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ABSTRACT
In the realm of graph-restricted games, the underlying network

structure plays a pivotal role, enforcing a key constraint: commu-

nication between agents is only feasible if a valid path connecting

them exists within the network. This constraint significantly influ-

ences the dynamics and strategies, particularly in value allocation

scenarios among connected agents.

Among various contributions to the allocation rules for such

network-centric scenarios, Myerson’s pioneering work stands out

[4, 5]. Named after him, the Myerson value represents an adaptation

of the Shapley value [7]. Another prominent concept in this domain

is the position value [1, 6]. Both serve as solution concepts, offering

distinct perspectives, with the Myerson value focusing on agents

and the position value on links between agents.

We provide an axiomatic characterization of the Myerson value

based on two fundamental axioms. Expanding our investigation, a

subtle modification of the first axiom leads to a characterization of

the position value. This extension enables comparing these value

operators, highlighting their essential distinctions and similarities.
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1 INTRODUCTION
Unlike previous axiomatizations of the Myerson value, we do not

confine ourselves to component additive value functions; instead,

the value function can take any form. Our primary axiom for char-

acterizing the Myerson value centers on a crucial principle: given a

value function, when there is an epsilon increase (or decrease) of the

value function at a network, say at 𝑔, and at each network contain-

ing 𝑔, then that epsilon increase (or decrease) must be distributed

equally between the agents that are linked in 𝑔.

The second axiom of our characterization is a condition only

on the value function where the value of each possible network is

zero. It requires that if the value function is zero at any network,
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then each agent must be treated uniformly, receiving zero payoff

at all networks. This property, named as the null-game property,

reinforces fairness in such an obvious situation. We show that

the Myerson value is precisely characterized by these two axioms,

which are independent of each other.

The central axiom guiding our characterization of the position

value is analogous to that for the Myerson value: given a value

function when there is an epsilon increase (or decrease) of the value

function at a network, say at 𝑔, and at each network containing 𝑔

(as in the previous case), then that epsilon increase (or decrease)

must be distributed equally between the links of 𝑔. Subsequently,

the decided payoff for each link is distributed uniformly between

the two edges forming the link. We show that the position value is

characterized by this axiom and the null-game property. These two

axioms are independent of each other.

Our approach employs the ’basis’ concept indirectly within the

axiomatization process. By utilizing it, a significant contribution of

our work emerges: the central axiom for the position value aligns

closely with the key axiom for the Myerson value. This alignment

highlights the fundamental difference between these two allocation

rules in a straightforward and natural manner.

2 PRELIMINARIES
Let 𝑛 ≥ 2. Let 𝑁 = {1, . . . , 𝑛} be a finite set of agents who are

connected in some network relationship, we take 𝑁 fixed.

Let 𝑔𝐾 stand for the complete (undirected, loop free) graph with

vertex set 𝑁 . Any subgraph of 𝑔𝐾 will be referred as a network
(in a non-standard way, all 𝑁 vertices are kept). Let 𝑔0 stand for

the network that has no edges, i.e. 𝑔0 is the null-network, i.e. the
null-graph, edgeless graph with n nodes. Let 𝐺𝑁 denote the set of

all networks with agent set 𝑁 .

The vertices of a network 𝑔 correspond to the agents and the

edges between the agents correspond to bilateral relationship be-

tween the agents. For any 𝑖, 𝑗 ∈ 𝑁 , we write 𝑙 = 𝑖 𝑗 for the edge

(link) between the agents 𝑖 and 𝑗 . The network obtained by adding

a link 𝑙 to an existing network 𝑔 ∈ 𝐺𝑁 is denoted by 𝑔 + 𝑙 .
Let 𝐷𝑖 (𝑔) be the set of all edges which are incident to vertex 𝑖 ,

𝑑𝑖 (𝑔) be the degree of vertex 𝑖 in network 𝑔, and 𝑑 (𝑔) be the total
number of links in 𝑔.

For each 𝑔 ∈ 𝐺𝑁 , let 𝑁 (𝑔) = {𝑖 ∈ 𝑁 : ∃ 𝑗 s.t.𝑖 𝑗 ∈ 𝑔}, i.e, 𝑁 (𝑔) is
the set of agents who has at least one link in 𝑔.

To indicate a supergraph, we write 𝑔 ⊆ 𝑔, if [𝑖 𝑗 ∈ 𝑔 ⇒ 𝑖 𝑗 ∈ 𝑔] .
A function 𝑣 : 𝐺𝑁 → Rwhere 𝑣 (𝑔0) = 0 is called a value function

for 𝐺𝑁 . Let 𝑉𝑁 denote the set of all value functions for 𝐺𝑁 .

