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ABSTRACT
Reinforcement learning is a commonly used technique for optimis-
ing objectives in decision support systems for complex problem
solving. When these systems affect individuals or groups, it is es-
sential to reflect on fairness. As absolute fairness is in practice not
achievable, we propose a framework which allows to balance dis-
tinct fairness notions along with the primary objective. To this end,
we formulate group and individual fairness in sequential fairness
notions. First, we present an extended Markov decision process,
𝑓MDP, that is explicitly aware of individuals and groups. Next, we
formalise fairness notions in terms of this 𝑓MDPwhich allows us to
evaluate the primary objective along with the fairness notions that
are important to the user, taking a multi-objective reinforcement
learning approach. To evaluate our framework, we consider two
scenarios that require distinct aspects of the performance-fairness
trade-off: job hiring and fraud detection. The objectives in job hiring
are to compose strong teams, while providing equal treatment to
similar individual applicants and to groups in society. The trade-off
in fraud detection is the necessity of detecting fraudulent trans-
actions, while distributing the burden for customers of checking
transactions fairly. In this framework, we further explore the in-
fluence of distance metrics on individual fairness and highlight
the impact of the history size on the fairness calculations and the
obtainable fairness through exploration.
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1 INTRODUCTION
Fair and balanced automated decision support is essential, to avoid
discrimination or favouritism towards individuals and groups. This
is crucial in a wide array of applications, such as finance [9], job
hiring [15, 16], epidemic mitigation [3, 4, 8] and fraud detection
[12]. Fair decision support systems allow stakeholders to make in-
formed decisions, taking into account an appropriate performance-
fairness trade-off. This is important, as advice that is proposed by
a decision support system might severely impact individuals and
groups. Therefore, it is vital to study this matter to enable a wider
acceptance of algorithms that support decision makers. As fair-
ness requirements depend on the problem context and the decision
maker’s concerns, a framework should be capable of dealing with
multiple fairness notions, that encompass the ethical considerations
of the problem domain and the stakeholders. Consequently, it is
important to develop a framework that considers fairness based on
sensitive features (e.g., race and gender) and their combinations.

Recent work on fairness in RL has focused on single fairness
notions in application-specific solutions [2, 6, 7, 14, 17, 20] and typ-
ically relies on reward shaping [2, 10]. However, such approaches
do not suffice for real-world decision support problems, as the de-
sired performance-fairness trade-off cannot be described upfront by
stakeholders. Furthermore, real-world problems typically require
multiple, possibly conflicting, fairness notions [11]. To this end, a
multi-objective approach is essential to manage the main objective
and to consider multiple fairness notions simultaneously [5]. We
propose a formal fairness framework that is capable of dealing
with multiple fairness notions. We experimentally evaluate this
framework in job hiring and credit card fraud detection settings.

2 FAIRNESS FRAMEWORK
We define the fairness framework and highlight its requirements
and suitability regarding distinct problem settings.

2.1 𝑓MDP and the fairness history
A sequential decision process can be formally described as aMarkov
Decision Process (MDP) [19], consisting of a set of states S, a set
of actions A, a set of rewards R and a transition function 𝑝 :
S × R × S × A → [0, 1] describing the probability of a next state
s𝑡+1 and reward 𝑟𝑡 given the current state s𝑡 and action 𝑎𝑡 . We
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extend this standard MDP to an 𝑓MDP to encode a feedback signal
𝑓𝑡 , that concerns an indication whether the chosen action 𝑎𝑡 was
correct at time 𝑡 .

Existing fairness notions typically concern fair treatment be-
tween individuals or groups. We introduce the following notation
regarding individuals and groups. I𝑡 refers to the set of individuals
involved in the decision process at time 𝑡 and we use 𝑖𝑡 ∈ I𝑡 to refer
to an individual of that set. In the job hiring setting, I𝑡 refers to the
set of candidates who applied for the job at time 𝑡 and for which
a decision (i.e., hire or reject the applicant) should be made. We
refer to the set of all individuals involved in the decision process
from the start 𝑡 = 0 up to time 𝑇 as I𝑇 . We define G𝑔,𝑡 ⊆ I𝑡 as the
individuals of I𝑡 that make up group 𝑔. We refer to all individuals
involved in the decision process until time𝑇 , that belong to group 𝑔,
as G𝑇

𝑔 . For ease of notation, we assume that groups are predefined
and can be empty. In the job hiring setting, G𝑇

𝑔 refers to the group
of men or women, who applied for a job until time 𝑇 . Given the
𝑓MDP, we assume that a state s𝑡 provided to the RL agent encodes
the individuals I𝑡 and groups G𝑡 involved in the decision at time 𝑡 .
Furthermore, the agent’s action 𝑎𝑡 encodes the decision impacting
the involved individuals I𝑡 and groups G𝑡 , and the feedback I𝑡 and
G𝑡 specifies the correctness of that decision.

