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ABSTRACT
We study a model of multiwinner voting where candidates are

selected sequentially in rounds over a time horizon. Prior work

has adapted popular notions of justified representation as well as

voting rules that provide strong representation guarantees from

the standard single-round multiwinner election case to the tempo-

ral setting. In our work, we focus on the complexity of verifying

whether a given outcome is proportional. We show that the tempo-

ral setting is strictly harder than the standard single-round model

of multiwinner voting, but identify natural special cases that enable

efficient verification.

KEYWORDS
Temporal Voting, Proportionality, Computational Social Choice

ACM Reference Format:
Edith Elkind, Svetlana Obraztsova, and Nicholas Teh. 2024. Verifying Pro-

portionality in Temporal Voting: Extended Abstract. In Proc. of the 23rd
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 3 pages.

1 INTRODUCTION
Consider a large corporation that has decided to improve its public

image and to give back to the society by engaging in corporate
philanthropy over the next decade, committing a small fraction of

their profits towards supporting the efforts of a single charitable

organization, to be selected on an annual basis. The management of

this corporation decides to ask its customers, staff, and shareholders

for input as to which charity organizations it should select each

year. Furthermore, as the charity selected is of strategic importance

and would directly impact the company’s corporate image and

hence profitability, it is important for the company to ensure that

the selection is representative of what its customers, staff, and

shareholders care about and that it would create maximum impact

for the charitable organization they choose to support.

It is natural to view this problem through the lens of multiwinner

voting [15, 19, 26], where several notions of representation and

fairness have been proposed over the past decade, spanning across

proportional representation [4, 15], diversity [9, 31], and excellence,

amongst others [26]. Perhaps the most prominent among these is

the concept of justified representation (JR) and its variants (such as

proportional justified representation (PJR) and extended justified
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representation (EJR)), which aim to capture the idea that large

cohesive groups of voters should be fairly represented in the final

outcome [2, 3, 10, 29, 32] . However, these notions of fairness do

not fully capture settings where preferences may evolve over time.

Temporal considerations in multiwinner voting have been stud-

ied recently, most notably in the line of work known as perpetual
voting [22, 23], and have broad real-world applications [17]. Thus, it
would be appropriate to consider models whereby preferences are

elicited over a specific time period, and could change. Accordingly,

suitable notions of fairness should be defined to take into account

temporal considerations. In this spirit, Bulteau et al. [11] began a

foray into defining proportional representation in the setting of

temporal multiwinner voting with approval preferences. They pro-

posed multiple temporal variants of JR and PJR, and studied their

existence and computational complexity.

Concurrently and independently from our work, Chandak et al.

[12] delve into the study of notions proposed in Bulteau et al. [11],

and study adaptations of existing rules from single-shot elections

to the temporal case, for both online and offline settings. Bredereck

et al. [7, 8] look at sequential committee elections whereby an entire

committee is elected in each round, and impose constraints on the

extent a committee can change, whilst ensuring candidates retain

sufficient support from the electorate. Lackner et al. [25] propose

a framework for studying long-term participatory budgeting, and

study fairness considerations in that setting. Other models in the

social choice literature that include temporal elements include pub-

lic decision-making [6, 13, 18, 24, 33], scheduling [16, 28], resource

allocation over time [1, 5, 21], online committee selection [14], and

dynamic social choice [20, 27].

2 PRELIMINARIES
A temporal election is a tuple (𝑁, 𝑃, ℓ, (s𝑖 )𝑖∈𝑁 ), where𝑁 = {1, . . . , 𝑛}
is a set of voters, 𝑃 = {𝑝1, . . . , 𝑝𝑚} is a set of 𝑚 distinct projects,
or candidates, ℓ is the number of timesteps, and, for each 𝑖 ∈ 𝑁 ,

s𝑖 = (𝑠𝑖,1, 𝑠𝑖,2, . . . , 𝑠𝑖,ℓ ), where 𝑠𝑖,𝑡 ⊆ 𝑃 is the approval set of voter 𝑖
at time 𝑡 , which consists of candidates that 𝑖 approves at timestep 𝑡 .

We refer to s𝑖 as 𝑖’s temporal preference; for brevity, we will some-

times omit the term “temporal”. An outcome of a temporal election

(𝑁, 𝑃, ℓ, (s𝑖 )𝑖∈𝑁 ) is a sequence o = (𝑜1, . . . , 𝑜ℓ ) of ℓ candidates such
that for every 𝑡 ∈ [ℓ] candidate 𝑜𝑡 ∈ 𝑃 is chosen at timestep 𝑡 . A

candidate may be selected multiple times. A voter 𝑖’s utility for an

outcome o is computed as 𝑢𝑖 (o) = |{𝑡 ∈ [ℓ] : 𝑜𝑡 ∈ 𝑠𝑖,𝑡 }|.

