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ABSTRACT

This paper examines the Task Assignment and Path Finding with
Precedence and Temporal Constraints (TAPF-PTC) problem. We
augment Conflict-Based Search (CBS) to generate task assignments
and collision-free paths that adhere to precedence and temporal
constraints for agents to maximize a user-defined objective.
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1 INTRODUCTION

The Multi-Agent Path Finding (MAPF) problem [7] entails finding
collision-free paths for a set of agents, guiding them from their
start to goal locations. However, MAPF does not account for several
practical task-related constraints. For example, agents may need
to perform actions at goal locations with specific execution times,
adhering to predetermined orders and timeframes. Moreover, goal
assignments may not be predefined for agents, and the optimiza-
tion objective may lack an explicit definition. To incorporate task
assignment, path planning, and a user-defined objective into a co-
herent framework, this paper examines the Task Assignment and
Path Finding with Precedence and Temporal Constraints (TAPF-
PTC) problem. We augment Conflict-Based Search (CBS) [6] to
simultaneously generate task assignments and collision-free paths
that adhere to precedence and temporal constraints, maximizing
an objective quantified by the return from a user-defined reward
function in reinforcement learning (RL).

2 PROBLEM DEFINITION

TAPF-PTC is characterised by an undirected graph G = (V,E),
a set of N agents {ay,...,an}, and a task T, which is a set of M
goals {g!,...,gM} with given temporal constraints. Each agent
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has a start vertex s; € V. Each goal ¢’ is a tuple comprising a
goal vertex g/.v and a goal action g’ .act and needs to be assigned
to an agent a;, requiring a; to reach ¢’.v and perform ¢/ .act for
a(g’) timesteps while waiting there. We use [g}, e ,gﬁ" ] to denote
the sequence of [; goals assigned to agent a;; so Zﬁl Ii = M. We
further use p(glj ) and T(g{ ) to denqte the timestep. when agent g;
start and finish performing action 9{ .act at vertex g{ .0, respectively,
O r(g{) - y(g{) = a(g{). A path segment for an agent a; consists
of the sequence of vertices and actions from the completion of g{ -

to the completion of glj. , with the full path being the sequential
concatenation of the path segments of /; goals. A solution to TAPF-
PTC consists of a goal assignment and a set of conflict-free paths.
Conflicts occur when certain constraints are violated: (1) We use
vertex/edge constraints in [6] to avoid collisions, where no two
agents can occupy the same vertex/edge at the same timestep. (2) We
expand on the precedence constraints defined in [9], which consists
of two goals and requires the execution or completion timestep
of one to precede the other. (3) We introduce absolute temporal
range constraints to fix the execution or completion timestep of
goals within specified temporal ranges. (4) We introduce inter-
goal temporal constraints to specify an upper bound between the
difference in the execution or completion timesteps of two goals.

3 CBS-TA-PTC

We propose Conflict-Based Search with Task Assignment, Prece-
dence, and Temporal Constraints (CBS-TA-PTC), an extension of
CBS-TA [3] and CBS-PC [9], as shown in Algorithm 1. In cases
where M is significantly larger than N, we partition T into subtasks
{Tsup}, forming each Ty,,;, as a TAPF-PTC instance and solved by
CBS-TA-PTC.

3.0.1 Goal Assignment. As our objective is defined by an RL return,
determining the cost of assigning a goal to an agent requires knowl-
edge of the agent’s entire path. So optimal assignment algorithms
such as Hungarian [5] cannot be applied. Hence, we enumerate all
possible combinations of agents and the goals in Ty,,;, and generate
a root Constraint Tree (CT) node for each of them (line 1-7).

