
Optimal Task Assignment and Path Planning using
Conflict-Based Search with Precedence and Temporal Constraints

Extended Abstract

Yu Quan Chong
Carnegie Mellon University

Pittsburgh, PA, USA
yuquanc@andrew.cmu.edu

Jiaoyang Li
Carnegie Mellon University

Pittsburgh, PA, USA
jiaoyangli@cmu.edu

Katia Sycara
Carnegie Mellon University

Pittsburgh, PA, USA
sycara@andrew.cmu.edu

ABSTRACT
This paper examines the Task Assignment and Path Finding with
Precedence and Temporal Constraints (TAPF-PTC) problem. We
augment Conflict-Based Search (CBS) to generate task assignments
and collision-free paths that adhere to precedence and temporal
constraints for agents to maximize a user-defined objective.

KEYWORDS
Multi-Agent Task Assignment; Multi-Agent Path Finding; Prece-
dence Constraints; Temporal Constraints
ACM Reference Format:
Yu Quan Chong, Jiaoyang Li, and Katia Sycara. 2024. Optimal Task Assign-
ment and Path Planning using Conflict-Based Search with Precedence and
Temporal Constraints: Extended Abstract. In Proc. of the 23rd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024),
Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 3 pages.

1 INTRODUCTION
The Multi-Agent Path Finding (MAPF) problem [7] entails finding
collision-free paths for a set of agents, guiding them from their
start to goal locations. However, MAPF does not account for several
practical task-related constraints. For example, agents may need
to perform actions at goal locations with specific execution times,
adhering to predetermined orders and timeframes. Moreover, goal
assignments may not be predefined for agents, and the optimiza-
tion objective may lack an explicit definition. To incorporate task
assignment, path planning, and a user-defined objective into a co-
herent framework, this paper examines the Task Assignment and
Path Finding with Precedence and Temporal Constraints (TAPF-
PTC) problem. We augment Conflict-Based Search (CBS) [6] to
simultaneously generate task assignments and collision-free paths
that adhere to precedence and temporal constraints, maximizing
an objective quantified by the return from a user-defined reward
function in reinforcement learning (RL).

2 PROBLEM DEFINITION
TAPF-PTC is characterised by an undirected graph 𝐺 = (𝑉 , 𝐸),
a set of 𝑁 agents {𝑎1, . . . , 𝑎𝑁 }, and a task 𝑇 , which is a set of 𝑀
goals {𝑔1, . . . , 𝑔𝑀 } with given temporal constraints. Each agent

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

has a start vertex 𝑠𝑖 ∈ 𝑉 . Each goal 𝑔 𝑗 is a tuple comprising a
goal vertex 𝑔 𝑗 .𝑣 and a goal action 𝑔 𝑗 .𝑎𝑐𝑡 and needs to be assigned
to an agent 𝑎𝑖 , requiring 𝑎𝑖 to reach 𝑔 𝑗 .𝑣 and perform 𝑔 𝑗 .𝑎𝑐𝑡 for
𝛼 (𝑔 𝑗) timesteps while waiting there. We use [𝑔1

𝑖
, . . . , 𝑔

𝑙𝑖
𝑖
] to denote

the sequence of 𝑙𝑖 goals assigned to agent 𝑎𝑖 ; so
∑𝑁
𝑖=1 𝑙𝑖 = 𝑀 . We

further use 𝜇 (𝑔 𝑗
𝑖
) and 𝜏 (𝑔 𝑗

𝑖
) to denote the timestep when agent 𝑎𝑖

start and finish performing action 𝑔 𝑗
𝑖
.𝑎𝑐𝑡 at vertex 𝑔 𝑗

𝑖
.𝑣 , respectively,

so 𝜏 (𝑔 𝑗
𝑖
) − 𝜇 (𝑔 𝑗

𝑖
) = 𝛼 (𝑔 𝑗

𝑖
). A path segment for an agent 𝑎𝑖 consists

of the sequence of vertices and actions from the completion of 𝑔 𝑗−1
𝑖

to the completion of 𝑔 𝑗
𝑖
, with the full path being the sequential

concatenation of the path segments of 𝑙𝑖 goals. A solution to TAPF-
PTC consists of a goal assignment and a set of conflict-free paths.
Conflicts occur when certain constraints are violated: (1) We use
vertex/edge constraints in [6] to avoid collisions, where no two
agents can occupy the same vertex/edge at the same timestep. (2)We
expand on the precedence constraints defined in [9], which consists
of two goals and requires the execution or completion timestep
of one to precede the other. (3) We introduce absolute temporal
range constraints to fix the execution or completion timestep of
goals within specified temporal ranges. (4) We introduce inter-
goal temporal constraints to specify an upper bound between the
difference in the execution or completion timesteps of two goals.

