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ABSTRACT
Generalization in Multi-agent Reinforcement Learning (MARL) is
challenging. Introducing a diverse set of co-play agents typically
boosts the agent’s generalization to unseen co-players. However,
the extent to which an agent is influenced by co-players varies
across scenarios and environments; thus, the improvement in gen-
eralization introduced by diversifying co-players also varies. In
this work, we introduce Level of Influence (LoI), a novel metric
measuring the interaction intensity among agents within a given
scenario and environment. We show that LoI can effectively predict
the disparities in the benefits of diversifying co-player distribution
across scenarios, offering insights into optimizing training cost
for varied situations. The code is available at: https://github.com/
ThomasChen98/Level-of-Influence.
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1 INTRODUCTION
Developing agents that effectively interact with others remains a
significant challenge [2, 5]. Model-free reinforcement learning (RL)
has enabled agents to achieve or exceed human performance in
various games and domains through self-play (SP) [6, 16, 17, 20, 22].
Yet, training exclusively with identical replicas limits their adapt-
ability and robustness to new co-players with differing behav-
iors [3, 12, 15, 18]. Improving policy robustness through diversifying
co-player distribution is a promising strategy [21]. This approach,
effective in complex games, includes techniques such as population-
based training (PP) [4, 9, 10], league-based training [20], fictitious
self-play [7, 18], and agent hyperparameter diversification [8, 14].
Although these methods boost generalization, they often require
more training resources and time as a trade-off.

Nevertheless, the key question remains: whether diversifying
co-player distribution during training justifies its high cost, given
that real-world applications often demand specialized RL policies
for various scenarios [6, 13]. The value of this diversity hinges on
the scenario’s level of interaction. We introduce the Level of Influ-
ence (LoI), a metric quantifying how much an ego agent’s reward
changes with the behavior of other agents. Defined as the mutual
information (MI) between the ego agent’s reward and non-ego
agents’ policy choices, LoI helps in identifying when diversifying
training partners can effectively improve an ego agent’s general-
ization in various scenarios. Our findings demonstrate that the LoI
metric is highly correlated with the benefits of increasing co-player
diversity on the generalization of the ego agent within given sce-
narios. It indicates the potential of LoI in guiding training schedule
optimization to achieve cost-effective generalization for MARL.

2 METHODOLOGY
In MARL, an agent’s policy performance is gauged by its expected
reward when interacting with various co-players, influenced by the
reward structure or payoffmatrix. We define environments as games
with unique reward setups and scenarios as variations within these
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environments, created by altering map features like size, shape, and
obstacle placement.

To measure the intensity of interactions between agents in a
scenario, we introduce a metric called the “Level of Influence” (LoI),
drawing from the concept of causal influence [11]. Specifically,
in this work, we consider a two-agent symmetric game with two
agents named Alice and Bob, where Alice is controlled by our
algorithm (the ego agent) with policy 𝜙 ∈ Φ and Bob is another
algorithm-driven agent or a human (the non-ego agent) with policy
𝜃 ∈ Θ. Alice and Bob choose their policies following the distribution
𝑃𝜑 (𝜙) = P[𝜑 = 𝜙] and 𝑃𝜗 (𝜃 ) = P[𝜗 = 𝜃 ] respectively. Let 𝑟 ∈
R denote the total reward of Alice paired with Bob. Intuitively,
we want the LoI to measure the degree to which Alice’s reward
distribution changes induced by Bob’s policy choice, given Alice’s
own policy choice. Therefore, the LoI is defined as the conditional
mutual information of Alice’s reward and Bob’s policy with respect
to Alice’s policy:

𝐼 (𝑅;𝜗 |𝜑) =
∑︁
𝜙∈Φ

𝑃𝜑 (𝜙)
∑︁
𝜃 ∈Θ

𝑃𝜗 (𝜃 )𝐷KL
(
𝑃𝑅 |𝜗=𝜃,𝜑=𝜙 ∥𝑃𝑅 |𝜑=𝜙

)
, (1)

where 𝑃𝑅 |𝜗=𝜃,𝜑=𝜙 = P[𝑅 = 𝑟 |𝜗 = 𝜃, 𝜑 = 𝜙] is the conditional
reward distribution of Alice given Alice’s policy 𝜑 = 𝜙 and Bob’s
policy 𝜗 = 𝜃 . Marginalizing 𝜗 results in 𝑃𝑅 |𝜑=𝜙 .