3.0.2  Conflict Resolution. Conflict resolution priority ordering: 1)
Absolute temporal range, 2) Precedence, 3) Inter-goal temporal, and
4) Vertex/Edge. Absolute temporal range conflicts are the priority
as they are based on temporal ranges independent from other goals.
Precedence conflicts take priority over inter-goal temporal conflicts
as actions should be performed in the correct order before being
correctly spaced apart temporally. It is also likely that resolving
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Algorithm 1 CBS-TA-PTC()

Input: Graph G, starts {s;}, subtask Ty, past solutions
Output: Path for each agent for given T,

1: for assignment in Combinations(Ty,;) do

22 R « GenerateRootCTNode(S, past solutions, assignment)

3:  if Rureturn is maximum return then

4: return R.solution

5. end if

6:  insert R to OPEN

7: end for

8: while OPEN not empty do

9: P < node from OPEN with the highest return

10:  if P.return is maximum return then

11: return P.solution

122 endif

13:  conflict « conflict in P w.r.t conflict resolution order
14 constraints < ResolveConflict(conflict)

15:  for constraint in constraints do

16: Q « GenerateCTNode(S, past solutions, P, constraint)
17: insert Q to OPEN

18:  end for

19: end while

a precedence conflict would resolve any related inter-goal tempo-
ral conflicts. For example, the inter-goal temporal constraint with

t(g)) = (g]) < tinter is denoted by (r(g)), 7(g))), tinter). When

(T(ql/) T(g{, ), tinter) is violated, i.e., T(g{/) - T(g{) > tinter, tWO
child CT nodes with either one of the following constraints are

generated, where T(g{,l) =t/ in the parent CT node:

(1) T(g{) > t' — tinter: Agent g; is to complete g{ at or after
timestep ' —tinzer. Agent a;’s path in the corresponding child
CT node is replanned and the inter-goal temporal conflict is
resolved. )

(2) f(g{) < t' —tinter: Agent a; is to complete gl/ before timestep
t' —tinter, which is already satisfied. Agent a;» must complete

g{, at least one timestep earlier than before when replanning

its path in its child CT node, i.e. T(g{, ) < t’—1.Hence, T(gli, )
is guaranteed to decrease by one timestep.

3.0.3 Low-Level Path Planning. Multi-Label A" (MLA”) [1] is used
to generate a solution for a task assignment under the constraints on
the CT node. A linear programming module using one of the HIGHS
solvers [2, 4] is used to prune CT nodes that are unsolvable given
their constraints from various conflicts before the MLA” search.

3.0.4 Theoretical Properties of CBS-TA-PTC. By decomposing the
task into subtasks, CBS-TA-PTC is an incomplete and suboptimal
algorithm. However, with the entire task as a subtask, CBS-TA-PTC
can be shown to be optimal and complete by adapting Theorems 1
and 3 in [6] respectively, with the assumption that every trajectory
is a Markov game with a fixed terminal timestep to ensure that the
set of constraints that can be added to CT nodes is finite.
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Figure 1: Results showing the success rate, optimality ratio
(ratio between return and optimal return) and runtime.

3.1 Results

3.1.1 Environment. Three agents have to defuse all bombs within a
time limit. Each bomb has an ordered sequence of three colors with
a sequence length of [1, 3], a countdown timer that resets upon a
correct defusing step, where the next sequence must be defused
before the countdown, and a fuse timer that indicates the time when
it must be fully defused. Certain bombs have dependencies, which
dictates that the bomb it depends on must be fully defused or have
exploded before any defusing steps on itself. Each agent has tools
with 2 out of the 3 colors that remove the matching color from
the bomb sequence. Failure to adhere to the above would result in
the bomb exploding. A fully defused bomb gives a team reward
proportionate to the sequence length of the bomb.

3.1.2  Baselines. We augment CBS-TA [3] to maximize return with
vertex/edge constraints only, where, given the explosion of a bomb,
CT nodes are generated in a naive manner with vertex conflicts for
each agent for that timestep. It solves TAPF-PTC with its underlying
precedence and temporal conflicts through a more inefficient best-
first search through the CT relative to CBS-TA-PTC. For CBS-TA
and CBS-TA-PTC, the return is generated by evaluating the solution
from the low level, with past solutions from previous subtasks, on
an oracle that simulates the environment based on the user-defined
reward function and dynamics, which is typically implemented
as a user-designed RL environment in practice [8]. Note that a
maximum return solution is conflict-free by design.
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