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ABSTRACT
Automated negotiation is a crucial component for establishing co-
operation and collaboration within multi-agent systems. While re-
inforcement learning (RL)-based negotiating agents have achieved
remarkable success in various scenarios, they still face limitations
due to certain assumptions on which they are based. In this work,
we proposes a novel approach called ANOTO to improve the ne-
gotiating agents’ ability via offline-to-online RL. ANOTO enables
a negotiating agent (1) to communicate with opponents using an
end-to-end strategy that covers all negotiation actions, (2) to learn
negotiation strategies from historical offline data without requiring
active interactions, and (3) to enhance the optimization process
during the online phase, facilitating rapid and stable performance
improvements for the learned offline strategies. Experimental re-
sults, based on a number of negotiation scenarios and recent win-
ning agents from the Automated Negotiating Agents Competitions
(ANAC), are provided.
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1 INTRODUCTION
Thanks to the popularity of deep learning and reinforcement learn-
ing, these approaches have been successfully deployed in a wide
range of scenarios [9, 16–19]. Automated negotiation [1, 2, 5, 6, 11]
is now focusing on deep reinforcement learning-based negotiating
agents [3, 8] because of their ability to adapt to different scenarios
and opponents [4, 7, 12, 15, 20]. However, continuous interaction
with opponents is often impractical and unrealistic, especially in
real-world applications where data collection can be challenging
and costly [10, 14]. Consequently, designing autonomous agents
that can learn effective negotiation strategies without online in-
teractions remains a significant open problem. Another important
challenge is adapting to the behavior of opponents, as they may
change their strategy in subsequent negotiations. The contribu-
tions of this work are two-fold: a novel approach is proposed for
bilateral multi-issue negotiation via Offline-to-Online reinforce-
ment learning; experimental results also show that our approach is
effective.

2 METHODOLOGY
The diagram of our whole framework is shown in Fig. 1. The agent
is based on an end-to-end policy network, which takes the historical
bids of both parties as input and outputs the corresponding negoti-
ation action. The negotiation action consists of bids (𝜔𝑠 ) and accep-
tance signals (𝜒). Thus, a negotiation action is denoted by a combi-
nation of bids 𝜔 = (𝑜1, 𝑜2, ..., 𝑜𝑛) and acceptance signals 𝜒 ∈ {0, 1},
where 𝑜𝑘 means the agent’s choice for the 𝑘-th issue. These actions
form a factored action space A, which can be formally represented
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Figure 1: Framework of the proposed approach.

as the Cartesian product A = 𝜒
⊗𝑁

𝑖=1 A𝑛 = 𝜒 × A1 × · · · × A𝑁 ,
where A𝑘 = {𝑜𝑚 |𝑚 = 1, . . . , |𝑖𝑘 |} denotes the choice on the 𝑘-th
issue 𝑖𝑘 . We design a new neural network architecture in which we
distribute the representation of actions across multiple sub-policy
networks. Each sub-policy network is responsible for a specific ac-
tion dimension while sharing a decision module to extract features
from input states and coordinate with other sub-policy networks.
Each network is responsible for a specific action dimension, at the
same time, maintaining a shared decision module among them to
extract features from input states and coordinate each sub-policy
networks.