3 CBS-TA-PTC
We propose Conflict-Based Search with Task Assignment, Prece-
dence, and Temporal Constraints (CBS-TA-PTC), an extension of
CBS-TA [3] and CBS-PC [9], as shown in Algorithm 1. In cases
where𝑀 is significantly larger than 𝑁 , we partition𝑇 into subtasks
{𝑇𝑠𝑢𝑏 }, forming each 𝑇𝑠𝑢𝑏 as a TAPF-PTC instance and solved by
CBS-TA-PTC.

3.0.1 Goal Assignment. As our objective is defined by an RL return,
determining the cost of assigning a goal to an agent requires knowl-
edge of the agent’s entire path. So optimal assignment algorithms
such as Hungarian [5] cannot be applied. Hence, we enumerate all
possible combinations of agents and the goals in 𝑇𝑠𝑢𝑏 and generate
a root Constraint Tree (CT) node for each of them (line 1–7).

3.0.2 Conflict Resolution. Conflict resolution priority ordering: 1)
Absolute temporal range, 2) Precedence, 3) Inter-goal temporal, and
4) Vertex/Edge. Absolute temporal range conflicts are the priority
as they are based on temporal ranges independent from other goals.
Precedence conflicts take priority over inter-goal temporal conflicts
as actions should be performed in the correct order before being
correctly spaced apart temporally. It is also likely that resolving

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2210

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Algorithm 1 CBS-TA-PTC()
Input: Graph 𝐺 , starts {𝑠𝑖 }, subtask 𝑇𝑠𝑢𝑏 , past solutions
Output: Path for each agent for given 𝑇𝑠𝑢𝑏
1: for assignment in Combinations(𝑇𝑠𝑢𝑏) do
2: R← GenerateRootCTNode(S, past solutions, assignment)
3: if R.return is maximum return then
4: return R.solution
5: end if
6: insert R to OPEN
7: end for
8: while OPEN not empty do
9: P← node from OPEN with the highest return
10: if P.return is maximum return then
11: return P.solution
12: end if
13: conflict← conflict in P w.r.t conflict resolution order
14: constraints← ResolveConflict(conflict)
15: for constraint in constraints do
16: Q← GenerateCTNode(S, past solutions, P, constraint)
17: insert Q to OPEN
18: end for
19: end while

a precedence conflict would resolve any related inter-goal tempo-
ral conflicts. For example, the inter-goal temporal constraint with
𝜏 (𝑔 𝑗

′

𝑖′) − 𝜏 (𝑔
𝑗
𝑖
) ≤ 𝑡𝑖𝑛𝑡𝑒𝑟 is denoted by ⟨𝜏 (𝑔 𝑗

𝑖
), 𝜏 (𝑔 𝑗

′

𝑖′), 𝑡𝑖𝑛𝑡𝑒𝑟 ⟩. When
⟨𝜏 (𝑔 𝑗

𝑖
), 𝜏 (𝑔 𝑗

′

𝑖′), 𝑡𝑖𝑛𝑡𝑒𝑟 ⟩ is violated, i.e., 𝜏 (𝑔
𝑗 ′

𝑖′) − 𝜏 (𝑔
𝑗
𝑖
) > 𝑡𝑖𝑛𝑡𝑒𝑟 , two

child CT nodes with either one of the following constraints are
generated, where 𝜏 (𝑔 𝑗

′

𝑖′) = 𝑡 ′ in the parent CT node:

(1) 𝜏 (𝑔 𝑗
𝑖
) ≥ 𝑡 ′ − 𝑡𝑖𝑛𝑡𝑒𝑟 : Agent 𝑎𝑖 is to complete 𝑔 𝑗

𝑖
at or after

timestep 𝑡 ′−𝑡𝑖𝑛𝑡𝑒𝑟 . Agent𝑎𝑖 ’s path in the corresponding child
CT node is replanned and the inter-goal temporal conflict is
resolved.

(2) 𝜏 (𝑔 𝑗
𝑖
) < 𝑡 ′−𝑡𝑖𝑛𝑡𝑒𝑟 : Agent 𝑎𝑖 is to complete𝑔 𝑗

𝑖
before timestep

𝑡 ′−𝑡𝑖𝑛𝑡𝑒𝑟 , which is already satisfied. Agent 𝑎𝑖′ must complete
𝑔
𝑗 ′

𝑖′ at least one timestep earlier than before when replanning
its path in its child CT node, i.e. 𝜏 (𝑔 𝑗

′

𝑖′) ≤ 𝑡 ′−1. Hence, 𝜏 (𝑔 𝑗
′

𝑖′)
is guaranteed to decrease by one timestep.