When 𝐼 (𝑅;𝜗 |𝜑) = 0, Alice’s reward is unaffected by Bob’s policy
choice, making diverse opponent training less beneficial. However,
as this value increases, Bob’s policy has a greater impact on Al-
ice’s reward. Thus, training Alice with a variety of Bob’s policies
enhances performance with new partners and justifies a larger
training budget.

3 EXPERIMENTS
We adopt DeepMind Melting Pot environment [1] for evaluation.
We choose the two-agent substrate named “★ in the Matrix” [19].
We define four environments: Chicken, Pure Coordination, Prisoners
Dilemma, and Stag Hunt [1] with distinct payoff matrices. For each
environment, we modify the map size and resource/object layout
to create three scenarios: small, medium, and large (Figure 1).

(a) Small (b) Medium (c) Large

Figure 1: Three ★ in the Matrix scenarios.

To validate LoI, we examine the effect of co-player diversity on
generalization by training policies with different diversities and
testing them against a fixed group of checkpoints from various
stages of a single SP policy for evaluation, which we refered to as
“Fixed-Bobs”.We also train additional SP policies with different seeds
and PP policies in groups of 3 and 5 populations, then test these
against the Fixed-Bobs. Matches are played 10 times to compute
average rewards, followed by calculating the average improvement
for each training method across environments and scenarios. The

Table 1: Average improvement on individual reward between
SP, PP3, and PP5 under each scenario and environment.

Chicken
Pure Prisoners Stag

Coordination Dilemma Hunt

Small 1.4130 1.7986 7.0535 5.1652
Medium 3.8312 1.0248 9.4688 8.0993
Large 4.9293 0.9117 3.7931 5.2341

Table 2: LoI (and standard deviations, reported in parenthe-
ses) across three scenarios under four environments.

Chicken
Pure Prisoners Stag

Coordination Dilemma Hunt

Small 1.291 (0.14) 1.117 (0.12) 1.377 (0.11) 1.397 (0.14)
Medium 1.364 (0.09) 1.071 (0.15) 1.385 (0.11) 1.431 (0.13)
Large 1.438 (0.09) 0.976 (0.09) 1.180 (0.09) 1.424 (0.07)

results are reported in Table 1: The advantage of PP over SP (i.e.,
average improvement) varies across different scenarios, and the
correlations between scenario and reward increment vary across
different environments.

Then we calculate the LoI introduced in Section 2 for each sce-
nario and environment. Due to the unavailability of full policy
spaces Φ and Θ, directly computing the true LoI is impractical.
Instead, we approximate LoI by training 6 SP policies, randomly
assigning 1 to represent Alice and 5 to Bob. From these, we select
4 late-stage checkpoints per Alice policy to capture variations in
skill, and 9 checkpoints from all stages per Bob policy to sample
his policy diversity. We model Alice and Bob’s policy distributions
uniformly across their checkpoints (with probabilities 𝑃𝜑 = 1/4
and 𝑃𝜗 = 1/9), conducting six games per pair. The results are pre-
sented in Table 2: LoI exhibits varying trends across three specified
scenarios in different environments.

Finally, we analyze the correlation between LoI and average
improvement across three scenarios in each environment using the
Pearson correlation coefficient 𝑟 . The average coefficient across all
four environments is 𝑟 = 0.85. This indicates a strong correlation
between LoI and the benefits of a diverse co-player distribution for
the ego agent’s generalization within given scenarios.

4 CONCLUSION
In our study, we introduce the Level of Influence (LoI) metric, a
measure that quantifies the interaction intensity between agents
across varied scenarios in multi-agent reinforcement learning. Our
findings demonstrate that policies trained with larger population
sizes exhibit improved performance when paired with unseen co-
players in highly interactive scenarios. Our proposed metric can
effectively predict the potential generalization improvement by
having a more diverse set of co-player distribution during training.
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