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ABSTRACT
Visual-based Reinforcement Learning (RL) has gained prominence
in robotics decision-making due to its significant potential. How-
ever, the prevalent utilization of images in visual-based RL lacks
explicit descriptions of object structures and spatial configurations
in scenes, thereby limiting the overall efficiency and robustness of
RL in robot control. Additionally, training an RL policy solely using
visual observations from scratch is typically sample-inefficient, ren-
dering it impractical for real-world application. To address these
challenges, this paper proposes a novel method, called Pre-training
on Point-based RL (P2RL), which takes the point cloud representa-
tions of scenes as states and preserves the intricate spatial details
between objects. To further enhance efficiency, we leverage the
pre-training method to bolster the perception ability of the net-
work. Key factors in the pre-training process are systematically
examined to optimize downstream RL training. Experimental re-
sults demonstrate the superior robustness and efficiency of P2RL
compared to the state-of-the-art image-based RL method, especially
in evaluations involving untrained scenes.
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1 INTRODUCTION
Recently, Reinforcement Learning (RL) has been widely used in
robotics scenes [1, 9]. Most of these methods utilize images as
input [6, 12, 13] to actively perceive and gather environmental
information, as images are ease of acquisition and integration into
the RL pipeline. However, these image-based states fail to capture
the structural and spatial information of objects and scenes, which
are crucial for complex tasks. To address this limitation, point-based
RL has been proposed and studied [7, 8]. However, the point cloud
state consists of numerous points, making it challenging to process
and further decreasing RL sample efficiency.

To enhance the sample efficiency of point-based RL in a gen-
eral manner, we propose leveraging pre-training methods from the
computer vision field. Our method decouples the framework into
the RL Network and the Visual Perception (VP) Network. Firstly,
the VP Network undergoes pre-training to enhance its perception
capabilities. Subsequently, the pre-trained VP Network extracts fea-
tures from the point cloud, which serves as the state representation
for the RL Network. It is important to note that the policy training
∗
Both authors contributed equally to this work.

†
Corresponding authors.

Extended Abstract  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2198

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


is end-to-end. We conducted experiments on various manipulation
tasks, and the results demonstrate that P2RL outperforms the RL
policies trained using image or vector inputs.

2 METHODOLOGY
We model the vision-based manipulation task as a Markov decision
process (MDP):M = (S,A,R,T , 𝛾), where 𝑠 ∈ S is a state, 𝑎 ∈ A
is an action, 𝑟 ∈ R is the reward, T : S × A → S is the transition
function, and 𝛾 ∈ [0, 1) is the discount factor. P2RL adopts point
cloud observation 𝑜 ∈ O as the substitute for the RL input 𝑠 . During
training, the agent aims to learn a policy 𝜋 that maximizes the
discounted cumulative rewards onM: 𝐽 (𝜋) = E𝜋,M

∑𝑇
𝑡=1

[
𝛾𝑡−1𝑟𝑡

]
.

Overall Architecture. P2RL comprises two parts: the VP Net-
work and the RL network. The VP Network extracts the scene state
𝐼𝑠 from the point cloud observation 𝑜 . Subsequently, the propri-
oceptive state 𝐼𝑚 of the manipulator is concatenated with 𝐼𝑠 to
form the final state 𝐼 = [𝐼𝑠 , 𝐼𝑚], which serves as the input for the
RL network to train the downstream tasks. The Proximal Policy
Optimization (PPO) algorithm [11] is employed in the RL network
to train the policy. To enhance the stability and speed, we froze the
parameters of the Batch Normalization (BN) layer, implemented
a distributed training and sampling framework for policy deriva-
tion, and incorporated gradient accumulation and automatic mixed
precision techniques.

Pre-training Paradigm. During the pre-training phase, we
adapt the backbone in the pre-training framework to align with the
VP Network used in P2RL, ensuring that the pre-trained parameters
can be loaded for subsequent RL training. To explore the impact
of different pre-training methods on downstream RL training, we
selected two pre-training tasks. The first task is unsupervised con-
trastive learning, limited only by contrastive loss, and does not
require labels during training. To perform this pre-training task,
we utilized the STRL framework [5]. The second pre-training task
is semantic segmentation, which requires identifying different cat-
egories of points in the scene under the supervision of point-wise
semantic labels, resulting in a more comprehensive understanding
of the scene. We adopt the semantic segmentation process from
the PyTorch implementation of PointNet++ as the pre-training
framework. At the end of pre-training, the backbone parameters
are saved as the pre-training model, which is loaded to initialize
the VP Network for downstream RL training.

3 EXPERIMENT
We evaluate P2RL on six manipulation tasks from Robosuite [14].
To conduct pre-training, the ShapeNet [3] and Stanford Large-Scale
3D Indoor Spaces (S3DIS) [2] datasets are selected for contrastive
learning and semantic segmentation, respectively. The results of the
network initialized with model pre-training through Contrastive
Learning and Semantic Segmentation are abbreviated to CL and SS,
respectively.

Point-based RL Results. To investigate the performance of
P2RL, we compare the results of P2RL with two state-of-the-art
RL methods in Robosuite: RAPS [4] and MAPLE [10]. RAPS lever-
ages parameterized actions to learn a high-level policy with sparse
rewards, using images as input. To assess the disparity between

Table 1: Success rates and standard deviations with different
state-of-the-art methods (%).

Reach Lift LiftMulti

RAPS 96.0±8.0 82.0±14.0 -
MAPLE 100.0±0.0 98.8±0.4 -
P2RL(ours) 100.0±0.0 97.0±6.4 77.0±16.2

Door Cleanup Peg in hole

RAPS 96.0±8.0 - -
MAPLE 97.2±0.7 96.6±1.0 92.8±2.1
P2RL(ours) 100.0±0.0 89.0±9.4 88.0±7.5

P2RL and the vector-basedmethod (directly obtaining state from the
environment), we also compare with the manipulation primitive-
augmented RL (MAPLE) method. MAPLE enhances standard RL
algorithms with a pre-defined library of behavior primitives. Table 1
demonstrates that P2RL exhibits a 7.6% higher average success rate
than RAPS across the initial three tasks, thereby showcasing the
superior performance of P2RL in visual-based methods. Regrettably,
RAPS is not compatible with the remaining tasks. When comparing
P2RL to MAPLE, P2RL achieves comparable results in most tasks.
MAPLE only outperforms P2RL by 2.6% in average success, which
is acceptable considering the relative ease of learning vector-based
RL. Furthermore, the action space of MAPLE is task-constrained,
reducing the difficulty of the learning process.
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Figure 1: The RL training performance results in various
downstream tasks are analyzed concerning different pre-
training manners.

Pre-training Results. We examined the impact of pre-training
using two distinct approaches on six diverse downstream tasks, as
illustrated in Fig. 1. The pre-trained network consistently outper-
forms the baseline in all downstream tasks. Notably, pre-training
significantly enhances the convergence speed of RL training, pri-
marily during the initial stages. The pre-trained network exhibits
significant improvements of 200%, 150%, and 150% for the Lift, Lift-
Multi, and Cleanup tasks, respectively. For the Door task, the pre-
trained network achieves success in significantly fewer episodes
on average compared to the baseline.
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