Definition 2.1. Given an election 𝐸 = (𝑁, 𝑃, ℓ, (s𝑖 )𝑖∈𝑁 ) and a

group of voters 𝑁 ′ ⊆ 𝑁 , we define the agreement of 𝑁 ′
as the

number of timesteps in which all members of𝑁 ′
approve a common

candidate: 𝛽 (𝑁 ′) = |{𝑡 ∈ [ℓ] : ∩𝑖∈𝑁 ′𝑠𝑖,𝑡 ≠ ∅}|. We define the

demand of a group of voters 𝑁 ′
as 𝛼 (𝑁 ′) =

⌊
𝛽 (𝑁 ′) · |𝑁 ′ |

𝑛

⌋
.
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Definition 2.2 (Justified Representation). An outcome o satisfies

justified representation (JR) for an election 𝐸 = (𝑁, 𝑃, ℓ, (s𝑖 )𝑖∈𝑁 )
if for every group of voters 𝑁 ′ ⊆ 𝑁 with 𝛼 (𝑁 ′) > 0 we have

|{𝑡 ∈ [ℓ] : 𝑜𝑡 ∈
⋃

𝑖∈𝑁 ′ 𝑠𝑖,𝑡 }| > 0.

Definition 2.3 (Proportional Justified Representation). An outcome

o satisfies proportional justified representation (PJR) for an election

𝐸 = (𝑁, 𝑃, ℓ, (s𝑖 )𝑖∈𝑁 ) if for every group of voters 𝑁 ′ ⊆ 𝑁 we have

|{𝑡 ∈ [ℓ] : 𝑜𝑡 ∈
⋃

𝑖∈𝑁 ′ 𝑠𝑖,𝑡 }| ≥ 𝛼 (𝑁 ′).
Definition 2.4 (Extended Justified Representation). An outcome

o satisfies extended justified representation (EJR) for an election

𝐸 = (𝑁, 𝑃, ℓ, (s𝑖 )𝑖∈𝑁 ) if for every group of voters 𝑁 ′ ⊆ 𝑁 there

exists a voter 𝑖 ∈ 𝑁 ′
such that |{𝑡 ∈ [ℓ] : 𝑜𝑡 ∈ 𝑠𝑖,𝑡 }| ≥ 𝛼 (𝑁 ′).

It is easy to see that EJR implies PJR, and PJR implies JR
1
.

3 RESULTS
We start by showing that a variant of Greedy Cohesive rule [29]

always produces an outcome that satisfies EJR (and hence PJR and

JR); briefly, this rule considers all subsets of voters in a certain order,

picks a collection of pairwise disjoint subsets, and then allocates a

timestep to each of these subsets.

Theorem 3.1. There exists an algorithm that returns an outcome
satisfying EJR, and runs in time 𝑂 (2𝑛 · poly(𝑛,𝑚, ℓ)).

Given that EJR outcomes are guaranteed to exist, it is natural to

ask whether we can efficiently compute an EJR outcome or verify

that a given outcome satisfies EJR (or one of the weaker axioms).

The former question is addressed by Chandak et al. [12], so we

mostly focus on the latter question.

In single-shot multiwinner elections, outcomes that satisfy EJR

(and thus JR and PJR) can be computed in polynomial time [3, 30].

In contrast, the problem of verifying if a given outcome satisfies

JR/PJR/EJR is considerably more challenging: while this problem

is polynomial-time solvable for JR, it is coNP-hard for PJR and

EJR [3, 32]. We show that in the temporal setting, the verification

problem is coNP-hard for JR, PJR, and EJR.

Theorem 3.2. For each of X ∈ {JR, PJR, EJR}, verifying whether
an outcome satisfies X is coNP-complete, even if |𝑃 | = 2.

Our proof establishes that verifying JR remains coNP-hard even

if there are just two distinct projects. However, the election con-

structed in our reduction has the property that the approval sets

𝑠𝑖,𝑡 may be empty. If we require that 𝑠𝑖,𝑡 ≠ ∅ for all 𝑖 ∈ 𝑁 , 𝑡 ∈ [ℓ]
then for |𝑃 | = 2 the problem of verifying JR becomes easy.

Proposition 3.3. Given an election (𝑁, 𝑃, ℓ, (s𝑖 )𝑖∈𝑁 ) with 𝑃 =

{𝑝, 𝑞} and 𝑠𝑖,𝑡 ≠ ∅ for all 𝑖 ∈ 𝑁 , 𝑡 ∈ [ℓ], as well as an outcome o, we
can check in polynomial time whether o provides JR.

