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ABSTRACT
We study the problem of allocating either divisible or indivisible

items (goods or chores) among a set of agents, where the items

arrive online, one at a time. Each agent’s non-negative value for an

item is set by an adversary upon the item’s arrival. Our focus is on a

unifying algorithmic framework for finding online allocations that

treats both fairness and economic efficiency. For this sake, we aim

to optimize the generalized means of agents’ received values, cover-

ing a spectrum of welfare functions including average utilitarian

welfare and egalitarian welfare. In the traditional adversarial model,

where items arrive in an arbitrary order, no algorithm can give a de-

cent approximation to welfare in the worst case. To escape from this

strong lower bound, we consider the random-order model, where
items arrive in a uniformly random order. This model provides us

with a major breakthrough: we devise algorithms that guarantee a

nearly-optimal competitive ratio for certain welfare functions, if

the welfare obtained by the optimal allocation is sufficiently large.

We prove that our results are almost tight: if the optimal solution’s

welfare is strictly below a certain threshold, then no nearly-optimal

algorithm exists, even in the random-order model.
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1 INTRODUCTION
Fair and efficient allocation of resources (or items) to heterogeneous

agents is a vital concern in many real-life scenarios [13, 25, 34, 38],

ranging from course allocation [11], peer reviewing [5, 33, 36] and

food donations [1], to distributing medical equipment and vaccines

[3, 32]. Some items, such as a cake [38] or a land [17], may be divis-
ible and can be split fractionally among several agents. Yet, items

like rare artworks cannot be divided without losing their value,

and are thus indivisible [2]: Each item must be allocated to a single
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agent. Prior work also distinguishes between the allocation of goods
that bring happiness [12], such as birthday cakes shared among

friends, and the assignment of undesirable chores that induce regret
[4, 24], like household cleaning duties. From a welfarist perspective,

fair division revolves around maximizing overall happiness from

goods and minimizing overall regret from chores.

In this paper, we consider numerous practical scenarios where

the items arrive online, one at a time [1, 21, 28, 39, 40, 42]. Example

applications include food banks [1, 35], online advertising [10, 23]

and so on. Our work explores online fair division from a welfarist

viewpoint by employing a unified algorithmic framework that ad-

dresses both fairness and economic efficiency. Unlike prior studies

that mainly focused on online allocation of goods, our analysis also
considers chores. Depending on whether all the items are goods or

chores, our goal is devising allocation algorithms that either maxi-

mize or minimize the generalized means of agents’ received values

[8, 16], encompassing various welfare functions such as average

utilitarian welfare and egalitarian welfare.

2 PRELIMINARIES
We consider the problem of allocating a set of 𝑇 items (goods or

chores) among a set of 𝑛 ≥ 2 agents in an online manner. The items

arrive one by one in 𝑇 rounds overall. For each agent 𝑖 , her value

𝑣𝑡
𝑖
∈ [0, 1] for item 𝑡 is revealed only when the item arrives (i.e., in

round 𝑡 ). Existing literature often considers the (worst-case) adver-
sarial model [22, 42], where an adversary controls agents’ values and
the items’ order of arrival to harm algorithm performance. Yet, even

in more restricted scenarios, this model has been proven to be too

pessimistic and no algorithm can surpass trivial ones [6, 8, 37]. To

avoid such negative results and enable the design of more effective

algorithms in practice, there has been a shift to beyond worst-case
models. In our work, we explore one notable such alternative, the

random-order model, where the adversary first selects the agents’

values for the items, but the items are then presented in a uniformly
random order. In online fair division, optimizing the generalized

means under this model is a major open problem [7, 8].

We consider the cases of divisible items (where each item can

be matched to multiple agents fractionally) and indivisible items

(where each item must be matched to a single agent integrally). In

the divisible case, when item 𝑡 arrives, an online algorithm must

irrevocably and immediately decide on the fraction 𝑥𝑡
𝑖
∈ [0, 1] of

item 𝑡 that should be assigned to each agent 𝑖 such that ∑𝑛
𝑖=1

𝑥𝑡
𝑖
≤ 1.

The indivisible case is obtained when 𝑥𝑡
𝑖
∈ {0, 1} for each agent 𝑖

and item 𝑡 . Let x𝑖 := (𝑥𝑡
𝑖
)𝑡 ∈[𝑇 ] ∈ [0, 1]𝑇 be the bundle of each agent

𝑖 and x := (x𝑖 )𝑖∈[𝑛] ∈ [0, 1]𝑛×𝑇 be the fractional allocation of the
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items among all the agents. We also denote the allocation at time

𝑡 as x𝑡 := (𝑥𝑡
𝑖
)𝑖∈[𝑛] ∈ [0, 1]𝑛 . We focus on agents with additive

valuations. In goods-only problems, an agent’s valuation is referred

to as her utility, and, in chores-only problems, as her disutility. Let
v(x) := (𝑣𝑖 (x𝑖 ))𝑛𝑖=1 be the agents’ joint valuation for an allocation

x and v(x𝑡 ) := (𝑣𝑡
𝑖
𝑥𝑡
𝑖
)𝑛
𝑖=1

be the agents’ joint valuation at time 𝑡 .