Throughout, let 𝑣0 ∈ 𝑉𝑁 denote the value function that assigns

zero to each network in 𝐺𝑁 , i.e., for each 𝑔 ∈ 𝐺𝑁 , 𝑣0 (𝑔) = 0.
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For each 𝑔 ∈ 𝐺𝑁 \ {𝑔0}, let 𝑣𝑔 denote the value function that

satisfies

𝑣𝑔 (𝑔) =
{

1 if 𝑔 ⊆ 𝑔,

0 otherwise.

It is known that𝔅 = {𝑣𝑔 : 𝑔 ∈ 𝐺𝑁 \ {𝑔0}} forms a basis for𝑉𝑁 [2].

A rule distributing the value of a network between the agents

is called a allocation rule. Formally, an allocation rule is a function
𝑌 : 𝐺𝑁 × 𝑉𝑁 → R𝑁 that assigns a payoff vector 𝑌 (𝑔, 𝑣) to each

(𝑔, 𝑣) ∈ 𝐺𝑁 × 𝑉𝑁 , such that

∑
𝑖∈𝑁 𝑌𝑖 (𝑔, 𝑣) = 𝑣 (𝑔). The number

𝑌𝑖 (𝑔, 𝑣) represents the payoff of agent 𝑖 at (𝑔, 𝑣) .
We employ the extension of the Myerson value provided in [3]

as our definition of the Myerson value. The Myerson value, denoted

as 𝑌𝑀𝑉 , is defined as follows:

𝑌𝑀𝑉𝑖 (𝑔, 𝑣) =
∑︁

𝑆⊆𝑁 \{𝑖 }

(
𝑣 (𝑔|𝑆∪{𝑖 } ) − 𝑣 (𝑔 |𝑆 )

) |𝑆 |! (𝑛 − |𝑆 | − 1)!
𝑛!

.

As an extension of a theorem by Myerson, Jackson andWolinsky

[3] demonstrate the following:“An allocation rule satisfying com-
ponent balancedness and equal bargaining power if and only if the
allocation rule is equal to the Myerson value for each g ∈ GN and
each component additive v ∈ VN

." In the aforementioned character-

ization, it’s important to note a constraint on the value function-it

must be component additive.

Meessen [1, 6] introduces an alternative allocation rule for net-

work games, known as the position value, denoted as𝑌𝑃𝑉 , defined

as follows:

𝑌𝑃𝑉
𝑖 (𝑔, 𝑣) =

∑︁
𝑙 ∈𝐷𝑖 (𝑔)

1

2

∑︁
𝑔⊆𝑔−𝑙

(𝑣 (𝑔 + 𝑙 ) − 𝑣 (𝑔) ) 𝑑 (𝑔)!(𝑑 (𝑔) − 𝑑 (𝑔) − 1)!
𝑑 (𝑔)! .

3 MAIN AXIOMS
For establishing the main axioms, we initially introduce a new value

function obtained from 𝑣 , denoted as 𝑣 (𝑔,𝜖 ) as follows.

Definition 3.1. For each 𝑔 ∈ 𝐺𝑁 \ {𝑔0}, each 𝑣 ∈ 𝑉𝑁 and each

𝜖 ∈ R \ {0}, we define the value function 𝑣 (𝑔,𝜖 ) as follows:

𝑣 (𝑔,𝜖 ) (𝑔) =
{
𝑣 (𝑔) + 𝜖 if 𝑔 ⊆ 𝑔,

𝑣 (𝑔) otherwise,

In other words, 𝑣 (𝑔,𝜖 ) = 𝑣 + 𝜖𝑣𝑔 where 𝑣𝑔 ∈ 𝔅.

Next, we present our fundamental axioms.

Definition 3.2. An allocation rule 𝑌 satisfies equal division be-
tween the source agents at a monotonic increment of the value function
(for short, we call EDBA) if for each 𝑔 ∈ 𝐺𝑁 \ {𝑔0}, 𝑣 ∈ 𝑉𝑁 and

𝜖 ∈ R \ {0}, the following conditions hold:

(a) for each 𝑔 ∈ 𝐺𝑁 such that 𝑔 ⊇ 𝑔,

𝑌𝑖 (𝑔, 𝑣 (𝑔,𝜖 ) ) =
{
𝑌𝑖 (𝑔, 𝑣) + 𝜖

|𝑁 (𝑔) | if 𝑖 ∈ 𝑁 (𝑔),
𝑌𝑖 (𝑔, 𝑣) otherwise,

(b) for each 𝑔 ∈ 𝐺𝑁 such that 𝑔 ⊉ 𝑔,

𝑌𝑖 (𝑔, 𝑣 (𝑔,𝜖 ) ) = 𝑌𝑖 (𝑔, 𝑣),
for each 𝑖 ∈ 𝑁 .