The offline pre-training phase serves as a foundation for our
online optimization. We employ a strategy to boost the Q-values of
OOD actions [13], which are actions that deviate from the observed
data distribution. By doing so, we aim to improve the generalization
capabilities of the offline policy, allowing it to handle a wider range
of negotiation scenarios. Building upon the pre-trained offline pol-
icy, we focus on the online optimization phase to further refine the
negotiation performance. In this work, offline data is collected in
the real-world applications considered in the ANAC competitions.
Once offline datasets have been obtained, we can leverage offline RL
algorithms to train our offline negotiation policy. To offline learning
a strategy from fixed negotiation datasets, we introduce a special
treatment for OOD actions during this offline phase, rather than
excessively penalizing them. Specifically, we adopt a moderately
optimistic evaluation of their Q-values, ensuring that their Q-values
remain below the maximum value. The estimated values for OOD
actions are allowed to be high as long as it does not affect the learn-
ing for the optimal policy supported by the dataset. This approach
prevents the selection of OOD actions during the offline phase,
thereby maintaining the performance of the offline policy. Simul-
taneously, it appropriately elevates the Q-values of OOD actions,
facilitating their exploration during the online phase. Moreover,
we introduce effective mechanisms to facilitate this process. These
mechanisms leverage the knowledge and experience gained from
the offline pre-training phase to achieve stable and rapid perfor-
mance improvements. Through careful design and incorporation
of these mechanisms, we aim to enhance the agent’s ability to ne-
gotiate efficiently and effectively in real-time interactions against
various opponents.

3 RESULTS

Table 1: Tournament results. The best is marked in bold.

Agent name avg utility avg social welfare agreement
RLBOA 0.49 1.33 98.7%
TitForTat 0.56 1.16 83.33%
RandomAgent 0.57 1.26 88.63%
LinearAgent 0.59 1.42 100.00%
ChargingBoul 0.62 1.14 75.75%
AntAllianceAgent 0.63 1.43 96.96%
Comp.Agent 0.64 1.42 98.48%
RGAgent 0.66 1.26 84.84%
SmartAgent 0.68 1.35 92.42%
DreamTeam109Agent 0.69 1.32 90.91%
MiCRO 0.71 1.27 85.61%
AntHeartAgent 0.71 1.30 86.36%
SuperAgent 0.71 1.26 86.36%
ANOTO 0.76 1.38 93.80%

Then, to have a comprehensive view of the performance, Table 1
presents the ANAC-like tournament results. In this setup, recent
ANAC agents are considered, and each agent negotiates with all
other agents in a number of ANAC domains. As depicted in the ta-
ble, the ANOTO agent behaved better than all other agents, leading
the mean utility of ANAC agents by a margin of 23.9%. This results
demonstrate the at agent’s excellent negotiation skills against a
variety of opponents. On the other hand, the RLBOA agent received
a low score of 0.49, which did not exceed the mean utility of col-
lecting agents. Interestingly, the ANOTO agent achieved a fairly
high social welfare, despite not considering it in its objective. We
attribute this satisfying performance to the fact that the end-to-end
policy network can predict the opponents’ issue weights, increasing
the chances of finding offers closer to the Pareto frontier. Addition-
ally, the ANOTO agent benefits from the effective strategy learned
during the offline training phase, which observed opponent behav-
iors. As a result, the ANOTO agent exhibited higher agreement
rates than most of the winning ANAC agents.

4 CONCLUSIONS AND FUTUREWORK
We proposes a novel approach for improving Automated Negotia-
tion via Offline-to-Online reinforcement learning (ANOTO). AN-
OTO allows the negotiating agent to learn an effective end-to-end
RL-based strategy from historical offline data, and to adjust its
strategy in an adaptive and efficient manner. Overall, the exper-
imental results show that the ANOTO Agent, leveraging a more
advanced technical framework, outperformed state-of-the-art ne-
gotiating agents. The exceptional results justify further research
efforts into this approach. In the future, we will extend the pro-
posed approach to negotiation settings where autonomous agents
use natural language to bargain. Additionally, it is of great interest
to examine the performance of the negotiation approach against
human negotiators.
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SOCIETAL IMPACT
This work proposes a highly effective and efficient RL-based ap-
proach for learning negotiation strategies from previously collected
data. The deployment of this technology will enhance market effi-
ciency and also assist human negotiators in achieving better out-
comes. It can compensate for the limited computational abilities
of humans, especially in complex negotiations with a wide range
of possible outcomes. However, since it is still in the early stages,
we do not anticipate any significant negative social impact, such as
massive job loss.
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