝𝑖) − 𝑑𝑖)∑

𝑎𝑖 ∈𝐴 𝑑𝑖
, (1)

where 𝑐 (𝑝𝑖) −𝑑𝑖 is the delay for agent 𝑎𝑖 . The lower the suboptimal-
ity ratio, the better the solution quality. However, solving MAPF
optimally is NP-hard, which limits the scalability [4].

Anytime algorithms are promising approaches to scalable MAPF.
Large Neighborhood Search (LNS) is the leading anytime MAPF
algorithm (MAPF-LNS) [1]. Starting with a set of collision-free
paths, MAPF-LNS maintains the best-known solution P and iter-
atively selects a subset of agents as the neighborhood, destroys
their paths, and repairs them while keeping the paths of the other
agents unchanged, resulting in an updated solution 𝑃new. To select
the neighborhood at each iteration, MAPF-LNS uses a set of de-
stroy heuristics, one with a weight, and selects one of the destroy
heuristics at random, with their probabilities proportional to their
weights. After MAPF-LNS repairs the paths, it updates the weight
of the selected destroy heuristic according to the difference in the
sum of path costs (SOC) of solutions P and 𝑃new. MAPF-LNS re-
places the best-known solution with solution 𝑃new if the latter has
a lower suboptimality ratio than the former. However, the repair
operations can be time-consuming, and MAPF-LNS may struggle to
lower the suboptimality ratio on large-scale MAPF instances. Thus,

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2183

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Destroy
opera�on

Repair
opera�on

Task

Task…

Task queue

M

Main thread

Worker threads

1

2
Shared

variables Mutex

write

read

Mutex

wrap

process

lock

lock
lock lock

lock

lock

Figure 1: Illustrative example of the DROP-LNS framework
with a main thread “M" and two worker threads “1" and “2".
Arrows indicate the actions of each thread.

we propose Destroy-Repair Operation Parallelism for MAPF-LNS
(DROP-LNS), a parallel framework that performs multiple destroy
and repair operations concurrently to lower the suboptimality ratio,
while the best-known solution is updated asynchronously to main-
tain the productivity of threads, i.e., the runtime to process tasks.
We show that DROP-LNS has lower suboptimality ratios than the
state-of-the-art anytime MAPF algorithms when terminated at the
same runtime.1

2 DESTROY-REPAIR OPERATION
PARALLELISM FOR MAPF-LNS (DROP-LNS)

Figure 1 shows an illustrative example of the DROP-LNS frame-
work. DROP-LNS uses a main thread and a set of worker threads
to parallelize the search. The key idea is to bundle pairs of destroy
and repair operations into tasks in the main thread and assign these
tasks to idle worker threads. DROP-LNS maintains shared variables
that can be modified by any thread, including the best-known solu-
tionwith the minimum suboptimality ratio found so far, the weights
for the destroy heuristics, and a task queue with a fixed capacity. To
avoid data racing, DROP-LNS uses two mutexes 𝑀task and 𝑀main
to respectively ensure that only one thread can modify (1) the task
queue and (2) any other shared variables at a time.

The main thread of DROP-LNS first finds a set of collision-free
paths and then, during the search, maintains the task queue with
a constant capacity of tasks. An idle worker thread tries to access
the task queue and, if successful, pops a task from it. Before ex-
ecuting the task, the worker thread tries to access and copy the
shared variables to its private memory, i.e., the copied best-known
solution P and the copied weights for the destroy heuristics. Then,
it performs a pair of destroy and repair operations on the copied
best-known solution based on the copied weights, resulting in an
updated solution 𝑃new. After the operations, the worker thread tries
to access the shared variables. The best-known solution, which may
be updated by other worker threads during the search and thus
may no longer be P, is replaced with the updated solution 𝑃new
if the latter has a lower suboptimality ratio than the former. The
weight of the destroy heuristic selected to generate solution 𝑃new
is updated according to the difference in the SOC of the copied so-
lution P and the updated solution 𝑃new. That is, the worker threads
of DROP-LNS update the best-known solution asynchronously.

1This extended abstract is a short version of https://arxiv.org/abs/2402.01961

S
u
b
o
p
ti

m
a
lit

y
 r

a
ti

o

Number of agents
100 200 300

Figure 2: Suboptimality ratios of instances solved by LaCAM*,
MAPF-LNS, and DROP-LNS with 8 worker threads. Instances
are grouped by their numbers of agents.

DROP-LNS parallelizes the search by wrapping pairs of destroy
and repair operations as concurrently executable tasks while main-
taining the best-known solution and the weights for destroy heuris-
tic selection. Compared to performing destroy and repair operations
sequentially on a single worker thread, parallelism can efficiently
exploit high-quality solutions for further improvement and explore
different regions in the search space. Both aspects increase the
chance of finding solutions with lower suboptimality ratios than
MAPF-LNS.

3 EMPIRICAL EVALUATION
Weuse a 4-neighbor gridmap room-32-32-4 of size 32×32, denoted
as Room, from the MAPF benchmark suite [3]. We terminate all the
anytime MAPF algorithms when the runtime reaches 60 seconds.
For MAPF-LNS and DROP-LNS, we generate the initial solution via
LaCAM [2] and set the number of agents in a neighborhood to 16.
We implement all algorithms in C++ (compiled with GCC-11.3.0)
and run experiments on CentOS Linux and an AMD EPYC 7302
16-core processor with 16 GBs of memory.

As shown in Figure 2, DROP-LNS with 8 worker threads has
lower suboptimality ratios than the state-of-the-art anytime MAPF
algorithms, namely LaCAM* [2] and MAPF-LNS, especially on
MAPF instances with 300 agents. Please refer to our full paper
https://arxiv.org/abs/2402.01961 for details.

4 CONCLUSION
In this work, we presented DROP-LNS, a parallel framework that
performs multiple destroy and repair operations concurrently to
improve the solution quality. The empirical evaluations show that
under the same runtime when the user interrupts for the solution,
DROP-LNS reaches lower suboptimality ratios than the state-of-
the-art anytime MAPF algorithms such as MAPF-LNS and LaCAM*.
Future work includes developing more sophisticated mechanisms
for synchronization, extensions to anytime bounded-suboptimal
MAPF algorithms, and parallel MAPF algorithms using GPU.

ACKNOWLEDGMENTS
The research at the University of Southern California was supported
by the National Science Foundation (NSF) under grant numbers
1817189, 1837779, 1935712, 2121028, 2112533, and 2321786, as well
as a gift from Amazon Robotics.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2184

https://arxiv.org/abs/2402.01961
https://arxiv.org/abs/2402.01961

REFERENCES
[1] Jiaoyang Li, Zhe Chen, Daniel Harabor, Peter J. Stuckey, and Sven Koenig. 2021.

Anytime Multi-Agent Path Finding via Large Neighborhood Search. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI). 4127–4135.

[2] Keisuke Okumura. 2023. Improving LaCAM for Scalable Eventually Optimal
Multi-Agent Pathfinding. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI). 243–251.

[3] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne T.
Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Roman Barták,
and Eli Boyarski. 2019. Multi-Agent Pathfinding: Definitions, Variants, and Bench-
marks. In Proceedings of the International Symposium on Combinatorial Search
(SoCS). 151–159.

[4] Jingjin Yu and Steven M. LaValle. 2013. Structure and Intractability of Optimal
Multi-Robot Path Planning on Graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI). 1443–1449.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2185

	Abstract
	1 Introduction
	2 Destroy-Repair Operation Parallelism for MAPF-LNS (DROP-LNS)
	3 Empirical Evaluation
	4 Conclusion
	Acknowledgments
	References

