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ABSTRACT
In this paper, we present MultiSoc, a new method for learning
multi-agent socially aware navigation strategies using RL. Inspired
by recent works on multi-agent deep RL, our method leverages
graph-based representation of agent interactions, combining the
positions and fields of view of entities (pedestrians and agents).
Each agent uses a model based on two Graph Neural Networks com-
bined with attention mechanisms. First an edge-selector produces
a sparse graph, then a crowd coordinator applies node attention
to produce a graph representing the influence of each entity on
the others. This is incorporated into a model-free RL framework to
learn multi-agent policies. We evaluate our approach on simulation
and provide a series of experiments in a set of various conditions
that conclude that our method learns faster than social navigation
deep RL mono-agent techniques, and enables efficient multi-agent
implicit coordination in challenging crowd navigation with multi-
ple heterogeneous humans. A full description and analysis of this
work is available in the full paper version [2].
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1 INTRODUCTION
Robot navigation in crowded spaces has attracted significant at-
tention in recent years given its numerous potential applications,
but it still faces many challenges [10]. Especially understanding
pedestrian behavior is crucial to develop effective robot navigation
strategies that prioritize human safety. But predicting crowd be-
havior is difficult and most of approaches intend to learn it from
experiment or simulation [4, 5, 16].
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Figure 1: Overview of theMultiSoc architecture. For the agent
of interest (surrounded by dotted line), the input is its intrin-
sic information and a graph limited to its FoV. Each node is
composed of the current and consecutive predicted positions
of the observed entities, and by a label discriminating enti-
ties following their nature.

Recent approaches [1, 8] use deep reinforcement learning (RL)
to build social navigation strategies with the help of a simulated
crowd. Lately the works of Liu et al. [7] use deep RL combined with
attention [13] and graph-based representations [11] of interactions
between robot and humans. This achieved very good performance
in dense crowds for a single robot. However, as specified by the
authors, this model remains difficult to train as it exhibits unstable
learning. We propose a model for the learning of multi-robot navi-
gation strategies within crowded environments.
Main challenges compared to the state of the art are learning co-
ordinated and human-safe navigation strategies for the fleet of
robots and managing interactions with both controlled (robots) and
uncontrolled entities (humans). In our contribution, we highlight
the similarity between two approaches that utilize Graph Neural
Networks (GNN) [11] to represent, on one hand, human interac-
tions in single-robot social navigation [7], and on the other hand,
interactions between agents in multi-robot navigation [14]. Thus
GNNs offer a bridge between these two fields which we leverage,
combined with attention mechanisms, in our model MultiSoc. Mul-
tiSoc follows Centralized Training Decentralized Execution (CTDE)
paradigm. During the learning process with MAPPO [15], a multi-
agent RL algorithm, the model is shared between robots, taking
benefit of each robot experience. But at the execution, each robot
processes its input through its MultiSoc model and gets as result its
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action (commands in velocity). The input is a directed graph with
information (current and predicted future poses) concerning the
entities (robots and humans) in the field of view (FoV) of the robot.

2 CONTRIBUTION
We introduce MultiSoc, a model for learning multi-agent naviga-
tion among humans that can be seen as an homotopy between
AttnGraph [7] and MAGE-X [14]. From the former, we keep the
attention mechanism and the graph with predicted future positions
of the entities. From the latter, we improve edge-selection and take
up the graph merging early all the entities. Moreover, unlike Attn-
Graph where entities ignore each other except for the only robot’s
consideration of humans, in multi-agent scenarios, interactions and
visibilities among controllable agents are crucial for their coordi-
nation. That’s why in MultiSoc, the computation graph is based
on the visibility among entities that is critical. The algorithm has
to merge both controllable and uncontrollable entities, all of them
interacting with each other. MultiSoc workflow for each agent 𝑗 is
the following (cf. Fig. 1):

- The Edge-Selector applies attention on nodes of a graph
composed of predicted positions of each entities in the FoV
of agent 𝑗 . This produces a sparse directed graph of the most
interesting interactions between entities with adjustable den-
sity.

- The Crowd Coordinator, a Graph Attention Network with
one layer of attention, is applied on the sparse graph to
compute node features influenced by neighbors. Meanwhile,
the Intrinsic Coordinator produces a broader summary of
the constraint applied on the robot (constraint of goal).