Given an 𝑓MDP, we define a history H𝑇 until time 𝑇 of past
interaction tuples and their feedback regarding the ground truth:

H𝑇 = {s𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑓𝑡 }𝑇𝑡=0 (1)

We define the encountered states, selected actions and feedback
from history H𝑇 until time 𝑇 respectively as H𝑇

𝑆
, H𝑇

𝐴
and H𝑇

𝑓
.

Consequently,H𝑇
𝑆
,H𝑇

𝐴
andH𝑇

𝑓
are also defined in terms of groups

G𝑇 and individuals I𝑇 .

2.2 Fairness notions
We formally define a fairness notion F as a power set P over
G𝑇 groups (Equation 2) and I𝑇 individuals (Equation 3), given the
history of encountered statesH𝑇

𝑆
, chosen actionsH𝑇

𝐴
and feedback

H𝑇
𝑓
until time 𝑇 :

F : P (G𝑇 ) × P (H𝑇
𝑆
) × P (H𝑇

𝐴
) × P (H𝑇

𝑓
) ↩→ R− (2)

F : P (I𝑇 ) × P (H𝑇
𝑆
) × P (H𝑇

𝐴
) × P (H𝑇

𝑓
) ↩→ R− (3)

The fairness notion F is defined as the negative absolute dif-
ference in treatment between groups or individuals. The closer F
is to zero, the smaller the difference in treatment is between the
groups or individuals. While F may be intractable due to limita-
tions of defining exact fairness [6], we propose to approximate it
with F̂ . For a future fairness objective, F , and by extension its
approximation F̂ provide a foundation for a reward signal that can
be used with a multi-objective RL approach.

3 RESULTS
As both the job hiring and fraud detection scenario deal with a
reward and multiple fairness objectives, the number of policies
with suitable trade-offs can scale exponentially. To this end, we use
Pareto Conditioned Networks (PCN) [13], as PCN trains a single

neural network to approximate all non-dominated policies, by ap-
plying supervised learning techniques to improve the policy. We
report the learned non-dominated coverage sets for all fairness
notions and the main reward [5], across 10 seeds after 500 000 steps.
Meaning, the reward vector consists of: the main reward (R) and
the fairness notions statistical parity (SP), equal opportunity (EO),
overall accuracy equality (OAE), predictive parity (PP), individual
fairness (IF) and consistency score complement (CSC) [11, 21].

For the job hiring scenario, we train an agent to hire andmaintain
a well-performing team of 100 employees from the Belgian popu-
lation [18], where episodes last for a maximum of 1000 timesteps.
We ask the agent to optimise four objectives: {R, SP, EO, IF}. We im-
plement the fairness history as a sliding window of 100 timesteps
and use the Bray-Curtis distance metric for the individual fair-
ness notions. Figure 1a shows a representative set of policies from
the non-dominated coverage sets. Note how the some of the best
learned policies are close to 0 for all group fairness notions, indicat-
ing the agent has learned policies which can satisfy more fairness
notions than initially requested. In contrast, due to the impact of
how the individual fairness notions are defined, it is possible for
the agent to find larger differences in non-dominated values among
them. However, obtaining a higher CSC or IF comes at the cost of
the main reward and some additional group fairness notions.

For the fraud detection scenario, we assume the default parame-
ters of the MultiMAuS simulator [22], but increase the frequency
of fraudulent transactions to approximately 10%. We let the agent
check transactions for a week, resulting in at most 1000 transac-
tions per episode. We ask the agent to optimise on four objectives:
{R, OAE, PP, CSC}. Figure 1b shows the learned trade-offs for two
different history sizes. The policies learned by the agent across
both window sizes follow similar trade-offs with regards to the
reward and the fairness notions. Note that individual fairness is
low for both IF and CSC. The largest contributor to this effect is the
different base rates for fraudulent transactions between individuals,
indicating the agent has mostly focused on improving the requested
group fairness notions, at the cost of individual fairness.

(a) Job hiring (b) Fraud detection

Figure 1: Representative policies from the non-dominated
coverage sets, with requested objectives in bold.
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