This shows that requiring each voter to approve at least one

project at each step may reduce the complexity of checking JR

considerably, at least for |𝑃 | = 2. Is this still the case for |𝑃 | > 2? If

there are no constraints on the size of 𝑃 , the answer is ‘no’.

Proposition 3.4. For each of X ∈ {JR, PJR, EJR}, verifyingwhether
an outcome satisfies X is coNP-complete, even if 𝑠𝑖,𝑡 ≠ ∅ for all voters
𝑖 ∈ 𝑁 and all timesteps 𝑡 ∈ [ℓ].
1
Our terminology differs from Chandak et al. [12], who refer to the notions defined

above as “strong JP/PJR/EJR”, and reserve the terms JR/PJR/EJR for weaker concepts.

It remains an open question whether verifying that a given out-

come provides JR remains coNP-complete if all approval sets are

non-empty and |𝑃 | is a fixed constant greater than 2.

We also note that we can obtain a hardness-of-verification result

for |𝑃 | = 3 under the assumption that all approval sets are non-

empty for a weaker notion of JR, which was also proposed as all-
period intersection JR by Bulteau et al. [11]. Formally, an outcome

o provides all-periods Justified Representation for an election 𝐸 =

(𝑁, 𝑃, ℓ, (s𝑖 )𝑖∈𝑁 ) if for every group of voters 𝑁 ′ ⊆ 𝑁 with 𝛽 (𝑁 ′) =
ℓ , 𝛼 (𝑁 ′) > 0 we have |{𝑡 ∈ [ℓ] : 𝑜𝑡 ∈

⋃
𝑖∈𝑉 𝑠𝑖,𝑡 }| > 0. We note that

Chandak et al. [12] also consider this concept as refer to it as JR

(and use the term ‘strong JR’ for what we call JR).

Theorem 3.5. Verifying whether an outcome satisfies all-periods
JR is coNP-complete, even if |𝑃 | = 3 and 𝑠𝑖,𝑡 ≠ ∅ for all voters 𝑖 ∈ 𝑁

and all timesteps 𝑡 ∈ [ℓ].
We complement our hardness results with the following fixed-

parameter tractability results.

Proposition 3.6. For each of X ∈ {JR, PJR, EJR}, verifyingwhether
an outcome satisfies X is FPT with respect to 𝑛, FPT with respect to
the combined parameter (𝑚, ℓ), and XP with respect to ℓ .

As the problem of verifying whether an outcome satisfies JR,

PJR, or EJR is computationally hard in general, it is natural to seek a

restriction on voters’ preferences that may yield positive results. We

consider the case where voters’ preferences evolve monotonically

with time: that is, for any two timesteps 𝑡, 𝑡 ′ ∈ [ℓ] with 𝑡 < 𝑡 ′ and
every project 𝑝 ∈ 𝑃 it holds that if 𝑝 ∈ 𝑠𝑖,𝑡 for some agent 𝑖 ∈ 𝑁 ,

then 𝑝 ∈ 𝑠𝑖,𝑡 ′ . We call this the structured availability setting.

Theorem 3.7. In the structured availability setting, for each of
X ∈ {JR, PJR, EJR}, the problem of verifying whether an outcome
satisfies X admits a polynomial-time algorithm.

We also show an algorithm for finding EJR outcomes that is based

on integer linear programming (ILP). While this algorithm does not

run in polynomial time, it is very flexible: e.g., we can easily modify

it so as to find an EJR outcome that maximizes the utilitarian social

welfare, or provides utility guarantees to individual voters.

Theorem 3.8. There exists an integer linear program (ILP) whose
solutions correspond to outcomes that satisfy EJR; the number of
variables and the number of constraints of this ILP are bounded by a
function of the number of voters 𝑛.

The following corollary illustrates the power of the ILP-based

approach. Note that while Chandak et al. [12] show that a variant

of the PAV rule can find EJR outcomes in polynomial time, their

approach cannot handle additional constraints on agent’ utilities

and hence the corollary is not implied by their result.

Corollary 3.9. Consider a temporal election𝐸 = (𝑁, 𝑃, ℓ, (s𝑖 )𝑖∈𝑁 ).
There is an algorithm that is FPT with respect to the number of voters
𝑛 that for each set of integers 𝛿1, . . . , 𝛿𝑛 decides whether there exists
an EJR outcome of 𝐸 that guarantees utility 𝛿𝑖 to voter 𝑖 for each
𝑖 ∈ 𝑁 , and, if yes, finds an outcome that maximizes the utilitarian
social welfare among all outcomes with this property.
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