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ABSTRACT
In this paper, we propose several approaches to learn the optimal
population-dependent controls in order to solve mean field control
problems (MFC). Such policies enable us to solve MFC problems
with forms of common noises at a level of generality that was not
covered by existing methods. We analyze rigorously the theoretical
convergence of the proposed approximation algorithms. Of partic-
ular interest for its simplicity of implementation is the 𝑁 -particle
approximation. The effectiveness and the flexibility of our algo-
rithms is supported by numerical experiments comparing several
combinations of distribution approximation techniques and neural
network architectures. We use three different benchmark problems
from the literature: a systemic risk model, a price impact model,
and a crowd motion model. We first show that our proposed algo-
rithms converge to the correct solution in an explicitly solvable
MFC problem. Then, we show that population-dependent controls
outperform state-dependent controls. Along the way, we show that
specific neural network architectures can improve the learning
further.
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1 INTRODUCTION
Optimal control problems have found a wide range applications
from engineering to finance and robotics. In most cases, the system
is subject to random disturbances which means that one has to find
optimal controls in a stochastic setting. In the present work, the
motivation is to study very large populations of strategic identical
agents who cooperate to minimize a social cost both under idiosyn-
cratic and common noise. In order to approximate the problem,
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we will use mean-field approximation which consists in replacing
individual interactions by the interaction of a representative agent
with the distribution of the population. This leads to more tractable
models and more efficient algorithms. This setting is often referred
to as mean field control (MFC for short).

The numerical schemes to solve MFC problems require to solve
forward backward partial differential equations (PDEs) (either with
finite scheme methods [1, 2, 6] or deep learning [3, 8]) or forward
backward stochastic differential equations (SDEs) (with discretiza-
tion [4, 10] or deep learning [5, 9, 12]). Here, we focus on an ap-
proach that learns the optimal control without using backward
PDEs or SDEs. One of the main advantages is the fact that it does
not require any dynamic programming principle. This approachwas
used for standard stochastic optimal control problems in [13, 14]
and in the mean field setup in [9, 12] with controls that were inde-
pendent of the population. In this work, we extend the approach
to population-aware controls, which allows us to tackle MFC with
common noise. Indeed, when there is only idiosyncratic noise, ran-
domness vanishes in the mean-field limit and it is sufficient to learn
controls that are functions of only the representative agent’s state
and time. However, when there is common noise, the evolution
of the distribution cannot be predicted with certainty and, to be
optimal, the control should be a function of the distribution.

2 MFCWITH COMMON NOISE
Our aim is tominimize over closed-loop controls 𝑣 the total expected
cost:
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On the theoretical side, we make three main contributions,
summarized as follows. 1. Firstly we prove a bound on the differ-
ence between the optimal value of the MFC problem in which an
approximated distribution is used and the optimal value of the origi-
nal MFC problem. This error bound is a function of the Wasserstein
distance between the original distribution and the approximated
distribution. Therefore, our theorem shows that if the approximate
distribution is close enough to the original distribution, the optimal
values of the two MFC problems (with the common noise) will be
also close. This relies on the stability of the problem with respect
to distribution approximation. 2. As a corollary, we show that the
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optimal value of the MFC problem where an empirical distribu-
tion is implemented instead of the theoretical distribution will be
close to the original MFC problem. 3. Finally, since representing
a distribution can be challenging, we analyze the stability of our
problem with respect to a restricted admissible control set. The
new restricted admissible control set allows controls that takes the
embedding of the distribution as an input. Our motivation here is
to represent the distribution in some natural ways, such as using
empirical approximation, moment approximation, and histogram
approximation. This last theoretical result shows that the optimal
value of the MFC problem where the optimal control is searched
in the restricted admissible set is close to the optimal value of the
original MFC problem.

Next, we propose numerical methods to learn the optimal con-
trol with distribution approximation. We stress that the control’s
input is potentially very high dimensional because it contains an
approximation of the population distribution. This motivates us to
use deep learning methods.

3 NUMERICAL METHOD & EXPERIMENTS
Our numerical method uses deep learning for learning the control
as a function of time, state, and distribution and Monte Carlo simu-
lations for the time-discretized state dynamics of the particles in the
population. In order to approximate the distribution, we implement
a two step approach. First we summarize the distribution by using
either empirical, histogram, or moments approximation. Then, we
use this as an input for a parameterized distribution embedding
function which is implemented as a neural network, whose out-
put will be passed to a second neural network for the control. For
the first neural network in charge of the distribution embedding,
we consider three different architectures: feedforward (FFNN),
convolutional (CNN), or symmetric (SYM) neural networks. After
approximating the distribution with the distribution embedding
step, we use it as an input for a second neural network that aims to
learn the control as a function of time, state, and (approximated) dis-
tribution. In the implementation, we use Monte Carlo simulations
for an interacting system of 𝑁 particles based on the state dynamics
in (1). We use a loss function the time-discretized and population-
averaged counterpart to the total cost in (1). We illustrate our results
on three classical examples from the literature.

In the price impact experiment, we extend [7] to model many
traders who control the trading rates of two stocks. The representa-
tive player’s state is the inventory for both stocks and theyminimize
their trading costs while interacting with each other through the
average trading rates in the population which creates a price impact.
In the crowd motion experiment, agents choose their velocity and
their state is their position on the Euclidean axis. They interact
with each other through the congestion cost, i.e., it will be more
costly to be at more crowded places. Our method is used to solve
both of these high dimensional problems for the distribution em-
bedding and we showed that they outperform the case where the
distribution is not used as an input to the control (nodist). This
shows that population-dependent controls outperform the state-
dependent control. In the more complex crowd motion example,
we see that more sophisticated architectures such as CNN with

histogram approximation and SYM with empirical approximation
outperform FFNN with histogram and empirical approximations.
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Figure 1: Loss comparison of different distribution approximations
in price impact (top) and crowd motion (bottom) experiments.

4 CONTRIBUTIONS AND CONCLUSIONS
The main contribution of this article is three-fold. First, we prove
theoretical approximation guarantees for the population-dependent
controls in MFC with common noise. Second, we present an algo-
rithm which trains a neural network control to minimize the social
cost, and we propose several variants of distribution approximation
(empirical, moments, histogram) and neural network architectures
(feedforward fully connected, convolutional, symmetric). Third,
we illustrate the performance of various combinations of distri-
bution approximation and neural network architectures on three
examples from the literature. We show that, in the presence of com-
mon noise, population-dependent controls outperform population-
independent controls, and that the choice of approximation and
architecture helps to improve the learning.
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