3.0.3 Low-Level Path Planning. Multi-Label A* (MLA*) [1] is used
to generate a solution for a task assignment under the constraints on
the CT node. A linear programmingmodule using one of the HiGHS
solvers [2, 4] is used to prune CT nodes that are unsolvable given
their constraints from various conflicts before the MLA* search.

3.0.4 Theoretical Properties of CBS-TA-PTC. By decomposing the
task into subtasks, CBS-TA-PTC is an incomplete and suboptimal
algorithm. However, with the entire task as a subtask, CBS-TA-PTC
can be shown to be optimal and complete by adapting Theorems 1
and 3 in [6] respectively, with the assumption that every trajectory
is a Markov game with a fixed terminal timestep to ensure that the
set of constraints that can be added to CT nodes is finite.

Figure 1: Results showing the success rate, optimality ratio
(ratio between return and optimal return) and runtime.

3.1 Results
3.1.1 Environment. Three agents have to defuse all bombs within a
time limit. Each bomb has an ordered sequence of three colors with
a sequence length of [1, 3], a countdown timer that resets upon a
correct defusing step, where the next sequence must be defused
before the countdown, and a fuse timer that indicates the time when
it must be fully defused. Certain bombs have dependencies, which
dictates that the bomb it depends on must be fully defused or have
exploded before any defusing steps on itself. Each agent has tools
with 2 out of the 3 colors that remove the matching color from
the bomb sequence. Failure to adhere to the above would result in
the bomb exploding. A fully defused bomb gives a team reward
proportionate to the sequence length of the bomb.

3.1.2 Baselines. We augment CBS-TA [3] to maximize return with
vertex/edge constraints only, where, given the explosion of a bomb,
CT nodes are generated in a naive manner with vertex conflicts for
each agent for that timestep. It solves TAPF-PTCwith its underlying
precedence and temporal conflicts through a more inefficient best-
first search through the CT relative to CBS-TA-PTC. For CBS-TA
and CBS-TA-PTC, the return is generated by evaluating the solution
from the low level, with past solutions from previous subtasks, on
an oracle that simulates the environment based on the user-defined
reward function and dynamics, which is typically implemented
as a user-designed RL environment in practice [8]. Note that a
maximum return solution is conflict-free by design.

ACKNOWLEDGMENTS
Thisworkwas partially supported byDARPA awardHR001120C0036
and AFOSR award FA9550-18-1-0097.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2211

REFERENCES
[1] Florian Grenouilleau, Willem-Jan van Hoeve, and John N Hooker. 2019. A multi-

label A* algorithm for multi-agent pathfinding. In Proceedings of the International
Conference on Automated Planning and Scheduling, Vol. 29. 181–185.

[2] J Hall, I Galabova, L Gottwald, and M Feldmeier. [n.d.]. HiGHS–high performance
software for linear optimization.

[3] Wolfgang Hönig, Scott Kiesel, Andrew Tinka, Joseph Durham, and Nora Ayanian.
2018. Conflict-based search with optimal task assignment. In Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent Systems.

[4] Qi Huangfu and JA Julian Hall. 2018. Parallelizing the dual revised simplex method.
Mathematical Programming Computation 10, 1 (2018), 119–142.

[5] Harold W Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[6] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. 2015. Conflict-
based search for optimal multi-agent pathfinding. Artificial Intelligence 219 (2015),

40–66.
[7] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne

Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, TK Kumar, et al. 2019. Multi-
agent pathfinding: Definitions, variants, and benchmarks. In Proceedings of the
International Symposium on Combinatorial Search, Vol. 10. 151–158.

[8] Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola,
Tristan Deleu, Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel,
Rodrigo Perez-Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew
Tan Jin Shen, and Omar G. Younis. 2023. Gymnasium. https://doi.org/10.5281/
zenodo.8127026

[9] Han Zhang, Jingkai Chen, Jiaoyang Li, B Williams, and Sven Koenig. 2022. Multi-
Agent Path Finding for Precedence-Constrained Goal Sequences. In Proceedings of
the International Joint Conference on Autonomous Agents and Multiagent Systems.
1464–1472.

Extended Abstract AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

2212

https://doi.org/10.5281/zenodo.8127026
https://doi.org/10.5281/zenodo.8127026

	Abstract
	1 Introduction
	2 Problem Definition
	3 CBS-TA-PTC
	3.1 Results

	Acknowledgments
	References

