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ABSTRACT
Training an optimal policy in deep reinforcement learning (DRL)
remains a significant challenge due to the pitfalls of inefficient sam-
pling in dynamic environments with sparse rewards. In this paper,
we proposed a Human Local Guide (HLG) incorporating high-level
human knowledge and local policies to guide DRL agents to achieve
optimal performance. HLG deployed the heuristic rules from human
knowledge in differential decision trees and then injected them into
neural networks, which can continuously improve the suboptimal
global policy till the optimal level. Our developed HLG includes
action guides based on a policy-switching mechanism and adap-
tive action guides inspired by an approximate policy evaluation
scheme through a perturbation model to optimise policy further.
Our proposed HLG outperforms PPO and PROLONET with at least
25% improvement in training efficiency and exploration capability
based on MinGrid environments with sparse reward signals. This
implies that HLG has a significant potential to continuously assist
the DRL agent in achieving optimal policy in dynamic and complex
environments.
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1 INTRODUCTION
Deep reinforcement learning (DRL) faces sampling efficiency prob-
lems [4] with sparse rewards in dynamic environments [7] because
it requires a massive amount of interactions with environments un-
der partial observability. Due to this inefficient data sampling issue,
it is not easy to train a DRL agent to achieve optimal performance
even after millions of steps [8–10].

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

Several prevailing methods have sought to alleviate this issue by
leveraging pre-trained models [19] or harnessing guidance from hu-
man expertise [11, 17, 18]. However, these methods assume access
to a guide that would be efficient in all the state space of the dynamic
environment, defined as a global guide. Considering the increas-
ing complexity of dynamic environments, such global information
becomes too challenging to grasp [7]. Policy transferred from the
pre-trained model or human demonstrations may fail in dynamic
environments and lead to sub-optimal agent performance. This
limitation is further exacerbated when agents intrinsically struggle
to exploit state space with partial observability [15]. Nonetheless,
salient stimuli can often still be extracted [16] by humans, regard-
less of the complexity of the environment. For instance, humans
may build heuristic [2] such as ‘defensive’ policies to avoid the
agent trap into unsafe states, or ‘attractive’ policies guide the agent
towards the critical states that dominate access to the final reward.

In this work, we propose a novel human-in-the-loopDRLmethod,
Human Local Guide (HLG) that does not require frequent inter-
actions between the DRL agent with dynamic environments, and
mitigate the issue from sample inefficiency. The HLG is designed
to translate high-level human knowledge into a local policy, and
the DRL agent can leverage it with the approximate policy iter-
ation scheme. The HLG injected human knowledge represented
by heuristic rules into differentiable decision trees and thus trans-
formed into policy networks [6] as the trainable local guide. The
trainable local guide can generate local policies and not only guide
the DRL agent at the initial training stage but also further optimise
the local policy to provide continuous guidance in the remaining
training stage. In the following sections, we briefly describe the
HLG framework presents a human-in-the-loop method for solving
dynamic environments and shows an experimental study.

2 DEEP REINFORCEMENT LEARNINGWITH
HUMAN LOCAL GUIDE (HLG)

This section briefly introduces a novel framework that harnesses
high-level human knowledge to construct a local guide, aiding the
DRL agent in optimising its global policy. Our proposed framework
comprises a Human Local Guide (HLG) that provides two forms of
guidance for a DRL agent.

2.1 From Human Knowledge to HLG
Humans can swiftly make decisions by transforming high-level
knowledge into heuristic rules [2] represented using decision trees
[18]. However, decision trees cannot provide continuous optimi-
sation in combination with deep neural networks. Therefore, the
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HLG leverages Differential Decision Trees (DDTs) [5] to represent
human knowledge for local state space that can warm up local
guide policy. The local guide encodes the human local knowledge
from DDTs into DRL policies by utilising DDTs as function approxi-
mations for the DRL policy networks [14]. The local guide contains
a set of heuristic rules designed from high-level human knowledge.
Our method towards translating heuristic rules into DDTs involves
a procedure that retains the interpretability of the rules while allow-
ing for the gradient-based optimisation inherent to DDTs. The local
guide contains a set of heuristic rules designed from high-level hu-
man knowledge. It inputs feature data x = {𝑥1, ..., 𝑥𝑛} yields based
on partial observation within the local state space 𝑆𝑔 and generates
a guiding policy 𝜋𝑔 . Each rule has the form of:
• 𝑅𝑢𝑙𝑒 𝐿: IF 𝑥1 meets 𝐷1 (¬𝐷1) and 𝑥2 meets 𝐷2 (¬𝐷2) and ...
𝑥𝑛 meets 𝐷𝑛 (¬𝐷𝑛) THEN Action is 𝑙𝑒 𝑓 𝑡 (𝑟𝑖𝑔ℎ𝑡)