- Once the external constraints (Crowd Coordinator) have
been correctly represented on the node representing the
agent 𝑗 , this node is extracted and concatenated with the
constraint of goal (Intrinsic Coordinator).

- Then a GRU, followed by two MLPs, produces both value
and action, with respect to the previous hidden state and the
information previously computed.

From a technical perspective, the GNNs included in the architecture
allows: (i) A flexible computation taking into account as many
entities as wanted. It is worth noting that humans and agents are
included in the same graph (and not in the architecture itself as
does AttnGraph) (ii) A pseudo centralization in the decision acts on
each agent in the graph (as node). By extension of the homogeneous
paradigm, all other agents with enough information on their own
observations, can be accurately understood by the concerned agent.
(iii) An extendable receptive field increases the observation space
from which the agent takes its action. As in [6], each GNN layer
extends the information perceived and allows nodes to be connected
indirectly to more nodes.

3 EXPERIMENTATIONS
3.1 Simulation Environment

Simulator. We extend the CrowdNav mono-agent simulator [7]
for a multi-agent version. Our multi-agent simulator MultiCrowd-
Nav is based on multi particle environments (MPE) [9] to facilitate
the migration from PPO to MAPPO [15].

Crowd Simulation. Despite their lack of realism, methods such as
ORCA [12] or social force (SF) [3] are often used to simulate humans
(for learning and testing). Combining the two appears necessary for
considering real-life implementation. Thus in our simulator each
human can be controlled by ORCA or SF and some experiments
will be done with heterogeneous human policies.

Scenario. The scenarios are initialized with 𝐻 humans arranged
on a circle with some noise on their positions. Human goals are
chosen so that they must cross the circle to reach an opposite point.
Humans react only to other humans but not to robots (adversarial
crowd). A new random goal is assigned to a human as soon as it
reaches its goal. At initialisation, 𝑅 agents are also laid out ran-
domly with their own goals (positioned and assigned randomly).
An episode is over when all agents have either collided (collision)
or reached their goal (success). For more details concerning the
simulation, the reader can refer to [7].

Metrics. Our metrics include navigation and social metrics tradi-
tionally used in multi-robot and social robot navigation.

The success rate is the number of agents that reached their goals
to the total number of agents, evaluated on all test episodes. Safety
is mainly summarized by the collision rate, i.e. the number of
agents colliding with other entity (humans or not). The proximity
of the agent to humans can also be considered to evaluate the
social awareness of the agents. We used the intrusion ratio as the
percentage of time the agent was "too close" to a human averaged
over all episodes ("too close" is defined as in [7] with a distance
defining the space "close" to an individual). The reward is the mean
reward obtained by each agent at the end of episode.

3.2 Results
First, the proposed architecture allows a faster training compared
to Attngraph (40h for Attngraph, 20h for MultiSoc) under the same
conditions.

Second, our MultiSoc model overcomes AttnGraph espe-
cially when several robots are involved. In the case of 1 robot
and 20 humans for both learning and testing, Multisoc has a success
rate of 0.96% against 0.92% for AttnGraph. When several robots are
involved only in testing (6 𝑅 and 6 𝐻 ) Multisoc obtains a success
rate of 0.81% versus only 0.68% for AttnGraph. Finally MultiSoc gets
a better result when several robots are involved also the training
phase (0.85% of success rate for training with 6 𝑅 and 6 𝐻 ). This
shows a better generalization of ourmodel when dealing with
a crowd composed of robots and humans.

Third our proposed architecture handles the mix of hu-
man policies very well even though training was done with ho-
mogeneous human policies (ORCA). Indeed tests mixing ORCA and
Social Force do not bring any additional difficulties to our model
(94% of success rate).

Finally we also demonstrate the scalability capacities of Mul-
tiSoc. Trainings with different numbers of robots delivered stable
performance, and a given training can also adapt to situations with
more or less robots. The experiments demonstrate that training
with 5 𝑅 and 20 𝐻 achieves very good results in single-robot (95%
success tested with 1 𝑅 and 20 𝐻 ), but also good results with 10
robots (89% success rate, tested with 10 𝑅 and 20 𝐻 ).
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