The agents’ valuations under an allocation x can be aggregated

into a single non-negative value using a welfare function, which

measures the fairness and efficiency of the allocation. In our work,

we focus on the generalized means of agents’ valuations. Formally,

for 𝑝 ∈ R, the 𝑝-mean welfare of an allocation x is given by:

𝑀𝑝 (x) := 𝑀𝑝 (v(x)) =
(
1

𝑛

𝑛
∑
𝑖=1

𝑣𝑖 (x𝑖 )𝑝
)
1/𝑝

(1)

This family of objectives captures multiple well-known fairness and

efficiency measures: 𝑝 = 1 yields the common average utilitarian
welfare, the limit 𝑝 → ∞ provides the maximax welfare, the limit

𝑝 → −∞ induces the egalitarian welfare, and the limit 𝑝 → 0 gives

the Nash welfare. In goods-only problems, we aim to maximize the
generalized means of agents’ utilities, while in chores-only prob-

lems, our goal is to minimize it. As standard in online algorithms

(See, e.g., [20]), we measure an algorithm’s performance in terms of

its competitive ratio, i.e., the worst-case ratio between the welfare of

the algorithm’s allocation to that of the optimal (offline) solution.

3 OUR CONTRIBUTIONS AND TECHNIQUES
Near-Optimal Algorithms for Divisible Items. In instances with

only divisible goods or divisible chores, the random-order model of-

fers a significant breakthrough: we develop algorithms that ensure

a nearly-optimal competitive ratio for certain welfare functions, if

the optimal allocation yields a sufficiently large welfare. Before de-

scribing our results more formally, we provide the intuition behind

our algorithms. Note that the naive greedy approach of allocating

each arriving item in a greedy manner incurs a high additive regret

as the change in welfare can vary rapidly from one round to another.

Inspired by the scheme of Molinaro for online scheduling [31], we

avoid this problem by allocating items greedily with respect to a

smoother version of the generalized-means.

Further, a key challenge in the random-order model is that there

are correlations among the items arriving in different time instants

as they are being sampled without replacement from the underlying

set of items. Hence, our algorithms combine the use of the smoothed

function with the restart strategy: the arriving items are bisected

into two sequences, which reduces the correlations among them so

as to obtain a near-optimal competitive ratio under mild conditions.

This holds as each item’s allocation only depends on at most 𝑇 /2 −
1 other allocations. Formally, for the case of divisible items, our

algorithms have the following guarantees:

Theorem 3.1. In the random-order model with divisible goods,
for any 𝜀 ∈ [0, 1], the following are satisfied:

(1) For each 𝑝 ∈ (1,∞), if themaximum 𝑝-mean welfare is at least
Ω(𝑝 (1−𝑛−1/𝑝 )/𝜀2), then there is an algorithm with a nearly-
optimal competitive ratio of at least 1 − 𝜀 for maximizing the
𝑝-mean welfare.

(2) For each 𝑝 ∈ (−∞,−1), if −3𝑝 (1 − 𝑛1/𝑝 )/𝜀 is little-o of the
minimum (−𝑝)-mean welfare, then, under mild assumptions,

there is an algorithm with a nearly-optimal competitive ratio
of at least 1 − 𝜀 for maximizing the 𝑝-mean welfare.

Theorem 3.2. In the random-order model with divisible chores,
for any 𝜀 ∈ [0, 1], the following are satisfied:

(1) For each 𝑝 ∈ (1,∞), if 3𝑝 (1 − 𝑛−1/𝑝 )/𝜀 is little-o of the mini-

mum 𝑝-mean welfare, then there is an algorithm with a nearly-
optimal competitive ratio of at most 1 + 𝜀 for minimizing the
𝑝-mean welfare.

(2) For each 𝑝 ∈ (−∞,−1), if the maximum (−𝑝)-mean welfare
is at least Ω(−𝑝 (1 − 𝑛1/𝑝 )/𝜀2), then, under mild assumptions,
there is an algorithm with a nearly-optimal competitive ratio
of at most 1 + 𝜀 for minimizing the 𝑝-mean welfare.

We prove that the conditions on the generalized means in The-

orems 3.1 and 3.2 are necessary, i.e., our results are almost tight.
However, our algorithms still have theoretically good guarantees

in this case and are near-optimal within constants. Formally:

Theorem 3.3. For both divisible goods and chores, if the maxi-

mum generalized means is strictly below a certain threshold, then no

nearly-optimal algorithm exists, even in the random-order model.

Randomized Rounding for Indivisible Items. For indivisible
items, we show how standard randomized rounding can convert

the fractional allocations produced by our algorithms into integral
allocations while maintaining their guarantees. Formally:

Theorem 3.4. In the random-order model with indivisible items, if
the number of agents 𝑛 is sufficiently large, then, under the conditions
of Theorems 3.1-3.2, standard randomized rounding combined with
each of our algorithms has a nearly-optimal competitive ratio.

4 DISCUSSION AND FUTUREWORK
Note that the random-order model is stronger than the i.i.d. model
[14, 42], where items are i.i.d. drawn from an unknown distribu-

tion picked by an adversary. Indeed, one can view i.i.d. draws as

first sampling from an underlying distribution and then randomly

permuting them. Thus, our results also apply to this model.

Our research opens the way for many future works. An immedi-

ate direction is examining the random-order model for 𝑝 ∈ [−1, 1],
which we believe to be inherently harder as it includes the Nash

social welfare, known to be APX-hard even in offline setting with in-
divisible items [27]. Future studies can also develop algorithms that

are effective on both purely stochastic and purely adversarial inputs

[30], or even on inputs that are a mix of both [18, 30]. Another in-

teresting direction is considering scenarios where input items may

follow a Poisson arrival process [29, 41] or more general arrival

distributions [15, 19]. Future research may also consider other ob-

jectives, such as proportional fairness [7] and envy-freeness [9, 42].

While our work focuses on allocating either goods or chores, future

works should consider mixtures of them, which has proven to be

inherently challenging even in offline settings and under domain

restrictions [24, 26]. Finally, investigating domains beyond agents

with additive valuations may lead to additional profound insights

regarding online fair division.
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