As per EDBA, if a change in the value function occurs at 𝑔 and

at each supergraph of 𝑔, the source of the change is 𝑔, thus, this

change must be be equally distributed among all agents having at

least one link in 𝑔.

Definition 3.3. An allocation rule 𝑌 satisfies equal division be-
tween the source links at a monotonic increment of the value function
(for short, we call EDBL) if for each 𝑔 ∈ 𝐺𝑁 \ {𝑔0}, 𝑣 ∈ 𝑉𝑁 and

𝜖 ∈ R \ {0}, the following conditions hold:
(a) for each 𝑔 ∈ 𝐺𝑁 such that 𝑔 ⊇ 𝑔,

𝑌𝑖 (𝑔, 𝑣 (𝑔,𝜖 ) ) =
{

𝑌𝑖 (𝑔, 𝑣) + 𝜖𝑑𝑖 (𝑔)
2𝑑 (𝑔) if 𝑖 ∈ 𝑁 (𝑔),

𝑌𝑖 (𝑔, 𝑣) otherwise.

(b) for each 𝑔 ∈ 𝐺𝑁 such that 𝑔 ⊉ 𝑔,

𝑌𝑖 (𝑔, 𝑣 (𝑔,𝜖 ) ) = 𝑌𝑖 (𝑔, 𝑣),
for each 𝑖 ∈ 𝑁 .

As per EDBL, in a situation where there is a change of the value

function at 𝑔 and at each supergraph of 𝑔, the network 𝑔 is the

source of the change, thus, this change must be distributed equally

between the links of 𝑔, and then equally distributed among the

agents who own these links.

Definition 3.4. We say that an allocation rule 𝑌 satisfies null-
game property if for each 𝑔 ∈ 𝐺𝑁 and each 𝑖 ∈ 𝑁 , 𝑌𝑖 (𝑔, 𝑣0) = 0.

4 CHARACTERIZATIONS
First, we show that Myerson value satisfies EDBA. For that, we first

show the following lemma.

Lemma 4.1. For any 𝑛,𝑚 ∈ Z, 𝑛 ≥ 2 and 0 ≤ 𝑚 ≤ 𝑛 − 2,
𝑚∑︁
𝑘=0

(
𝑛 −𝑚 + 𝑘

𝑘

)
1

𝑛 −𝑚 + 𝑘 =

(
𝑛

𝑛 −𝑚

)
1

𝑛 −𝑚
.

The proof of Lemma 4.1 follows by induction on 𝑛, or alterna-

tively, employing binomial coefficients and Pascal’s rule.

Theorem 4.2. There is a unique allocation rule that satisfies EDBA
and null-game property, namely 𝑌𝑀𝑉 .

Sketch of the proof: It is straightforward to verify that 𝑌𝑀𝑉 sat-

isfies null-game property. By employing a proof by cases argument

and using Lemma 4.1, we show that 𝑌𝑀𝑉 satisfies EDBA.

Conversely, we show that there is a unique allocation rule that

satisfies EDBA and null-game property. The proof utilizes the fact

that𝔅 serves as a basis for𝑉𝑁 , employing a recursive argument to

establish the uniqueness of 𝑌 . Given that 𝑌𝑀𝑉 satisfies EDBA and

null-game property, we conclude that 𝑌 is indeed equal to 𝑌𝑀𝑉 ,

which completes the proof.

In a similar way, we give a characterization of the position value.

Theorem 4.3. There is a unique allocation rule that satisfies EDBL
and null-game property, namely 𝑌𝑃𝑉 .

The proof follows a similar structure to that of Theorem 4.2. It

is straightforward to verify that 𝑌𝑃𝑉 satisfies null-game property.

By employing a proof by cases argument and using Lemma 4.1, we

show that 𝑌𝑃𝑉 satisfies EDBL.

For the converse, the proof technique is exactly as in the proof of

Theorem 4.2. Assuming 𝑌 is an allocation rule satisfying EDBL and

null-game property, as in the proof of Theorem 4.2, 𝑌 is uniquely

determined. Given that 𝑌𝑃𝑉 satisfies EDBL and null-game property,

we conclude that 𝑌 is indeed equal to 𝑌𝑃𝑉 , completing the proof.
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