The 𝐷𝑛 is the decision criteria corresponding to the feature 𝑥𝑛 .
Our method towards translating heuristic rules into DDTs involves
a procedure that retains the interpretability of the rules while al-
lowing for the gradient-based optimisation inherent to DDTs.

2.2 Enhencing DRL with Local Action Guide
(LAG)

A simple and intuitive way to build a local guide is to switch be-
tween the global and local policies by switch mechanism [3]. An
indicator function 𝜌 is needed to provide the criteria for switching.
The overall policy after 𝑛 iterations can be formulated as follows:

𝜋𝑛𝐿𝐴𝐺 (𝑠) =
{
𝑎𝑠𝑔 𝑖 𝑓 𝜌 (𝑠) ≥ 𝜌−,

𝜋𝑛
𝜃
(𝑠) otherwise.

(1)

LAG would benefit from a performance jump start but could not
outperform a suboptimal guide, so this local guide is only suitable
for optimal pre-trained local policies.

2.3 Enhencing DRL with Adaptive Local Action
Guide (ALAG)

While LAG can provide good initialisation for global policy, it does
not enable the local guide to be continuously optimised to provide
optimal performance. To obtain an adaptive improving policy, we
develop a perturbation model ΨΦ (𝑠, 𝑎𝑠𝑔,Φ) which produces an ad-
justment to action 𝑎𝑠𝑔 in the range [−Φ,Φ]. The perturbation model
allows agents to increase the diversity of guide policy actions 𝑎𝑠𝑔 ,
thus exploring more states with salient stimuli rather than being
strictly limited to safe actions 𝑎𝑠𝑔 . The global policy 𝜋𝐴𝐿𝐴𝐺 at 𝑛 can
be formulated as:

𝜋𝑛𝐴𝐿𝐴𝐺 (𝑠) =
{
𝑎𝑠𝑔 + 𝛽𝑛𝐴𝐿𝐴𝐺Ψ(𝑠, 𝑎

𝑠
𝑔,Φ) 𝑖 𝑓 𝜌 (𝑠) ≥ 𝜌−,

𝜋𝑛
𝜃
(𝑠) otherwise.

(2)

where 𝛽𝑛
𝐴𝐿𝐴𝐺

is the weight of the perturbation model ΨΦ. At the
beginning of training, 𝛽𝑛

𝐴𝐿𝐴𝐺
should be set close to 0 to improve the

initial performance of the local guide and then gradually increase
to 1 to introduce a well-trained perturbation model.

The size of the parameter Φ can play a role in balancing safety
and exploration. The threshold parameter Φ needs to be chosen
by humans according to the environmental characteristics. The

threshold parameter Φ should be small if the environment is high
risk. If the environment does not contain risky states, then the
threshold parameter Φ can be increased to get more action space
that improves global policy. The perturbation model updating can
be formulated as follows:

Ψ𝑛+1
𝜙
← argmax

𝜙

E𝑠,𝑎′ [𝜙 (𝑠)𝑄
𝑛+1 (𝑠, 𝑎𝑠𝑔 + 𝑎

′
)] (3)

3 EXPERIMENTS

B C

A

Figure 1: Crossing task (A) in MiniGrid and performance of
training efficiency (B) as well as exploration capability (C) in
this task.

We outline the experimental tasks designed based on the discrete
control environment (MiniGrid [1] as shown in Figure 1-A). Task
in MiniGrid with sparse rewards and partially observed setting.
The red triangle represents an agent who can observe light grey
shading regions and coloured objects, including lava and goal. In
this study, we compare four methods across our experimental tasks.
The first two methods are our ALAG and LAG, injected with the
above human rules. We set the baseline method PROLONET [13]
that encoded the same human rules. We also set PPO [12] as the
baseline since the other three methods are all implemented based on
PPO in the work. They are used to verify whether our local guides
with human rules can improve training efficiency and exploration
capability, as the results are shown in Figure 1-B, and -C, which
indicates the best performance of our method.
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